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Unconventional Bose-Einstein condensation in a system with two species of bosons in the p-orbital
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In the context of Gross-Pitaevskii theory, we investigate the unconventional Bose-Einstein condensations in
the two-species mixture with p-wave symmetry in the second band of a bipartite optical lattice. An imaginary-
time propagation method is developed to numerically determine the p-orbital condensation. Different from
the single-species case, the two-species boson mixture exhibits two nonequivalent complex condensates in the
intraspecies-interaction-dominating regime, exhibiting the vortex-antivortex lattice configuration in the charge
and spin channels, respectively. When the interspecies interaction is tuned across the SU(2) invariant point, the
system undergoes a quantum phase transition toward a checkerboardlike spin-density wave state with a real-valued
condensate wave function. The influence of lattice asymmetry on the quantum phase transition is addressed.
Finally, we present a phase-sensitive measurement scheme for experimentally detecting the unconventional

Bose-Einstein condensation in our model.
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I. INTRODUCTION

Unconventional condensate wave functions of paired
fermions are identified by nontrivial representations of ro-
tational symmetry, in contrast to the conventional counterpart
with vanishing relative orbital angular momentum (OAM).
Exploration of unconventional condensates dates back to the
investigations of the A and B phases of the superfluid *He [ 1-4]
and later the spin-triplet pairing in Sr,RuO,4 [5-8], which are
characterized by the formation of Cooper pairs with an OAM
of L =1 and a spin triplet of § = 1. High-7, cuprates are
another celebrated example whose pairing symmetry is dy>_ >
[9,10].

Recently, considerable discoveries, both theoretical [11-25]
and experimental [26-33], were reported on the single-boson
condensation in the metastable high orbital bands of an optical
lattice. The wave functions of this archetype of unconventional
Bose-Einstein condensation (UBEC) are identified by the
nontrivial representations of the lattice symmetry group, which
oversteps the physical scenario set by the no-node theorem,
an underlying principle of low-temperature physics stating
that the many-body ground-state wave functions of Bose sys-
tems, including the superfluid, Mott-insulating, and supersolid
states, are necessarily positive-definite under general circum-
stances [18,34]. In consequence, the wave functions of UBECs
can be rendered complex valued and thus spontaneously break
the time-reversal (TR) symmetry [18], which constitutes a
remarkable feature of UBEC. It is anticipated that UBECs
can sustain exotic phenomena not seen in conventional BECs,
such as the nontrivial ordering of the OAM moment, BECs
with nonzero momentum, the half-quantum vortex, and the
spin texture of skyrmions [18]. It is also worth mentioning that
the OAM moment formation still survives when the system

*scgou@cc.ncue.edu.tw
twucj@physics.ucsd.edu

2469-9926/2016/93(5)/053623(7)

053623-1

enters the Mott-insulating regime wherein the global U(1)
phase coherence of superfluidity is no longer retained [19].

The experimental realization of single-species BECs in
the second band, where the condensed atoms survive a long
lifetime before tunneling to the nearly empty lowest band
[28-32], has marked important progress towards the creation
and manipulation of UBECs in ultracold atoms. Depending on
the lattice asymmetry, the time-of-flight (TOF) measurement
revealed signatures of both real and complex condensates with
p-wave symmetry and a large-scale spatial coherence. The
complex wave functions exhibit the configuration of a vortex-
antivortex lattice with nodal points at vortex cores as theo-
retically predicted. More recently, a matter-wave interference
technique was employed to provide direct observations of the
phase information of the condensate and to identify the spatial
geometry of certain low-energy excitations [32]. The realiza-
tion of UBECs in even higher bands was also reported [29,30].

In this work we present a theoretical study of the UBEC in
a two-species boson mixture where both species are equally
populated in the second band of a bipartite optical lattice [28].
Our study searches for types of UBECs enriched by coupling
spin degrees of freedom with U(1) symmetry, TR symmetry,
and nontrivial representations of the lattice symmetry groups.
To determine the wave function of the UBEC in the context
of Gross-Pitaevskii equation (GPE), we develop a numerical
scheme that resorts to precluding the s-orbital components
from the condensate wave function during the imaginary-time
evolution of the full Hamiltonian. This scheme enables us to
determine the phase diagram of UBEC in a wide range of
parameters corresponding to the interspecies and intraspecies
interaction. We find that the emergent phases of UBEC involve
the py &ip, (complex-valued) and p, & p, (real-valued)
types of orbital order, which appear in different regimes of
interaction that can be described as a consequence of the
interplay between OAM and interaction energies, as will be
discussed later.

