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We investigate the thermodynamic properties of a half-filled SUð2NÞ Hubbard model in the two-

dimensional square lattice by the method of the determinant quantum Monte Carlo simulation, which is

free of the fermion ‘‘sign problem.’’ The large number of hyperfine-spin components enhances spin

fluctuations, which facilitates the Pomeranchuk cooling to temperatures comparable to the superexchange

energy scale in the case of SU(6). Various physical quantities including entropy, charge fluctuations, and

spin correlations are calculated.
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The SUð2NÞ and Spð2NÞ symmetries are usually studied
in high energy physics. They were introduced to condensed
matter physics originally as a mathematic convenience. For
example, large-N analysis was performed for the SUð2NÞ
symmetric Heisenberg models to systematically handle
strong correlation effects [1–4], while realistic electron
systems are usually only SU(2) invariant. However, with
the recent development of the ultracold atom physics,
fermion systems with SUð2NÞ and Spð2NÞ symmetries
are not just of purely academic interests but are currently
under experimental investigations. It was first pointed out
in Ref. [5] that large spin alkali and alkaline-earth fermion
systems can exhibit these high symmetries. For example, a
generic Sp(4) or isomorphically SO(5) symmetry is proved
in fermion systems with the hyperfine-spin F ¼ 3=2 with-
out fine-tuning [5,6]. This Sp(4) symmetry can be further
augmented to SU(4) for alkaline-earth fermions, such as
135Ba, 137Ba, and 201Hg, because their interactions are
hyperfine-spin independent [5]. Experimentally, both the
fermionic atoms of 173Yb and 87Sr have been cooled down
to quantum degeneracy [7–9]. The 173Yb (F ¼ I ¼ 5=2)
and 87Sr (F ¼ I ¼ 9=2) systems exhibit the SU(6) and
SU(10) symmetries, respectively. Using alkaline-earth fer-
mions to study the SUð2NÞ symmetry was also proposed in
Ref. [10].

The SUð2NÞ Hubbard model exhibits interesting phe-
nomena that are absent in the standard SU(2) formulation.
It is known that quantum spin fluctuations are enhanced by
the large number of fermion components [11]. This effect
gives rise to exotic quantum magnetism in large-spin ultra-
cold fermi systems with high symmetries [12–19]. For
example, various SUð2NÞ valence-bond solid and spin
liquid states have been proposed that have not been
observed in solid state systems before [15,20,21]. In

addition, as we will show below, the multicomponent
nature of the SUð2NÞ Hubbard model also significantly
lowers the charge gap of the Mott-insulating states at the
intermediate interaction strengths comparable to the
bandwidth.
In this Letter, we focus on the temperature regime

(t > T � J), which is of current experimental interest.
Here, t denotes the hopping integral of the Hubbard model,
J ¼ 4t2=U is the antiferromagnetic exchange energy scale,
and U is the on-site repulsion. The thermodynamic prop-
erties of the half-filled SUð2NÞ Hubbard model in the 2D
square lattice are studied by determinant quantum
Monte Carlo (DQMC) simulations [22,23], which is an
unbiased, nonperturbative method. It is free of the sign
problem at half-filling; thus, high numerical precision can
be achieved down to low temperatures (T=t� 0:1).
[Recently, the high temperature properties of the SUð2NÞ
Hubbard model have been studied from series expansions,
which are only accurate at T � maxðt; UÞ [24].] Special
attention is devoted to the interaction-induced adiabatic
coolings. We find that the system can be cooled down to
the temperature scale at J from an initial temperature
accessible in current experiments. This Pomeranchuk cool-
ing effect, although very weak in the SU(2) Hubbard model
[25–27], is enhanced in the SU(6) case.
We consider the following SUð2NÞ Hubbard model

defined in the 2D square lattice at half-filling as

H ¼ �t
X
hi;ji;�

ðcyi�cj� þ H:c:Þ þU

2

X
i

ðni � NÞ2; (1)

where � runs over the 2N components, hi; ji denotes
the summation over the nearest neighbors, and ni is
the total particle number operator on site i defined as
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ni ¼ P2N
�¼1 c

y
i�ci�. The chemical potential� is set to 0 and

thus does not appear explicitly. Equation (1) is invariant
under the particle-hole transformation in bipartite lattices.
Similarly to the case of SU(2), it is easy to prove that the
sign problem is also absent for the half-filled SUð2NÞ
Hubbard model of Eq. (1) in bipartite lattices in the
DQMC simulations.

