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Feynman’s “no-node” theorem states that the conventional many-body ground state
wavefunctions of bosons in the coordinate representation are positive definite. This im-
plies that time-reversal symmetry cannot be spontaneously broken. In this article, we
review our progress in studying a class of new states of unconventional Bose–Einstein
condensations beyond this paradigm. These states can either be the long-lived metastable
states of ultracold bosons in high orbital bands in optical lattices as a result of the “or-
bital Hund’s rule” interaction, or the ground states of spinful bosons with spin-orbit
coupling linearly dependent on momentum. In both cases, Feynman’s argument does
not apply. The resultant many-body wavefunctions are complex-valued and thus break
time-reversal symmetry spontaneously. Exotic phenomena in these states include the
Bose-Einstein condensation at nonzero momentum, the ordering of orbital angular mo-
mentum moments, the half-quantum vortex, and the spin texture of skyrmions.

Keywords: Bose–Einstein condensation; optical lattices; exciton; time-reversal symme-
try; spontaneous symmetry breaking.

1. Introduction

In Feynman’s statistical mechanics textbook, it is stated that the many-body

ground state wavefunctions of bosons are positive definite in the coordinate rep-

resentation provided no external rotation is applied and interactions are short-

ranged.1 The proof is very intuitive: due to the time-reversal (TR) symmetry, the

ground state wavefunction Ψ(r1, . . . , rn) can be chosen as real. If it is not positive

definite, i.e. it has nodes, the following method can be used to lower its energy.

We first take its absolute value of |Ψ(r1, . . . . , rn)|, whose energy expectation value

is exactly the same as that of Ψ(r1, . . . , rn). However, such a wavefunction has

kinks at node points. Further smoothing of the kinks results in a positive definite

wavefunction, and the kinetic energy is lowered by softening the gradients of the

wavefunction. Although the single body potential energy and the two-body interac-

tion energy increase, they are small costs of a high order compared to the gain of the

kinetic energy. We can further conclude that the ground state is non-degenerate be-
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cause two degenerate positive-definite wavefunctions cannot be orthogonal to each

other.

This “no-node” theory is a very general statement, which applies to almost all

the well-known ground states of bosons, including the superfluid, Mott-insulating,

density-wave, and even super-solid ground states. It is also a very strong statement,

which reduces the (generally speaking) complex-valued many-body wavefunctions

to become positive-definite distributions. This is why the ground state properties of

bosonic systems, such as 4He, can in principle be exactly simulated by the quantum

Monte-Carlo method free of the sign problem. Furthermore, this statement implies

that the ordinary ground states of bosons, including Bose–Einstein condensations

(BEC) and Mott-insulating states, cannot spontaneously break time-reversal (TR)

symmetry, since TR transformation for the single component bosons is simply the

operation of the complex conjugation.

It would be exciting to search for exotic emergent states of bosons beyond this

“no-node” paradigm, whose many-body wavefunctions can be complex-valued with

spontaneous TR symmetry breaking. Since properties of complex-valued functions

are much richer than those of real-valued ones, we expect that such states can

exhibit more intriguing properties than the ordinary ground states of bosons. For

this purpose, we have recently made much progress with two different ways to bypass

Feynman’s argument, including the metastable states of bosons in the high orbital

bands of optical lattices2–4 and multi-component bosons with spin-orbit coupling

linearly dependent on momentum.5

Clearly, the “no-node” theorem is a ground state property which does not apply

to the excited states of bosons. The recent rapid development of optical lattices with

ultracold bosons provides a wonderful opportunity to investigate the metastable

states of bosons pumped into high orbital bands. Due to the lack of dissipation

channels, the lifetime can be long enough to develop inter-site coherence.6,7 We

have shown that the interaction among orbital bosons are characterized by the

orbital Hund’s rule,2,3 which gives rise to a class of complex superfluid states by

developing the onsite orbital angular momentum (OAM) moments. In the lattice

systems, the inter-site hoppings of bosons lock the OAM polarization into regular

patterns depending the concrete lattice structures.

Furthermore, the “no-node” theorem does not even apply to the ground states

of bosons if their Hamiltonians linearly depend on momentum, i.e. the gradient

operator. A trivial example is the formation of vortices in Bose condensates with the

external rotation in which the Coriolis force is represented as the vector potential

linearly coupled to momentum. However, in this case TR symmetry is explicitly

broken. A non-trivial example is that of bosons with spin-orbit (SO) coupling,

whose Hamiltonians also linearly depend on momentum and are TR invariant. The

invalidity of the “no-node” theorem can also give rise to complex-valued ground

state wavefunctions.

Although 4He is spinless and most bosonic alkali atoms are too heavy to exhibit

the relativistic SO coupling in their center-of-mass motion, SO coupling can be
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important in exciton systems in two-dimensional quantum wells. We have shown

that the Rashba SO coupling in the conduction electron bands induces the same

type of SO coupling in the center-of-mass motion of excitons. In a harmonic trap,

the ground state condensate wavefunction can spontaneously develop half-quantum

vortex structure and the skyrmion type of the spin texture configuration.5 On the

other hand, effective SO coupling in boson systems can be induced by laser beams,

which has been investigated in several publications by other groups in Refs. 8–11.

In the following, we will review our work in both directions outlined above

including many new results never before published. In Sec. 2, we explain the char-

acteristic feature of interacting bosons in high orbital bands, the “orbital Hund’s

rule,” and the consequential complex-superfluid states with the ordering of onsite

OAM moments. The ordering of OAM moments in the Mott-insulating states is

also investigated. In Sec. 3, we review the TR symmetry breaking states of spin-

ful bosons with spin-orbit coupling. Interesting properties including half-quantum

vortex and the skyrmion-like spin-textures are studied. Conclusions are made in

Sec. 4.

Due to space constraints, we will not cover interesting related topics of orbital

bosons, such as the nematic superfluid state6 and the algebraic superfluid state,12

and the orbital physics with cold fermions,13–20 which has also caught the attention

of the research community recently.

2. “Complex Condensation” of Bosons in High Orbital Bands in

Optical Lattices

In this section, we will review the “complex condensation” with TR symmetry

breaking, which is a new state of the p-orbital bosons. This is an example of novel

orbital physics in optical lattice with cold bosons. Below let us give a brief general

introduction to orbital physics for the general audience.