This paper is organized as follows. In Sec. II we briefly
account for the experimental setup of the bipartite two-
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dimensional lattice potential used in our model, including the
symmetry analyses of the lattice configuration. The structure
of the single-particle dispersion of the p band is demonstrated.
In Sec. III the numerical implementation of the modified
imaginary-time propagation method is described, which, to-
gether with the Bloch wave approximation, enables us to solve
the GPEs in high bands. In Sec. IV we explore the properties of
UBECs and phase transitions in the symmetric and asymmetric
lattices. A scheme for experimentally exploring the formation
of UBECs in our model is addressed in Sec. V. A summary is
given in Sec. VL.

II. OPTICAL LATTICE AND BAND SPECTRUM

We consider the two-species BEC in the first excited
orbital band of the bipartite optical lattice employed in the
experiments [28], where the unit cell consists of two sites
with different potential depths. The optical potential V (x,y) is
described by

ikjx 7ik1X]

Vi
V() = —Zo|n[(ez cosa + e, sina)e'"™ + e,ce

+ee (e +ee” ), (1)

where the unit vectors e; and e, constitute the basis of the light
polarization; Vj is determined by the laser power; k; = 27 /ag
is the laser wave vector; « is the polarization angle with
respect to the z direction; € is the reflection loss, and the
intensity and phase differences between laser beams along the
x and y directions are described by n and 6, respectively.
The symmetry analysis of the lattice configuration and the
subsequent band-structure calculations have already been
presented in Ref. [19]. Below we recap this analysis in detail
to make the paper self-contained.

For the ideal case with n = 1, € = 1, and @ = 0, the lattice
potential is simplified as

V()= —Vo(cos2 kix + cos? k;y + 2cosk;x cosk;ycosf),

which possesses the tetragonal symmetry. Since 6 controls the
relative depth of the double-well inside the unit cell, tuning 6
away from 90° results in the bipartite lattice. When n < 1 and
€ = 1, the lattice potential becomes

Vir)=— Vo(n2 cos’ kix +cos® kiy + 2ncosk;x cosk;y cos8),

which still possesses the reflection symmetries with respect
to both the x and y axes, but the point group symmetry is
reduced to the orthorhombic one. For the realistic case with
n < 1 and € < 1, the orthorhombic symmetry is broken such
that in general no special point group symmetry survives.
Nevertheless, the lattice asymmetry can be partially restored
at oy = cos~! €, where the lattice potential becomes

Vi
V(r) = —ZO{(I + 7)1 + €%) + 2¢*n* cos 2k;x
+2€%n* cos 2k y
+4en cos 2k;x[e cos(k;y — 0) + cos(k;y + 6)}

and the reflection symmetry with respect to the y axis is
retrieved. Therefore, we call the case of o with o # g
asymmetric and that of « = o symmetric. The lattice structure
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FIG. 1. (a) Double-well optical lattice with the experiment pa-
rameters Vo = 6.2E,, n =0.95,0 = 95.4°, ¢ = 0.81, and o = 7/5.
The white dashed line illustrates the half wavelength of laser ay and
ﬁao is the lattice constant. The A and B sublattice sites are shown in
(a). (b) Energy spectra of the second band, whose energy minima are
located at K| = (7 /2a9,7/2a0) and K, = (—m/2ay,7/2ay). (c) and
(d) Density profiles (top panels) and phase profiles (bottom panels)
for noninteracting gas for (¢) K; and (d) K,.

with the experimental parameters Vo = 6.2E,,n = 0.95,60 =
95.4°, ¢ = 0.81, and @ = /5 is shown in Fig. 1(a).