Below, we will present our DQMC simulations of ther-
modynamic quantities of the SUð2NÞ Hubbard model with
2N ¼ 4 and 6 on a L� L square lattice with the periodical
boundary condition. The second order Suzuki-Trotter
decomposition is used. The Trotter steps are taken to be
�� ¼ �=M, where � ¼ 1=T is the inverse of the tempera-
ture T and M ranges from 30 to 150, depending on tem-
peratures. We have checked that the simulation results
converge with varying the values of ��. Instead of using
the Hubbard-Stratonovich transformation in the spin chan-
nel [28], we adopt the Hubbard-Stratonovich transforma-
tion in the charge channel, which maintains the SUð2NÞ
symmetry explicitly [29]. This method gives rise to errors
on the order of ð��Þ4.

Before presenting numerical results, let us explain quali-
tatively how the SUð2NÞ generalization of the Hubbard
model makes their charge and magnetic properties differ-
ent from those of the SU(2) case. When deeply inside the
Mott-insulating state, magnetic properties at low tempera-
tures are determined by superexchange processes. The
number of superexchange processes between a pair of
nearest-neighbor sites in the SUð2NÞ case scales as N2.
This means that the SUð2NÞ generalization enhances
magnetic quantum fluctuations and thus weakens, or even
completely suppresses, the long-range antiferromagnetic
(AF) correlations. These strong magnetic fluctuations
greatly enhance the entropy in the the temperature regime
(U > T > J), which is high enough to suppress short-range
AF correlations but not sufficient to unfreeze charge
fluctuations.

The charge properties in the Mott-insulating state are
characterized by the charge gap �c: the energy cost to add
a particle or a hole into the system. The half-filling case is a
particle-hole symmetric point, and thus a particle or hole
excitation each cost the same energy for the grand canoni-
cal Hamiltonian Eq. (1). In the atomic limit (U=t ! 1),
the charge gap is �c ! U=2, which is independent of 2N.
However, for the intermediate interactions comparable
with the bandwidth, propagations of the extra particle
(hole) in the AF background can significantly lower the
charge gap. In Fig. 1(a), we compare the hopping of an
extra hole in the AF background of the half-filled SU(2)
and SU(4) Mott insulators. In the SU(4) case, there is more
than one way for the hole to hop from one site to another.
The mobility of the extra hole is increased, and thus, in the
SUð2NÞ Mott-insulating state, the charge gap is much
lower compared to the SU(2) case. We perform the zero
temperature projector QMC calculations to extract the

charge gap from the unequal-time single-particle correla-
tion functions (see the Supplemental Material [30]) as
shown in Fig. 1(b), which verifies the above argument.
Although the charge gap is a ground state property, it is
closely related to the thermodynamic properties and
Pomeranchuk cooling in the temperature regime we will
study (J < T < U). Below, we will show that the differ-
ences of the magnetic and charge properties between the
SUð2NÞ and SU(2) cases facilitate the Pomeranchuk
cooling.
Now, we address the possibility of cooling down the

system by adiabatically increasing interactions. For spinful
fermion systems (e.g., 3He), the Pomeranchuk effect refers
to the fact that increasing temperatures can lead to solidi-
fication because the entropy (per particle) in the localized
solid phase is larger than that of the itinerant Fermi liquid
phase. The reason is that, in the Fermi liquid phase, only
fermions close to Fermi surfaces within T contribute to
entropy. In solids however, each site contributes to nearly
ln2 � 0:69 if T is comparable to the spin exchange energy
scale of J, which is much smaller than the Fermi energy. In
the lattice systems near or at half-filling, increasing inter-
actions suppresses charge fluctuations and drives systems
to the Mott-insulating state; thus, we would expect
Pomeranchuk cooling while adiabatically increasing inter-
actions [31,32]. However, the situations are complicated by
the AF spin correlations, which lift the huge spin degen-
eracy and reduce the entropy in the Mott-insulating state.
Actually, for the SU(2) Hubbard model, both at 2D and 3D,
DQMC simulations show that the effect of Pomeranchuk
cooling is not obvious with interactions up to U=t� 10
[25,26,33].
To investigate the different behaviors between the