An orbital is a degree of freedom independent of charge and spin. It plays

important roles in magnetism, superconductivity, and transport in transition metal

oxides.21–23 The key features of orbital physics are orbital degeneracy and spatial

anisotropy. Optical lattices bring new features to orbital physics which are not easily

accessible in solid state orbital systems. First, optical lattices are rigid lattices and

free from the Jahn–Teller distortion, thus orbital degeneracy is robust. Second,

the metastable bosons pumped into high orbital bands exhibit novel superfluidity

beyond Feynman’s “no-node” theory.2–4,6,12,24,25 Third, p-orbitals have stronger

spatial anisotropy than that of d- and f -orbitals, while correlation effects in p-orbital

solid state systems (e.g. semiconductors) are not that strong. In contrast, interaction

strength in optical lattices is tunable. We can integrate strong correlation with

spatial anisotropy more closely than ever in p-orbital optical lattice systems.13–17

Recently, orbital physics with cold atoms has been attracting a great deal of

attention.2,3,6,7,12,13,24–31 For orbital bosons, a series of theoretical works have

been done,2–4,6,12,24–27 including the illustration of the ferro-orbital nature of
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interactions,2 orbital superfluidity with spontaneous time-reversal symmetry break-

ing,2–4,24 and the nematic superfluidity.6,12 The theoretical work on the p-orbital

fermions is also exciting, including the flat band and associated strong correlation

physics in the honeycomb lattice,13,15,17 orbital exchange and frustration,16,20 and

topological insulators.14,18

The experimental progress has been truly stimulating.7,29–31 Mueller et al.7

have realized the metastable p-orbital boson systems by using the stimulated Ra-

man transition. The spatially anisotropic phase coherence pattern has been ob-

served in the time-of-flight experiments. Sebby-Strabley et al.31 have successfully

pumped bosons into excited bands in the double-well lattice. In addition, p-orbital

Bose–Einstein condensation (BEC) has also been observed in quasi-one-dimensional

exciton-polariton lattice systems.32

Below we illustrate the important feature of interactions between orbital bosons,

the “orbital Hund’s rule,” which results in TR symmetry breaking.

2.1. Orbital Hund’s rule of interacting orbital bosons

The most remarkable feature of interacting bosons in high orbital bands is that

they favor maximizing their onsite orbital angular momentum (OAM) as explained

below.2,3

Let us illustrate this Hund’s rule type physics through the simplest example: a

single site problem with two degenerate px,y-orbitals filled with two spinless bosons.

Because bosons are indistinguishable, the Hilbert space for the two-body states only

contains three states, which can be classified according to their OAM: an OAM

singlet as 1
2 (p†xp

†
x + p†yp

†
y)|0〉 depicted in Fig. 1(A), and a pair of OAM doublets

1
2
√

2
(p†x ± ip†y)2|0〉 with Lz = ±2 as depicted in Fig. 1(B). Assuming a contact

interaction V = gδ(r1 − r2), the interaction energy of the former is calculated as

Fig. 1. A single site problem with two spinless bosons occupying px,y-orbitals: (A) the OAM
singlet and (B) one of the OAM doublets. The latter is energetically more favorable than the

former as a result of the “orbital Hund’s rule.” The bonding pattern of p-orbitals: (C) the
σ-bonding and (D) the π-bonding.
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4
3U while that of the latter is 2

3U with the definition of

U = g

∫

dr2|ψpx
(r)|4 = g

∫

dr2|ψpy
(r)|4 . (1)

In the OAM singlet state, bosons occupy polar (real) orbitals (e.g. px, py), whose

angular distribution in real space is narrower than that of the axial (complex)

orbitals (e.g. px ± ipy) for the OAM doublets. By occupying the same axial orbital

and therefore maximizing OAM, two bosons enjoy more room to avoid each other.

This “ferro-orbital” interaction is captured by the following multi-band Hubbard

Hamiltonian for the p-orbital bosons as

Hint =
U

2

∑

r

{

n2
r
− 1

3
L2

z

}

, (2)

where n = p†xpx + p†ypy and Lz = −i(p†xpy − p†ypx). The first term is the ordi-

nary Hubbard interaction and the second term arises because of the orbital degree

of freedom. In three-dimensional systems in which all of the three p-orbitals are

present, we only need to replace Lz with L2 = L2
x + L2

y + L2
z and Lx,y defined as

Lx = −i(p†ypz − p†zpy), Ly = −i(p†zpx − p†xpz).

When more than two bosons occupy a single site, bosons prefer to go to the

same single particle state due to their statistical properties. Again, going into the

same axial state and thus maximizing OAM can reduce their repulsive interaction

energy. This is an analogy to the Hund’s rule of electron filling in atomic shells.

The first Hund’s rule of electrons maximizes electron total spin to antisymmetrize

their wavefunction, and the second Hund’s rule further maximizes their OAM to

extend the spatial volume of wavefunction. The key feature is that electrons want

to avoid each other as far as they possibly can. For the orbital physics of spinless

bosons, the same spirit applies with the maximizing of OAM.

We have now understood the single site physics in which bosons develop rotation.

From the symmetry point of view, it is similar to the px + ipy superconductors.

2.2. Band structures of the p-orbital systems

The p-orbital Hamiltonian within the tight-binding approximation can be written

as

H0 = t‖
∑

〈ij〉
[p†i,êij

pj,êij
+ h.c.] − t⊥

∑

〈ij〉
[p†

i,f̂ij

pj,f̂ij
+ h.c.], (3)

where the unit vector êij is along the bond orientation between two neighboring sites

i and j and f̂ij = ẑ× êij is perpendicular to êij . pêij
and pf̂ij

are the projections of

p-orbitals along (perpendicular to) the bond direction respectively as defined below

pêij
= (pxêx + pyêy) · êij , pf̂ij

= (pxêx + py êy) · f̂ij . (4)
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Fig. 2. The p-orbital band structure in the two dimensions: (A) square and (B) triangular lattices.
In the square lattice, the band minima are located at Kx = (π/a0 , 0) for the px-orbital band, and
Ky = (0, π/a0) for the py-orbital band, respectively. In the triangular lattice, the band minima
are at three middle points of Brillouin zone edges as K1 = (0, 2π

√

3a
) and K2,3 = ( π

a
,± π
√

3a
). The

corresponding orbital configurations at these three band minimal are polar-like and parallel to the
momentum directions of K1,2,3 respectively as depicted.

The σ-bonding t‖ and the π-bonding t⊥ describe the hoppings along and perpen-

dicular to the bond direction as depicted in Fig. 1(C) and 1(D), respectively. The

opposite signs of the σ and π-bondings are due to the odd parity of p-orbitals. t⊥
is usually much smaller than t‖ in strong periodical potentials.

Equation (3) exhibits degenerate band minima in both the square and triangular

lattice.2,3,13 In the square lattice, the Brillouin zone (BZ) is a square with the edge

length of π
a0

where a0 is the length between the nearest neighbors. The spectra reads

εpx
= t‖ cos kx− t⊥ cos ky and εpy

= −t⊥ cos kx + t‖ cos ky. As depicted in Fig. 2(A),

the band minima are located at Kpx = ( π
a0

, 0) for the px band and Kpy = (0, π
a0

)

for the py band, respectively.