The Bloch wave band structure of the Hamiltonian Hy =
—h2V?/2M + V(r) can be calculated based on the plane-
waves basis. The reciprocal lattice vectors are defined as
G, = mb| + nby, with by, = (£ /ag,m/ay), where ag is
the half wavelength of the laser. The diagonal matrix elements
are

aok
T

2
(k+ Gy ol Holk + Gy ) = E{[ =+ (m —n)}

aoky 2
+ +m+n)| ¢, @2

T

where k is the quasimomentum in the first Brillouin zone, and
the off-diagonal matrix elements are

v, , .
(K|V[K + G10) = —Zoen(ei’e + cos ae?),

Vi . .
K|V Ik + Go.1) = —— n(e7e*™” + cos ae™),

3)
Vo »

KIVIK+Gxi41) = — 1 ecosa,
Vi

KIVIK+Ggi51) = —I‘)e.

The energy spectrum of the second band of the optical lattice
[Eq. (1)] is shown in Fig. 1(b). Several observations are in
order. First, the energy minima are located at K; , = b;,/2
with the corresponding wave functions ¥k, and v, . For the
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symmetric lattice, ¥k, and y¥k, are degenerate due to reflection
symmetry, while for the asymmetric lattice the degeneracy
is lifted. Second, there are four points in the Brillouin
zone, namely, the zero center O, the high-symmetry point
X, (w/ag,m/ap), and K| ,, which are TR invariant because
their opposite wave vectors are equivalent to themselves up
to reciprocal lattice vectors. As a result, their Bloch wave
functions are real; in other words, they are standing waves
instead of propagating waves. Third, the hybridized nature
of Yk, and Yk, is also manifest in real space: Their wave
functions are mostly in the superposition of the local s orbital
of the shallow well and the p orbital of the deep well, which
possess nodal lines passing through the centers of the deeper
wells as shown in Figs. 1(c) and 1(d).

III. MODIFIED IMAGINARY-TIME PROPAGATION
METHOD

In current experiments [28], the correlation effects are
relatively weak due to the shallow optical potential depth
and thus the two-species UBEC can be well described by the
coupled GPE as

EWy(r) = [H§+ > gﬂawa(mz}wﬁ(r), )

a=A,B

where H g = (—hzvz)/ 2Mpg + V(r) is the one-particle Hamil-
tonian and the wave function Wy is normalized to the area of
one unit cell ["d?r|Wg(r)]> = Q = 2a}; Gup = gupnp With
ng the particle number per unit cell and g.g the interaction
strength between « and 8 species.

Furthermore, in terms of W, and W, the real-space spin-
density distribution is defined as S(r) = (1/2)¥'(r)é ¥ (r),
where W = (W4, V)T and § denotes the Pauli matrices in
vector form. Explicitly, the Cartesian components of the spin
density are related to W4 and Wp by S, +1iS§, = «/Eh\IJ/’;\I/B
and S, = h(|W4|*> — |[W5|?). Obviously, the orientation of spin
in the xy plane depends only on the global phases of W4 and
Wp.

In solving Eq. (4) we assume Zx4 = &8s, 84 = &84,
My = Mg = M [35,36],and n4 = np. Since the band minima
are located at K ,, we expand the two-species condensate
wave function in terms of Yk, and y,,

Wu(r)\ _ [cosdayk, () + €94 sin 4 ¢k, (r) 5)
Wg(r)) — \cosdpik, (r) + e sinSpyx,(r) )

In general, Yk, (r) and ¥k, (r) are determined by the renormal-
ized lattice potential and are thus different from those based
on the free band Hamiltonian H, [37]. Because the particle
number of each species is conserved separately, the formation
of two-species BEC spontaneously breaks the U(1)xU(1)
symmetry, leaving the freedom of choosing the condensate
wave function by individually fixing the phase factor of ¥k, (r)
in each species of Eq. (5).

The theoretical model in the single-species UBEC based on
the GP description has been investigated with a self-consistent
approach [19,22]. For the two-species case, the structure of
competing orders is even richer than that of the single-species
case. In the enlarged phase space, the orbital states can
entwine with spin degrees of freedom. We introduce a modified
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imaginary-time propagation method to solve the two-species
UBEC, which liberates us from the restriction of certain types
of solutions and can be generalized to other higher orbital
bands as well. Since the ordinary imaginary-time propagation
method only applies to yield the ground-state condensate, in
order to reach the UBEC in the second band, the present
method is devised to constantly project the lower orbital
components out of the evolving (in imaginary time) condensate
wave function, forcing the initial wave function evolve to the
stationary solution in the target orbital. We have examined this
method for one- and two-dimensional harmonic oscillators and
the resultant wave functions not only converge to the exact
solutions, but also yield the correct degeneracy of high-energy
levels.

The implementation of our imaginary-time propagation
algorithm is summarized as follows. We start by initializing a
trial condensate wave function in the form of Eq. (5) with ¥k,
determined by V (r) of the empty lattice. After the propagation
of one time step, we arrive at a new set of W4 and Wpg,
which is then employed to generate the renormalized lattice
potential Vg o(r) = V(r) + Y P gﬁa|\lla(r)|2. Then we solve
the s-orbital states |¢k), atk = K; and K, based on V¢ o and
construct the projection operator

P=1-=3" > locualonl. 6)

a=A,B k=K, ,K;

After projecting out the s-orbital component by applying P to
W, we proceed to the next step of imaginary-time evolution.
The above process is repeated until the convergence is achieved
and P is updated in each step. To ensure the reliability of
this method, we choose several different initial trial wave
functions and add small complex random noises to break
any specific symmetry that could lock the solution. Every
simulation was implemented with a sufficiently long time
to ensure that the energy converges. We have successfully
reproduced the one-species UBEC solutions in the second band
and confirmed the results consistent with the previous works
[19,22]. The interaction strengths are much smaller than the
energy difference between the s- and p-orbital bands in our
simulations and thus the band mixing effect is negligible.

IV. MAIN RESULTS
A. Symmetric lattice

We first consider the symmetric lattice and the competition
between intraspecies and interspecies interactions that deter-
mines the condensate wave functions. Defining y = gap/844,
we start with an SU(2) symmetry-breaking case in the regime
of y < 1. When y = 0, the system simply reduces to two
decoupled single-species problems and each of them is in
the complex condensate exhibiting nodal points rather than
nodal lines. Accordingly, there are two p-orbital condensations
characterized by substituting the following phase angles into
Eq. (5): () ¢4 = ¢5 = +% and 5, = 65 = £,

<\IJA(I')> _ 1 (WK.(I‘)JrilﬂKz(r)) )
V()] 2 \Vk (1) +iVYk, (1))’
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FIG. 2. Spatial distributions of the density, phase, and spin texture
of the condensate wave functions corresponding to various states in
the symmetric lattice: (a) and (b) state I, (c) and (d) state II, and
(e) and (f) the checkerboard state. The intraspecies interactions are
Zaa = 8gp = 0.025E, with E, = h*k?/2M; the interspecies ones
are (a) and (b) g4p = 0.25844 and (c) and (d) gap = 1.1844. (a),
(c), and (e) Density and phase distributions are shown in the top
and bottom panels for each species, respectively. (b), (d) and (f)
Spin texture configurations with arrows indicating the orientation of
spins and color bars representing the values of S,. The parameters
used are Vo = 6.2E,, 1 =0.95,0 =95.4°, ¢ =0.8l,and @ = ¢ =
cos~le ~235.9°

and (II) ¢A = _¢B = :l:% andSA = SB = %,

<‘I'A(l‘)> _ 1 (fol(r) +i WKz(r)) ®)
Wp(r) V2 \Vk, (r) —iyg, (r) )

When 0 < y < 1, the corresponding p-orbital solutions take
the forms of states I and II as well.

States I and II possess different symmetry structures,
as illustrated in Figs. 2(a)-2(d). Species A and B can be
interpreted as a Kramers doublet and a commonly used
Kramers-type TR transformation is defined as T = lO'yC
where C is the complex conjugation operation and & 6y is the
Pauli matrix. Here 7" keeps the particle number and spin current
invariant, but flips the sign of the spin and charge current
and satisfies 72 = —1. For state I, its axial OAM moments
of two species are parallel, exhibiting a vortex-antivortex
lattice configuration, and the condensate spin is polarized
along the x direction, which obviously breaks the Kramers
TR symmetry. As for state II, its axial OAM moments are
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antiparallel to each other, exhibiting a spin-current vortex-
antivortex lattice configuration. Although the spin current
is invariant under the Kramers TR transformation, the spin
density exhibits the in-plane spin texture with the winding
number +2 around each vortex core, which also breaks the
Kramers TR symmetry. Nevertheless, state II is invariant by
the antilinear transformation 7’/ = 6)6@ , which is equivalent to
a combination of the TR transformation followed by a rotation
around the z axis at 77. Since 7> = 1, it is no longer a Kramers
transformation, which maintains the xy components of spin
invariant but flips the z component of the spin.