In the triangular lattice, we set the π-bonding to zero which does not change the

qualitative band structures. We take unit vectors from one site to its six neighbors

as ±ê1,2,3 with ê1 = êx, ê2,3 = − 1
2 êx ±

√
3

2 êy. The Brillouin zone takes the shape of

a regular hexagon with the edge length 4π/(3a). The energy spectrum of H0 is

E(k) = t‖
{

fk ∓
√

f2
k
− 3gk

}

, (5)

with

fk =
3
∑

i=1

cos(k · êi), gk =
∑

3≥i>j≥1

cos(k · êi) cos(k · êj) . (6)

The spectrum contains three degenerate minima located at the three non-equivalent

middle points of the edges as K1 = (0, 2π√
3a

),K2,3 = (±π
a ,

π√
3a

). The factor eiK1·r

takes the value of ±1 uniformly in each horizontal row but alternating in adjacent

rows. If the above pattern is rotated at angles of ± 2π
3 , then we arrive at the patterns

of eiK2,3 ·r. Each eigenvector is a two-component superposition vector of px and py
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orbitals. The eigenvectors at energy minima are ψK1
= eiK1·r|py〉. ψK2,3

can be

obtained by rotating ψ1 at angles of ± 2π
3 respectively as depicted in Fig. 2(B).

2.3. Weak coupling analysis BEC at nonzero momenta

If there were no interactions, any linear superposition of the above band minima

would be a valid condensate wavefunction. However, interactions will select a par-

ticular type combination which exhibits TR symmetry breaking and agrees with

the above picture of “orbital Hund’s rule.”

2.3.1. The square lattice — the staggered ordering of OAM moments

In the square lattice, we take the condensate wavefunction as Ψsq(r) =

c1ψpx
(Kpx

) + c2ψpy
(Kpy

) under the constraint of |c1|2 + |c2|2 = 1. Any choice

of c1,2 minimizes the kinetic energy. However, the interaction U terms break the

degeneracy. The degenerate perturbation theory shows that the ground state values

of c1,2 take c1 = 1, c2 = i or its equivalent TR partner of c1 = 1, c2 = −i. The mean

field condensate can be described as

1√
N0!

{

1√
2
(ψ†

Kpx
+ iψ†

Kpy
)

}N0

|0〉 , (7)

where N0 is the particle number in the condensate.

For better insight, we transform the above momentum space condensate to the

real space. The orbital configuration on each site reads

eiφr(|px〉 + iσr|py〉), (8)

where the U(1) phase eiφr is specified at the right lobe of the p-orbital. The Ising

variable σr = ±1 denotes the direction of the OAM, and is represented by the anti-

clockwise (clockwise) arrow on each site in Fig. 3(B). Each site exhibits a nonzero

OAM moment and breaks TR symmetry. The condensate wavefunction of Eq. (7)

describes the staggered ordering of σr. We check that the phase difference is zero

along each bond, and thus no inter-site bond current exists.

The condensate described in Eq. (7) breaks both TR reversal and translational

symmetries, and thus corresponds to a BEC at nonzero momenta. This feature

should exhibit itself in the time-of-flight experiments which have been widely used to

probe the momentum distribution of cold atoms. The coherence peaks of Eq. (7) are

not located at integer values of the reciprocal lattice vectors but at (m π
a0
, (n+ 1

2 ) π
a0

),

and ((m + 1
2 ) π

a0

, n π
a0

) as depicted in Fig. 3(A). Furthermore, unlike the s-orbital

condensate, the p-wave Wannier function superposes a non-trivial profile on the

height of density peaks. As a result, the highest peaks are shifted from the origin —

a standard for the s-wave peak — to the reciprocal lattice vectors whose magnitude

is around 1/l where l is the characteristic length scale of the harmonic potential of

each optical site. A detailed calculation of form factors is given in Ref. 2.
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Fig. 3. (Color online) (A) The time-of-flight spectra of the p-orbital Bose condensation in the
square lattice. The coherence peaks occurs at (m π

a0
, (n + 1

2
) π

a0
), and ((m + 1

2
) π

a0
, n π

a0
). (B) The

staggered ordering of OAM moments in the square lattice with the phase pattern on each site.
Each of the σ and π-bonds achieves phase coherence. From Liu and Wu, see Ref. 2.

2.3.2. Excitations — gapless phonons and gapped orbital modes

The elementary excitations in p-orbital BECs consist of both the gapless phonon

mode and the gapped orbital mode. The former corresponds to the Goldstone mode

related to the U(1) symmetry breaking, and the latter corresponds to the flipping

of the direction of OAM moments. In the following, we will take the 2D square

lattice as an example.

We assume the condensate as 1√
2
[p†x(Qx)+ ip†y(Qy)] with Qx = (π, 0) and Qy =

(0, π). The boson operators take the expectation values

〈|px(r)|〉 = (−1)rxφ, 〈|py(r)|〉 = i(−1)ryφ . (9)

From minimizing the onsite part of the free energy with respect to the condensate

order parameter φ

F = −µn+
U

2

(

n2 − 1

3
L2

z

)

, (10)

we have µ = 4U
3 |φ|2 respect to the band minima. The fluctuation around the ex-

pectation value is defined as

px(r) = 〈|px(r)〉 + δpx, py(r) = 〈|py(r)〉 + δpy . (11)

Then the interaction terms in Eq. (2) are expanded as

Hint =
4

3
|φ|4 + [δp†xδpx + δp†yδpy]

8

3
|φ|2 +

1

3
φ∗,2[δpxδpx − δpyδpy]

+
1

3
φ2[δp†xδp

†
x − δp†yδp

†
y] +

2i

3
(−)rx+ry [φ2δp†xδp

†
y − φ∗,2δpxδpy] . (12)



Final Reading
January 16, 2009 17:15 WSPC/147-MPLB 01777

Unconventional Bose-Einstein Condensations Beyond the “No-Node” Theorem 9

Combined with the free part, we arrive at the mean field Hamiltonian as

HMF =

′
∑

k,a,b

Ψ†(k)aMab(k)Ψb(k) (13)

where Ψ†(k) = [p†x(k), p†y(k+Q), px(−k), py(−k−Q)], Q = (π, π) = Qx−Qy, and

the summation is only over half of the Brillouin zone. The matrix kernel reads

M(k) =



























εx(k) +
4U

3
|φ|2 0

2U

3
φ2 i

2U

3
φ2

0 εy(k + Q) +
4U

3
|φ|2 i

2U

3
φ2 2U

3
φ2

2

3
Uφ∗,2 −

2i

3
Uφ∗,2 εx(k) +

4U

3
|φ|2 0

−
2i

3
Uφ∗,2 2

3
Uφ∗,2 0 εy(k + Q) +

4U

3
|φ|2



























.

The spectra are reduced to generalized eigenvalue problem of

X−1
{

diag(1, 1,−1,−1)M(k)
}

X = diag(E1, E2,−E3,−E4), (14)

where E1,2,3,4(k) are excitation eigenvalues, and X contains the eigenvectors.

Let us consider the excitation close to the condensation wavevector k = Qx +q,

and then k + Q = Qy + q. At small value of q, we obtain the excitation spectra as

E1,3(k) =

√

ε̄(q)

(

ε̄(q) +
8

3
U |φ|2

)

, E2,4(k) = ε̄(q) +
4

3
U |φ|2 , (15)

where ε̄(q) = 1
2 [εx(Qx+q)+εy(Qy+q)−εx(Qx)−εy(Qy)] ≈ t‖+t⊥

2 (q2x+q2y). Clearly,

the gapless mode with the linear dispersion relation describes the superfluid phase

fluctuations; the gapped mode describes the orbital excitations corresponding to

the flipping of orbital angular momenta.

2.3.3. The triangular lattice — the stripe ordering of OAM moments

In the triangular lattice, the OAM moments form instead a stripe ordering, i.e.

the OAM moments along one row polarizes along the z-axis and those along the

neighboring rows polarizes with the opposite direction. This can be intuitively un-

derstood as follows. In the superfluid state, the OAM moments behave like vortices

whose interactions are long range. The above stripe configuration of positive and

negative vortices is the optimal configuration to minimize the globe vorticity.

Let us first examine the weak coupling limit. Again we write a general form for

condensation wavefunction as a linear superposition of the three band minima

Ψc(r) =
1√
N

(c1ψK1
+ c2ψK2

+ c3ψK3
), (16)
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Fig. 4. (Color online) (A) The time-of-flight spectra of the p-orbital boson condensation in the
triangular lattice. The coherence peaks occurs at (B). The stripe ordering of OAM moments in
the triangular lattice. From Wu et al., see Ref. 3.

where K1,2,3 are the locations of band minima defined in Sec. 2.2. Without loss of

generality, we set c1 = 1 and define x = (c2 + c3)/2, y = (c2 − c3)/2, x = x1 + ix2

and y = y1 + iy2, then the normalization factor is N =
√

1 + 2(x2
1 + y2

1 + x2
2 + y2

2).

The interaction energy per site is calculated as

Eint =
1

N2

{

(x2
1 + x2

2 − y2
1 − y2

2)
2 + 8x2

1 + 8y2
1

}

+ 1

− 1

N2

{

4(x1y2 − x2y1)
2 + 2x2

2 + 2y2
2

}

. (17)

The terms in the first line are from the density–density interaction which can be

minimized by setting x1 = y1 = 0 and x2 = ±y2. This means only one of c2,3

is nonzero and purely imaginary. In this case, the particle number on each site is

uniform. The terms in the second line can also be minimized at this condition with

a further requirement of x2 = ±y2 = ± 1
2 . If we take c2 nonzero, then c2 = ±i. Thus

the mean field condensate can be expressed as 1√
N0!

{

1√
2
(ψ†

K2
+iψ†

K3
)
}N0

|0〉 with |0〉
being the vacuum state and N0 the particle number in the condensate. This state

breaks the U(1) gauge symmetry, as well as TR and lattice rotation symmetries,

thus the ground state manifold is U(1) ⊗ Z2 ⊗ Z3. This state also breaks lattice

translation symmetry, which is, however, equivalent to suitable combinations of

U(1) and lattice rotation operations.

Again we transform the above momentum space condensate to the real space,

whose orbital configuration takes

eiφr(cosα|px〉 + iσr sinα|py〉) (18)

with α = π
6 as U/t → 0. The general configuration of α is depicted in Fig. 4(B)

for convenience later. At U/t→ 0, px,y are not equally populated, and the moment

per particle is
√

3
2 ~. This does not fully optimize Hint which requires Lz,r = ±~.

However, it fully optimizes H0 which dominates over Hint in the weak coupling

limit. We check that the phase difference is zero along each bond, and thus no

inter-site bond current exists.
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1
1/6
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Fig. 5. (A) Strong coupling analysis for the inter-site coupling between OAM moments on neigh-
boring sites. The OAM moments are described by Ising variables σij . θi and θj are the azimuthal
angles of the bonds relative the x-axis. (B) The stripe ordering of OAM moments in the triangular
lattice. The smallest unit is rhombic with the total vorticity of 1/3.

Interestingly, as depicted in Fig. 4(B), OAM moments form a stripe order along

each horizontal row. This stripe ordering in the weak coupling limit is robust at

small values of the π-bonding t⊥ because it does not change the location of the

band minima and the corresponding eigenfunctions of ΨK1,2,3
at all.

The driving force for this stripe formation in the SF regime is the kinetic energy,

i.e. the phase coherence between bosons in each site. By contrast, the stripe forma-

tion in high Tc cuprates is driven by the competition between long range repulsion

and the short range attraction in the interaction terms.33

This stripe phase should manifest itself in the time of flight (TOF) signal as de-

picted in Fig. 4(A). In the superfluid state, we assume the stripe ordering wavevector

K1, and the corresponding condensation wavevectors at K2,3. As a result, the TOF

density peak position after a fight time of t is shifted from the reciprocal lattice

vectors G as follows

〈n(r)〉t ∝
∑

G

{

|φ2(α,k)|2δ2(k −K2 −G) + |φ3(α,k)|2δ2(k −K3 −G)
}

, (19)

where k = mr/(~t); φ2,3(α,k) is the Fourier transform of the Wannier p-orbital

wavefunction |φ2,3(α)〉, and G = 2π
a [m, (−m + 2n)/

√
3] with m,n integers. Thus

Bragg peaks should occur at 2π
a [m± 1

2 ,
1√
3
(−m+ 2n+ 1

2 )]. Due to the form factors

of the p-wave Wannier orbit wavefunction |φ2,3(α,k)|2, the locations of the highest

peaks is not located at the origin but around |k| ≈ 1/lx,y. Due to the breaking of

lattice rotation symmetry, the pattern of Bragg peaks can be rotated at angles of

± 2π
3 .

2.4. Strong coupling analysis the lattice gauge theory formalism

In this subsection, the ordering of the OAM moments in the strong coupling su-

perfluid regime is examined. We will employ the lattice gauge theory formalism

developed by Moore and Lee in Ref. 34 in the context of the p + ip Josephson

junction array systems.
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In the superfluid regime, each site i is denoted by a U(1) variable φi which

denotes the superfluid phase along the x-direction, and by an Ising variable σz,i =

±1 for the direction of the OAM moment as depicted in Fig. 5. Along a general

direction of the azimuthal angle θ, the superfluid phase is φi + σz,iθ. The inter-site

σ and π-bonding become the inter-site Josephson coupling as

Hij = −nt‖ cos(φi − φj −A‖(i, j)) − nt⊥ cos(φi − φj −A⊥(i, j)), (20)

where n is the average particle number per site. The phase differences in Eq. (20)

takes into account the geometric orientation of the bond 〈ij〉 as captured by the

gauge fields A‖ and A⊥ with the definition that A‖ = σz,iθi−σz,jθj , A⊥ = σz,i(θi +
π
2 ) − σz,j(θj − π

2 ) = A‖ + π
2 (σz,i + σz,j), and θj = θi + π are the azimuth angles

relative to the x-axis defined in Fig. 5.

Let us first consider the case of t⊥ 6= 0 and write down an effective Hamiltonian

for the Ising variables σz . In order to minimize both the Josephson couplings of the

σ and π-bonds, we need σi = −σj and thus A‖,ij = A⊥,ij . Otherwise, if σi = σj ,

then A‖,ij = A⊥,ij + π. This costs an energy of 2t⊥, and leads to an effective

antiferro-orbital interaction between the Ising variables as

Heff = nt⊥
∑

ij

σz,iσz,j . (21)

Thus the antiferro-orbital ordering of OAM moments in the square lattice remains

valid in the strong coupling limit at non-vanishing t⊥, which enforces the fact that

both the σ and π-bonds achieve phase coherence as depicted in Fig. 3(B).