States I and II give rise to the same particle density and
kinetic energy distributions for both species and thus their
energy is degenerate at the mean-field GPE level. Nevertheless,
since they are not directly connected by symmetry, this
degeneracy is accidental and only valid at the GPE level. The
system symmetry allows a current-current interaction between
two species, which is absent in the bare Hamiltonian, but
could be effectively generated through quantum fluctuations
for low-energy physics in the sense of renormalization group.
Since the current density distributions of two species are the
same in one solution but are opposite in the other, this emergent
interaction would lift this accidental degeneracy. However, this
is a high-order effect beyond the GPE level, which is certainly
an interesting subject for future investigation.

The spatial distributions of the population and phase of
both condensate species, together with the corresponding spin
texture, are shown in Figs. 2(a) and 2(b), respectively. The
particle density is mainly distributed in the shallow sites, which
is the nodeless region corresponding to the s orbital, while the
density is distributed in the deep sites at which the nodal points
are located corresponding to the p,(, orbitals. Each species
exhibits a vortex-antivortex lattice structure: The vortex
cores are located at the deep sites and the nodeless region
exhibits the quadripartite sublattice structure featuring the
cyclic phase factors exp (imn/2) for n € {1,2,3,4} in the
shallow sites. For state I, both species exhibit the same vorticity
distribution and thus the spin-density orientation lies along the
x direction according to the phase convention of Eq. (5). There
is no preferential direction of spin orientation in the xy plane
due to U(1) symmetry generated by the total z-component
spin. For state II, the two species exhibit opposite vorticities
and the configuration is a spin-vortex—antivortex lattice. In
both cases, the vorticity or the spin-vorticity patterns exhibit a
double period of the lattice potential.

With y = 1, the sum of interaction energies is rendered an
SU(2)-invariant form such that the wave functions of UBEC
become highly degenerate. At this point, states I and II persist
as expected. Because of the SU(2) invariance, we can further
apply the global SU(2) rotations to states I and II [38]. For state
I, the constraint of maintaining n4 = npg does not allow new
states under the form of Eq. (5). For state II, any SU(2) rotation
still maintains n4 = ng. For example, after a rotation of —m /2
around the y axis, we arrive at (W4, V) = (Yk,, — i¥k,) and
a subsequent 77 /2 rotation around the x axis yields

WA _ (Y, 0) + Y, (6) ©)
Wp(r) V2 \¥k, (1) — ¥k, (r) )
Next we consider the case of y > 1, where the degeneracy
of the SU(2) invariant condensate wave functions is lifted.
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FIG. 3. Plot of E/N,« Vs 8ap/8aa in the symmetric lattice
with o = op. The red dots, blue triangles, and green squares
are for different values of g44 = 0.015E,, 0.025E,, and 0.05E,,
respectively. The dashed horizontal line represents the energy for
y > 1 without including domain walls, i.e., solving the GP equation

assuming fully polarization. The parameter values are the same as
those in Fig. 2.

In this case, within the convention of Eq. (5), the solution of
Eq. (9) is selected, whose density, phase, and spin distributions
are plotted in Figs. 2(c) and 2(d). We see that bosons of
different species occupy mostly the shallow sites in a checker-
board pattern with a staggered spin-density distribution. The
condensate wave function in each species becomes real valued
with square-shaped nodal lines along with the period-doubled
density profile and we call this configuration the checkerboard
state. In the single-species case [19,22], the real non-Bloch
states Yk, (r) & Yk, (r) are always more energetic than the
complex non-Bloch states Yk, (r) & ik, (r) and the real Bloch
states Yk, and Yk,, because the density distributions of the
real non-Bloch states are less uniform than those of the
latter. However, the conclusion is opposite in the two-species
case: Both species exhibit strong constructive and destructive
interferences between ¥k, and Yk, alternatively in adjacent
shallow sites and their real-space density distributions avoid
each other and exhibit the checkerboard pattern. Consequently,
the dominant interspecies interaction is greatly suppressed and
the checkerboard state turns out to be the least energetic.