On the other hand, in the limit of a vanishing t⊥, the leading order effect involves

multiple site interaction around a plaquette. We follow the method described in

Ref. 34, and perform the duality transformation for the U(1) phase variables φ under

the background of the geometric gauge potential A‖. We separate the contributions

from the phonon part and the vortex part as

Z = Zph

′
∑

m

exp

{

−π
2nt‖
2

∑

x

(m(x) − Φx)2

+πnt‖
∑

x6=x′

(m(x) − Φx) log
|x− x′|

a
(m(x′) − Φ′

x)

}

, (22)

where Zph is the phonon contribution in the vortex-free configuration; x marks the

dual lattice site (or the plaquette index in the original lattice); m is the vortex

charge; Φx is the external flux through the plaquette defined as

Φx =
1

2π

∑

ij

A‖,ij . (23)
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In the square lattice, the geometric gauge flux around each plaquette x is cal-

culated as

Φx = −1

4
(σi + σi+ex

+ σi+ex+ey
+ σi+ey

) . (24)

If Φx is integer-valued, it can be absorbed by shifting the zero of the vortex charge

asm′(x) = m(x)−Φx which remains integer-valued, thus there is no cost for energy.

The feature can be captured by the effective Hamiltonian in Ref. 34 as

Heff = −K
∑

ijkl

σiσiσkσl , (25)

where i, j, k, l are four sites around a plaquette centered at x; K ≈ nt‖ is the energy

scale of the σ-bonding. This model has a sub-extensive Z2 symmetry investigated

in Ref. 34, i.e. flipping the sign of σz along each row or column leaves Eq. (25)

invariant. Thus it cannot develop the ordering of OAM at any finite temperature.

Let us come back to the superfluid sector φ, wherein its most relevant topological

defect is the half-quantum vortices because Φx can take the values of ± 1
2 . The

Kosterlitz–Thouless transition is associated with the unbinding of half-quantum

vortices. As a result, the low temperature phase is the quasi-long range ordering of

pairing of bosons.34

Next we move to the strong coupling theory in the triangular lattice. We start

from the limit of t⊥ = 0. The geometrical gauge flux becomes

Φx = −1

6
(σ1 + σ2 + σ3) , (26)

where 1, 2, 3 are three sites around a triangular plaquette. There is no way to form

an integer flux. The smallest vorticity per plaquette is ± 1
6 which corresponds to

either two +1’s and one −1, or two −1’s and one +1 to minimize the vortex core

energy. In such a dense vortex configuration, Eq. (22) rigorously speaking does not

apply because its validity relies on the assumption of small vortex fugacity. However,

the structure of interactions among vortices still implies that vortices form a regular

lattice with alternating positive and negative vorticity. The dual lattice (the center

of the triangular plaquette) is the bipartite honeycomb lattice. It is tempting to

assign ± 1
6 alternatively to each plaquette, but actually it is not possible due to

the following reason. Consider a plaquette with vorticity + 1
6 , thus its three vertices

are with two +1’s and one −1. The neighboring plaquette sharing the edge with

two +1’s must have the same vorticity, and merges with the former one to form a

rhombic plaquette with vorticity 1
3 as depicted in Fig. 5(B). Thus the ground state

should exhibit a staggered pattern of a rhombic plaquette with vorticity of ± 1
3 .

This arrangement precisely corresponds to the stripe order of the Ising variables.

This configuration breaks both the lattice rotational and translational symmetries,

which is six-fold degenerate. If we turn on the small t⊥ term, it results in an

antiferromagnetic Ising coupling with nearest bonds, and the stripe configuration
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Fig. 6. (A) Phase diagram based on the GMF theory in the 2 × 2 unit cell (see Fig. 4(B)).
Large scale Gutzwiller mean field calculations in a 30 × 30 lattice are performed to confirm the
stripe ordered superfluid (SF) phase at points 1, 2 and 3 with (t/U, µ/U) = (0.02, 2), (0.03, 1.5) and
(0.038, 2.2), respectively. (B) The flux Φ around a rhombic plaquette versus t/(nU). It decays from
1

3
in the strong coupling limit to 0 in the non-interaction limit. The solid line is the Gutzwiller

result at n = 3, while the dashed line is based on the energy function Eq. (30) of the trial
condensate. From Wu et al., see Ref. 3.

also satisfies its ground state requirement. Thus we believe that the t⊥ term does

not change the stripe configuration in the strong coupling limit either.

Having established the stripe order for the OAM moments, it is straightforward

to further optimize the U(1) phase variable φ. The result is depicted in Fig. 4(B)

with φ marked on the right lobe of the px ± ipy orbit. Each horizontal bond has

perfect phase match, while each tilted bond has a phase difference of π
12 . Thus

around each rhombic plaquette, the phase winding is π
12 × 4 = π

3 and this gives rise

to the Josephson supercurrent along the bonds as

j =
t‖n

2
sin ∆θ , (27)

with ∆θ = π
6 and the directions specified by arrows in Fig. 4(B). In other words, in

addition to the stripe order of the Ising variables which corresponds to the onsite

OAM moments, there exists a staggered plaquette bond current order. This feature

does not appear in the square lattice.2 The orbital plaquette current ordering has

been studied in the strongly correlated electron systems, such as the circulating

orbital current phase35 and the d-density wave states in the high Tc compounds.36

It is amazing that in spite of very different microscopic mechanism and energy

scales, the two completely different systems exhibit a similar phenomenology.

2.5. Intermediate coupling regime in the triangular

lattice self-consistent mean field analysis

We have shown that in the triangular lattice the stripe ordering of the OAM mo-

ments exist in both weak and strong coupling superfluid states. The orbital config-

urations are slightly different: the orbital mixing angle α defined in Eq. (18) equals

to π
6 in the weak coupling limit, while it is equal to π

4 in the strong coupling limit.

This arises from the competition between the kinetic energy and the onsite Hund’s
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rule. Below we will see that as U/t‖ goes from small to large, the stripe ordering

remains the same with a smooth evolution of α from π
6 to π

4 as depicted in Fig. 4(B).

We use a Gutzwiller type mean field theory for a 30 × 30 lattice under the

periodic boundary condition. We explicitly checked for three sets of parameters

(t‖/U, µ/U) marked as points of 1, 2 and 3 in Fig. 6(B). The stripe-ordered ground

state with a 2× 2 unit cell depicted in Fig. 4(A) is found to be stable against small

random perturbations in all the three cases. Then we further apply the Gutzwiller

type theory assuming a 2 × 2 unit cell and obtain the phase diagram depicted

in Fig. 6(A) which includes both the stripe ordered superfluid phase and Mott-

insulating phases.

In order to gain a better understanding of the numerical results, we write the

trial condensate with the p-orbital configuration on each site as

eiφr(cosα|px〉 + iσr sinα|py〉) . (28)

We have checked that the optimal pattern for the U(1) phase φr does not depend

on the orbital mixing angle of α, and it also remains the same for all the coupling

strengths. The phase mismatch ∆θ defined in Eq. (27) on the tilted bonds for a

general orbital mixing angle α can be calculated through simple algebra as

∆θ = 2γ − π/2, with tan γ =
√

3 tanα , (29)

and the corresponding Josephson current is j = nt sin ∆θ. The value of α is de-

termined by the minimization of the energy per particle of the trial condensate

as

E(α) = −t
[

1 + 2 sin

(

2α+
π

6

)]

− nU

6
sin2 2α+

nU

3
, (30)

where the first term is the contribution from the kinetic energy which requires phase

coherence, and the second term is the interaction contribution reflecting the Hund’s

rule physics. In the strong and weak coupling limits, the energy minimum is located

at α = π
4 and π

6 , respectively. The corresponding fluxes in each rhombic plaquette

Φ = 4∆θ/(2π) = 0 and ± 1
3 respectively, which agree with the previous analyses. In

the intermediate coupling regime, we present both results of Φ at n = 3 based on

the Gutzwiller mean field theory and those of Eq. (30) in Fig. 6(B). They agree with

each other very well, and confirm the validity of the trial condensate wavefunction.

Moreover, in the momentum space, the trial condensate for a general α can be

expressed as 1√
N0!

{

1√
2
(ψ′†

K2
+ iψ′†

K3
)
}N0

|0〉 , where ψ′
K2,3

(r) = eiK2,3 ·r|φ2,3(α)〉 with

|φ2,3(α)〉 = − cosα|px〉 ∓ sinα|py〉 respectively.

2.6. Orbital angular momentum ordering in the Mott-insulating

states

So far, we have only discussed the orbital ordering in the superfluid states. Since

the OAM moment is a different degree of freedom from the superfluid phase, we
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expect that its ordering can survive even inside the Mott-insulating phases. In this

subsection, we continue to study the exchange physics of orbital bosons and the

related ordering of OAM moments in the absence of the superfluidity order. For

simplicity, we will use the triangular lattice as an example.

We consider the Mott-insulating phases with n spinless bosons per site and two

degenerate orbitals of px and py. We define the TR doublets of all the particles in

the states of px±ipy as the eigenstates of the Ising operator σz with the eigenvalues

of ±1. The Ising part of the effective exchange Hamilton occurs at the level of the

second order perturbation theory, while the Ising variable flipping process occurs

at the 2n-th order perturbation theory. We consider the large n case in which the

system is deeply inside the Ising anisotropy class, and no orbital-flip process occurs

at the leading order. In the following, we will study the physics of the two, three,

and four-site exchange processes.

2.6.1. The two-site exchange

Let us consider the virtual hopping processes in the Mott-insulating states along

the bond depicted in Fig. 5(A). Both the σ-bonding t‖ and π-bonding t⊥ are kept.

With the definition of p†± = 1√
2
(p†x ± ip†y), we can express the hopping as

Ht = −1

2

∑

σσ′

{t‖p†σ(j)pσ′ (i)e−i(σθj−σ′θi) + t⊥p
†
σ(j)pσ′(i)e−i(σ−σ′)(θi+

π
2
) + h.c.}

=
t‖ − t⊥

2

∑

σ

{p†j,σpiσ + h.c.} +
t‖ + t⊥

2

∑

σ

{p†j,σpi,−σe
−2iσθi + h.c.} , (31)

where the definition of angles θi, θj follows the convention depicted in Fig. 5(A).

We calculate the energy shifts in both the ferro-orbital configurations (σi = σj)

and the antiferro-orbital configurations (σi = σ̄j) within the second order pertur-

bation theory. The energy difference between these two configurations is

∆EFO = −2n(n+ 1)[(t‖ − t⊥)/2]2

∆E1
− 2n[(t‖ + t⊥)/2]2

∆E2
,

∆EAFO = −2n(n+ 1)[(t‖ + t⊥)/2]2

∆E1
− 2n[(t‖ − t⊥)/2]2

∆E2
,

(32)

where ∆E1 = 2
3U and ∆E2 = 2

3U(n + 1). The antiferro-orbital configuration has

lower energy, which arises from the fact that the orbital-flip process has a larger

amplitude than that of the orbital non-flip process described in Eq. (31). This is

because the σ-bonding and π-bonding amplitudes have a π-phase shift. The Ising

coupling JAFO reads

H = JAFO

∑

ij

σz(i)σz(j) (33)
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where JAFO ≈ 2n2t⊥t‖
3U with only the leading order contribution kept. If t⊥ is set

to zero, JAFO varnishes. This is clear from the fact that we can flip the sign of the

p-orbit component perpendicular to the bond direction. This operation changes the

value of σz, but has no effect on the energy. In this case, we need to further study

the multi-site virtual hopping processes.

2.6.2. The three-site ring exchange

The σ-bonding term by itself gives nonzero ring exchange terms for the multi-

site processes, thus we neglect the contribution from the π-bonding part. In the

following, we only keep the leading order virtual process proportional to (nt‖)
3/U2.

We consider a triangular plaquette with three sites (i, j, k) each of which is de-

noted by the particle number and the Ising variables as (n, σz,i), (n, σz,j), (n, σz,k),

respectively. There are 12 different ring-hopping processes whose contribution is at

the order of (nt‖)
3/U2. We enumerate 4 of them explicitly as

(n, σz,i)(n, σz,j)(n, σz,k) → (n− 1, σz,i)(n+ 1, σz,j)(n, σz,k)

→ (n− 1, σz,i)(n, σz,j)(n+ 1, σz,k) → (n, σz,i)(n, σz,j)(n, σz,k)

(n, σz,i)(n, σz,j)(n, σz,k) → (n+ 1, σz,i)(n− 1, σz,j)(n, σz,k)

→ (n, σz,i)(n− 1, σz,j)(n+ 1, σz,k) → (n, σz,i)(n, σz,j)(n, σz,k)

(n, σz,i)(n, σz,j)(n, σz,k) → (n− 1, σz,i)(n+ 1, σz,j)(n, σz,k)

→ (n, σz,i)(n+ 1, σz,j)(n− 1, σz,k) → (n, σz,i)(n, σz,j)(n, σz,k)

(n, σz,i)(n, σz,j)(n, σz,k) → (n+ 1, σz,i)(n− 1, σz,j)(n, σz,k)

→ (n− 1, σz,i)(n, σz,j)(n+ 1, σz,k) → (n, σz,i)(n, σz,j)(n, σz,k) . (34)

The other 8 processes can be obtained by a cyclic permutation i → j → k. After

sum over all these processes, the corresponding energy shift reads

∆E(σi, σj , σk) ≈ 6

(−t‖
2

)3(

n(n+ 1))3/2 e
−i2πΦ3 + h.c.

(∆E)2
= −J3 cos(2πΦ3

)

, (35)

where J3 = 3(nt)3

2(∆E)2 and ∆E = 2U
3 ; Φ3 is defined as before in the superfluid case.