In the strongly repulsive regime (y > 1), however, it
is possible that the system develops isolated ferromagnetic
single-species domains. The case of spatial separation has
been discussed for the bosonic mixture in the s-orbital bands
of optical lattices in the same interaction regime [39-42].
When this scenario occurs in p-orbital bands, isolated domains
of either species can choose themselves in whichever of the
complex states Yk, (r) & ik, (r). We call such a configuration
the spatially phase-separated spin-polarized state. Seemingly,
this state could have an energy lower than that of the
checkerboard state because of the vanishing interspecies
interaction. In Fig. 3 we plot E/N, of full spin-polarized
state with the complex condensate Y, (r) + iyk,(r) or its
TR breaking counterpart. A simple numerical test shows that
the energy per particle of the checkerboard state is very
close to that of the fully spin-polarized state. When the
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FIG. 4. Condensate fraction of ¥, cos? 8, as a function of y =
8ap/8aa. The red dots, blue triangles, and green squares indicate
gaa/E, = 0.015, 0.025, and 0.05, respectively, and the dotted lines
depict the fraction of spin-polarized state with the same total particle
numbers for each interaction strength. The parameter values of the
optical lattice here are the same as for Fig. 2 except fora = 7/5 > «p.

initial state is prepared with n4 = np, the fully spin-polarized
state becomes phase-separated spin polarization accompanied
by the formation of inhomogeneous ferromagnetic domains,
which cost the domain energy. In spite of that, the checkerboard
state of Eq. (9) is still the prevailing UBEC state in this regime.
Another issue is the time scale: Starting from the unpolarized
initial state, forming ferromagnetic domains is a process of
phase separation with a large-scale arrangement of real-space
boson configurations. It is much longer than the time scale
of the formation of the checkerboard state, which only needs
local phase adjustment of boson configurations.

B. Asymmetric lattice

Next we consider the interplay between lattice asymmetry
and interactions. The lattice asymmetry breaks the degeneracy
between the single-particle states ¥k, and yk,. Without loss
of generality, we choose o > ¢, which sets the energy of
Yk, slightly lower than that of vk, such that the calculated
condensate wave functions satisfy §4 =85 =6 #n/4. In
Fig. 4, the condensate fraction of v,, cos? s, is plotted
as a function of y at various values of g44. We find that
the lattice asymmetry effect is more prominent for weak
interactions. At g44 = 0.015E,, the condensate fraction of
Yk, (r) vanishes when y < 0.5. The corresponding density,
phase, and spin-density distributions are depicted in Figs. 5(a)
and 5(b). This is a real Bloch-type UBEC with a stripelike

(@

xX/a o

FIG. 5. (a) Density and phase and (b) spin texture of gsa =
gpp = 0.015E,, and y = 0.1. The parameter values of the optical
lattice here are the same as for Fig. 1 except for o = /5.
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configuration and an in-plane spin orientation. With increasing
¥, ¥k, and ¥k, superpose in a complex way with ¢4 = ¢p =
+7/2 or ¢4 = —¢pp = +7/2, but cos> § remains small even
at y = 1. We note that only when y > 1 does the condensate
quickly evolve to the checkerboard state. As g44 increases,
the complex non-Bloch condensates become more and more
prominent, as shown in Fig. 4.

Hitherto, we have concluded that the two-species p-
orbital condensation can manifest itself in different forms
of non-Bloch condensation: the complex states I and II,
the real checkerboard state in Eq. (9), and the spatially
phase-separated spin-polarized state. Since all these states are
linear combination of Yk, (r) and ¥, (r), it is expected that
four Bragg maxima would develop around the quasimomenta,
+K, > in the TOF spectra [12,19,28]. Given the condensate
fractions vy, of Fig. 4, states I and II as well as the spatially
phase-separated complex spin-polarized state show that the
relative intensities of these two pairs of peaks are dependent on
the lattice asymmetry. However, when y > 1, the condensate
fractions of Yk, and Yk, for the real checkerboard state quickly
become nearly equally populated and thus the Bragg peaks of
the TOF spectra have almost equal intensities, irrespective of
the lattice asymmetry. This experimental observation could
directly exclude the phase-separated spin-polarized state and
provide supporting evidence for the phase transition from the
complex UBECs towards the real-valued UBEC driven by the
interspecies interaction.