Again for each plaquette, Φ3 takes the value of ± 1
6 which correspond to σzs taking

values of two 1s and one −1 or two −1s and one 1. Equation (35) plays a similar role

to vortex core energy in Eq. (22). Equation (35) by itself has a huge ground state

degeneracy because the requirement is the same as that of the antiferromagnetic

Ising model. We need to add the four-site process to lift the degeneracy.

2.7. The four-site ring exchange

The four-site process mimics the interaction between two adjacent vortices. In the

spirit of perturbation theory, the four-particle process is further suppressed by a
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factor
nt‖
U , thus the interaction between vortices should be of short range. This

makes sense in the Mott insulating state due to the condensation of vortices and

the resulting screening effect.

Again we only consider the effect from the σ-bonding term, and only keep the

leading order contribution at the level of (nt)4/U3. Similarly, we have 48 different

virtual hopping processes. For a plaquette with vertices (ijkl), the energy shift is

∆E(σi, σj , σk, σl) ≈ −J4 cos(2πΦ4), (36)

where J4 = 5(nt)4

3(∆E)3 . In the square lattice, Φ4 = (σ1 + σ2 + σ3 + σ4)/4. If t⊥ = 0,

Eq. (36) is the leading order contribution, thus the effective Hamiltonian looks the

same as that in the superfluid case but with a reduced coupling constant. If t⊥ 6= 0,

then the two-site exchange of Eq. (33) results in the long range antiferro-orbital

order.

In the triangular lattice, the Φ4 of the four-site plaquette (ijkl) just equals the

sum of the flux of the two triangular plaquettes. Since each triangular plaquette

takes the flux value of ± 1
6 , the rhombic four-site plaquette can only take the flux

value of 0, ± 1
3 . The stripe ordering pattern gives the maximum number of the

zero-flux four-site plaquettes, and thus is selected as the ground state. The stripe

ordering appears at temperatures T < J4 and disappears at J3 > T > J4 in which

the three-site exchange process dominates the physics.

3. Exotic Condensation of Bosons with Spin-Orbit Coupling

In this section, we discuss another route for “complex-condensation” of bosons, i.e.

spinful bosons with spin-orbit (SO) coupling. The proof of Feynman’s “no-node”

theorem relies crucially on the fact that the kinetic energy of bosons only contains

even powers of momentum, thus SO coupling which linearly depends on momentum

invalidates Feynman’s proof. In the following, we consider the simplest example of

the two-component bosons with the Rashba-like SO coupling and investigate their

condensate in the inhomogeneous harmonic traps. A related work on the BEC of

two-component bosons has also been studied by Stanescu et al. in Ref. 11.

We consider bosons with two-components denoted as pseudospin up and pseu-

dospin down. The many-body Hamiltonian for interacting bosons is written as

H =

∫

d2rψ†
α

{

−~
2∇2

2M
− µ+ Vext(r)

}

ψα

+ ~λRψ
†
α(−i∇yσx + i∇xσy)ψβ +

g

2
ψ†

αψ
†
βψβψα , (37)

where ψα is the boson operator; α refers to boson pseudospin ↑ and ↓; Vext is the

external potential; g describes the s-wave scattering interaction which is assumed

to be spin-independent for simplicity; λR is the Rashba SO coupling strength. Al-

though Eq. (37) is of bosons, it satisfies a suitably defined TR symmetry-like fermion

systems — as T = iσ2C with T 2 = −1 where C is the complex conjugate and σ2
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Fig. 7. (A) The radial density distribution of spin up and spin down components, and the total
density distribution in the unit of N0 at α = 4 and β = 40. (B) The spin density distribution along
the x-axis which spirals in the z-x plane at an approximate wavevector of 2k0, whose value at the
origin is normalized to 1. The spin density in the whole plane exhibits the skyrmion configuration.
From Wu et al., see Ref. 5.

operates on the pseudospin doublet. In the homogeneous system, the single particle

states are the helicity eigenstates of σ · (k × ẑ) with the dispersion relations of

ε±(k) = ~
2

2M (k∓k0)
2 where k0 = MλR

~
. The energy minima are located at the lower

branch along a ring with radius k0. The corresponding two-component wavefunc-

tion ψ+(k) with |k| = k0 can be solved as ψT
+(k) = 1√

2
(e−iφk/2, ieiφk/2), where φk

is the azimuth angle of k.

Instead of discussing the condensation in the homogeneous system in which

frustrations occur due to the degeneracy of the single particle ground states, we

consider a 2D system with an external harmonic trap with Vex(r) = 1
2Mω2

T r
2. We

define the characteristic SO energy scale for the harmonic trap as Eso = ~λR/l

where l =
√

~/(MωT ) is the length scale of the trap, and correspondingly a dimen-

sionless parameter as α = Eso/(~ωT ) = lk0. The characteristic interaction energy

scale is defined as Eint = gN0/(πl
2) where N0 is the total particle number and the

dimensionless parameter β = Eint/(~ωT ).
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The Gross–Pitaevskii equation can be obtained as the saddle point equation of

Eq. (37) as
{

−~
2
∇

2

2M
+ ~λR(−i∇yσx,αβ + i∇xσy,αβ) + g(ψ∗

γψγ) +
1

2
Mω2

T r
2

}

ψβ(r, φ)

= Eψα(r, φ) . (38)

Due to the 2D rotational symmetry, the ground state condensate wavefunctions can

be denoted by the total angular momentum jz = Lz + 1
2σz = ± 1

2 , which can be

represented in polar coordinates as

|ψ 1

2

〉 =

(

f(r)

g(r)eiφ

)

, |ψ− 1

2

〉 =

(

−g(r)eiφ

f(r)

)

, (39)

where r and φ are the radius and the azimuthal angle, respectively. Both f(r) and

g(r) are real functions. Eq. (38) is numerically solved in the harmonic trap with

parameters of α = 4 and β = 40. We choose the condensate as one of the TR doublet

|ψ 1

2

〉, and present its radial density profiles of both spin components |f(r)|2 and

|g(r)|2 at α = 4 in Fig. 7(A). Furthermore, in this strong SO coupling case with

α � 1, the condensate wavefunction has nearly equal weight in the spin up and

spin down components, i.e.
∫

drdφ r|f(r)|2 ≈
∫

drdφ r|g(r)|2 , thus the average spin

moment along the z-axis equals to zero. The total angular momentum per particle

jz = ~

2 is mainly from the orbital angular momentum polarization, i.e. one spin

component stays in the s-state and the other one in the px + ipy-state. This is an

example of half-quantum vortex configuration,37–39 thus spontanously breaking TR

symmetry. Clearly this is a “complex-valued” ground state wavefunction beyond the

“no-node” theorem.

This condensate wavefunction exhibits interesting spin density distributions in

real space as skyrmion-like spin textures. The radial wavefunction in pseudospin

up and pseudospin down components f(r) and g(r) exhibit oscillations with an

approximate wavevector of k0, which originates from the ring structure of the low

energy states in momentum space, and are thus analogous to Friedel oscillations in

fermion systems. The pseudospin up component is s-wave like, thus f(r) reaches

the maximum at r = 0; while the down component is of the p-wave, thus g(r) = 0

at r = 0. In other words, there is approximately a relative phase shift of π
2 between

the oscillations of f(r) and g(r). In Fig. 7(A), |f(r)|2 and |g(r)|2 are plotted. The

spin density distribution S(r, φ) = ψ∗
1

2
,α

(r, φ)σαβψ 1

2
,β(r, φ) can be expanded as

Sz(r, φ) =
1

2
(|f(r)|2 − |g(r)|2) , Sx(r, φ) = f(r)g(r) cos φ ,

Sy(r, φ) = f(r)g(r) sin φ .

(40)

Along the x-axis, the spin density lies in the z-x plane as depicted in Fig. 7(B).

Because the circulating supercurrent is along the tangential direction, the spin den-

sity distribution is along the radial direction and exhibits an interesting topological



Final Reading
January 16, 2009 17:15 WSPC/147-MPLB 01777

Unconventional Bose-Einstein Condensations Beyond the “No-Node” Theorem 21

texture configuration which spirals in the z-x plane at the pitch value of the density

oscillations. The distribution in the whole space can be obtained through a rotation

around the z-axis. This spin texture configuration is of the skyrmion-like.

Next we discuss the possible realization of the above exotic BEC in exciton

systems. Excitons are composite objects between conduction electrons and va-

lence holes.40–46 In particular, the recently progress on the indirect exciton sys-

tems greatly enhances the lift-time,47–50 which provides a wonderful opportunity

to investigate the exotic state of matter of the exciton condensation.44 The ordi-

nary bosons are too heavy to exhibit the relativistic SO coupling in their center-

of-motion. Due to the small effective mass of excitons, SO coupling can result in

important consequences, including anisotropic electron-hole pairing,51,52 spin Hall

effect of the center-of-mass motion of excitons,53,54 and the Berry phase effect on

exciton condensation.55

We will show that the Rashba SO coupling in the electron band also survives in

the center-of-mass motion of excitions. We begin with the Hamiltonian of indirect

excitons

He = − ~
2

2m∗
e

(∂2
e,x + ∂2

e,y) + i~λR,el(∂e,xσy − ∂e,yσx),

Hhh = − ~
2

2m∗
hh

(∂2
h,x + ∂2

h,y),

He-hh = − e2

ε
√

|re − rhh|2 + d2
,

(41)

where m∗
e is the effective mass of conduction electrons; λR,el is the Rashba SO

coupling strength of the conduction electron, ε is the dielectric constant and d is

the thickness of the barrier.

For small exciton concentrations, we only need to consider the heavy hole (hh)

band with the effective mass mhh and jz = ± 3
2~, which is separated from the light

hole band with a gap of the order of 10 meV. We consider the center-of-mass motion

in the BEC limit of excitons, which can be separated from the relative motion in

He and Hhh. Similarly to Ref. 56, the effective Hamiltonian of the 4-component hh

excitons denoted as (se, jhh) = (± 1
2 ,

3
2 ), (± 1

2 ,− 3
2 ) can be represented by the matrix

form as

Hex =













Eex(k) Hso(k) 0 0

H∗
so(k) Eex(k) + ∆(k) W (k) 0

0 W ∗(k) Eex(k) + ∆(k) Hso(k)

0 0 H∗
so(k) Eex(k)













,

where k is the center-of-mass momentum; M = m∗
e + m∗

hh is the total mass of

the exciton; Eex(k) = ~
2k2/(2M); Hso(k) = −m∗

e

M λR,el(ky + ikx); ∆(k) is the

exchange integral and W (k) has the d-wave structure as (kx + iky)2, both of which
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are exponentially suppressed by the tunneling barrier for indirect excitons, and will

be neglected below. Consequentially, Hex becomes block-diagonalized. We consider

using circularly polarized light to pump the exciton of (− 1
2 ,

3
2 ), and then focus on

the left-up 2× 2 block of the Hex matrix with heavy hole spin jz = 3
2 . If we use the

electron spin number ↑ and ↓ as the exciton component, we will arrive the Eq. (37)

with the renormalized SO coupling strength λR = λR,elm
∗
e/M .

We next justify the above choice of the values of parameters based on exper-

imental situations. The effective masses of electrons and holes in GaAs/AlGaAs

quantum wells are m∗
e ≈ 0.07me and m∗

h ≈ 0.18me in Refs. 57 and 44. The Rashba

SO coupling strength ~λR can reach 1.8 × 10−12 eV·m in Ref. 58. Thus we can

estimate a reasonable value of k0 =
m∗

eλR

~
≈ 1.6 × 104 cm−1. For a harmonic trap

with l = 2.5 µm, α = k0l ≈ 4 and ~ωT = ~
2/(Ml2) = 0.5 mK. In two-dimensional

harmonic traps, the critical condensation temperature Tc ≈ ~ωT

√
N0.

59 If we take

the exciton density ρ = 5 × 1010 cm−2 and the effective area πl2, we arrive at

Tc ≈ 50 mK, which is an experimentally available temperature scale.60 The av-

erage interaction energy per exciton in the typical density regime of 1010 cm−1

is estimated around 2 meV in Ref. 61, thus we take the interaction parameter

β = 40 in the calculation above. The spatial periodicity of the spin texture is about

π/k0 ≈ 2 µm and, thus, is detectable by using optical methods.

4. Conclusion

We have reviewed the exotic condensations of bosons whose many-body wavefunc-

tions are complex-valued in the coordinate representation, thus they go beyond the

well-known paradigm of the no-node theorem. We studied two possible ways to by-

pass this theorem to achieve unconventional condensations, i.e. metastable states

of bosons in the high orbital bands in optical lattices, and spinful bosons with SO

coupling.

The first mechanism of orbital bosons is essentially an interaction effect which

is characterized by the Hund’s rule. With the orbital degeneracy, bosons favor to

enlarge their spatial extension to reduce the inter-particle repulsion, which results

in the maximization of their onsite OAM. We reviewed the ordering of the OAM

moments in both the square and triangular lattices due to the inter-site coupling

in both the weak and strong coupling limits. The low energy excitations include

both the gapless phonon mode and the gapped orbital-flip mode. The survival

of the OAM ordering in the soft Mott-insulating regime is also discussed. The

second mechanism employing SO coupling, which linearly depends on momentum,

is a kinetic energy effect. In this case, taking the absolute value of a non-positive

definite wavefunction will change its energy and thus invalidate Feynman’s proof.

We have shown that the condensate wavefunction in a harmonic trap becomes a

half-quantum vortex and develops skyrmion-like spin textures. In both cases, TR

symmetry is spontaneously broken which are not possible in the conventional BEC.
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There are a number of interesting open issues for future study. For example,

the ordering of OAM moments in various different lattices and in three dimensions

generates a variety of challenging problems of the lattice gauge theory.62 More

importantly, in order to facilitate the communication between the theory work

with cold atom experiments, detailed calculation and optimization of the lifetime

of orbital bosons in different lattices are highly desired. Furthermore, the dynamics

of bosons in high orbital bands is another challenging topic. Taking into account

the tremendous progress of cold atom physics, it would be great if this research can

stimulate general interest on the unconventional condensates beyond the “no-node”

theorem.
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