V. EXPERIMENTAL SCHEME FOR PHASE
MEASUREMENT

The two-species UBEC can be realized and observed by
state-of-the-art experimental techniques [28-32]. Utilizing
two different hyperfine spin states of an atom (labeled as
the A and B species) [35,36], one first creates a condensate
of sole species in the superposition of ¥k, (r) and ¥, (r),
which are the degenerate lowest-energy states in the p-orbital
band. A 7/2 Raman pulse is applied to convert half of the
already condensed atoms into the other species. After tuning
the interspecies atomic interaction with Feshbach resonance,
the system is held for some time to let it relax to the
intended non-Bloch p-orbital states W4 p = ¥k, + e/ ?4 5y,
whose phase information can be inferred by matter-wave
interferometry as explained below.

After the preparation of the two-species condensate, the
atoms are then released from optical lattices and subsequently
experience a Stern-Gerlach splitting during the ballistic expan-
sion. Precisely, by applying a pulsed magnetic field gradient,
the atoms are accelerated by a spin-dependent force [43]
Fg ocmg|B|Z (mg is the projection of spin) and thus the
two-species UBEC breaks into spatially separated parts along
the z direction. A second 7 /2 Raman pulse is then applied to
mix states of different momenta, leading to

(i’g) o (Y, + €' wKz)(l.j@) ® pa)

) - —i®
+<wK,+e'¢”wK2)<’el >®|p3>, (10)
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where ® accounts for the accumulated phases for the dynami-
cal effects involved and p4 p denote the momenta acquired
by atoms after the Stern-Gerlach splitting. At this stage,
the motion of each species is described by a wave packet
consisting of a superposition of two non-Bloch states with
different quasimomenta that interfere with each other along
the z direction during the TOF [32,43]. The phase difference
A¢pap = ¢ps — ¢pp can be inferred from the interference
patterns imaged along vertical and horizontal directions for
each species, as demonstrated in [32]. It can be shown from
Eq. (10) that among the Bragg maxima, the K; and K; columns
possess the same interference pattern, except the positions
of fringes in the two columns are shifted by a phase angle
|Apap|. By comparing the positions of fringes in the Bragg
peaks, one can expect, when y < 1, |A¢4p| = 0 for state I
and |A¢ap| = 7 for state II. Our scheme provides a feasible
way for phase measurement in the current system.

VI. CONCLUSION

In summary, we have studied the two-species p-orbital
BECs in the experimentally accessible regime using an
imaginary-time propagation method for coupled GPEs, which
can be applied to solve UBECs in higher bands. The com-
petition between interspecies and intraspecies interactions
drives the transition from two nonequivalent complex-valued
states, possessing, respectively, broken and unbroken TR
symmetry, to a real-valued checkerboard state with a staggered
spin-density structure. We have also proposed experimental
schemes to study the UBECs of the mixture. The current
study paves the way for approaching the least explored
p-orbital physics of multispecies bosonic systems. Our the-
ory can be generalized to study also the superfluity and
magnetism of spinful p-orbital condensation in the presence
of spin-dependent optical lattices or exotic spin-exchange
interactions.

We have used the GPE method throughout this article,
whose applicability is justified in the limit of the weak
interspecies interaction. In this case, the two-species problem
studied here is reduced to two weakly coupled single-species
problems, for which previous works show that the GPE
has captured the essential physics of the complex p-orbital
condensates being the energy minima. When the interspecies
interaction becomes stronger, however, the entanglement
between two species would become important. In this case,
indeed, more exotic states beyond the GPE level are also
possible. For example, the singlet paired boson condensation,
whose spatial pair wave functions are antisymmetrized, thus
reduces the interspecies repulsion. This state is highly entan-
gled and beyond the GPE level. Nevertheless, the mean-field
GPE is still a natural beginning point of this challenging
problem. The checkerboard state investigated in this article
remains a potential competing state; both species avoid each
other in their real-space density distributions characterized
by a staggered spin-density structure, which also greatly
reduces the interspecies repulsion. We leave a detailed study
of novel states beyond the mean-field GPE level and their
competitions with the single-boson condensate for a future
investigation.
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