SU(2) and SUð2NÞ (say, 2N ¼ 6) fermions during the
Pomeranchuk cooling, we compare the ‘‘entropy capa-
bility’’ (average entropy per atoms) for the half-filled SU
(2) and SU(6) Mott-insulating states at the same tempera-
ture T and U. We focus on the temperature regime (J <
T <U). For a certain T, the entropy of the Mott-insulating
state comes from two channels: the spin channel domi-
nated by the spin degeneracy and the charge channel
determined by excitations above the charge gap. As we
analyzed above, the AF correlations, which lift the spin

FIG. 1 (color online). (a) Sketches of a hole hopping in the
SU(2) (up) and SU(4) (down) AF backgrounds, respectively.
(b) Charge gaps as a function of 2N at L ¼ 10 and U=t ¼ 8.

PRL 110, 220401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
31 MAY 2013

220401-2



degeneracy in the SU(2) case, are weakened by the SUð2NÞ
symmetry. Thus, the entropy from the spin contribution in
a half-filled SU(6) Mott insulator is larger than that of the
SU(2) case. This indicates that the SU(6) Mott insulators
have more ‘‘entropy capacity’’ than the SU(2) ones. For
example, in the single-atom limit, the spin entropies per
atom for SU(2) and SU(6) saturate to the values of SSUð2Þ ¼
ln½C1

2� ¼ 0:693 and SSUð6Þ ¼ ln½C3
6�=3 ¼ 0:998, respec-

tively, for temperature T � J. Considering the charge
channel will further strengthen this tendency. Since the
charge gap of the SU(6) Mott-insulating state is smaller
than that of the SU(2) case at the same value of U, it is
easier to create excitations above the charge gap in the
SU(6) case, which further increases entropy. The larger
entropic capability of the SU(6) Mott-insulating state indi-
cates that it is easier to exhibit the Pomeranchuk effect.

We have confirmed the above picture by performing
DQMC simulations. The entropies of the SU(6) Hubbard
model are calculated for various parameter values of T and
U, and the isoentropy curves are displayed in Fig. 2. The
simulated entropy per particle (not per site) is defined as
SSUð2NÞ ¼ S=ðNL2Þ, where S is the total entropy in the

lattice. It is calculated from the formula

SSUð2NÞðTÞ
kB

¼ ln4þ EðTÞ
T

�
Z 1

T
dT0 EðT0Þ

T02 ; (2)

where ln4 is the entropy at the infinite temperature or,
equivalently, T � U; EðTÞ denotes the average internal
energy per particle at temperature T. For low values of the
entropy, adiabatically increasing U leads to a significant
cooling to a temperature comparable to the magnetic super-
exchange scale J, which is an important goal in current cold
atom experiments. This is of direct relevancy to the current
experimental progress in ultracold 173Yb atoms [7,34].

Next, we study particle number fluctuations for the half-
filled SUð2NÞ Hubbard model. The normalized on-site
particle fluctuations are defined as

�SUð2NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2i i � hnii2

N

s
; (3)

where hnii ¼ N. At T ! 1, �SUð2NÞ can be calculated

exactly. It is independent of 2N as �SUð2NÞðT ! 1Þ ¼
ð ffiffiffi

2
p

=2Þ � 0:71, which acts as an upper bound on the

fluctuations. Similarly, at U ¼ 0, �SUð2NÞ ¼
ffiffiffi
2

p
=2 and is

independent of both 2N and T. For the general case, we
plot the DQMC simulation results of � at a relatively weak
interaction strength of U=t ¼ 4 over a large range of
temperatures seen in Fig. 3(a). For all the cases, �SUð2NÞ
is suppressed by U away from the upper limit of

ffiffiffi
2

p
=2. For

the cases of SU(4) and SU(6), �SUð2NÞðTÞ first falls as T
increases, which is a reminiscence of the Pomeranchuk
effect. Then, after reaching a minimum at T comparable to
t, �SUð2NÞ grows with increasing T. This indicates that

fermions are localized most strongly at an intermediate
temperature scale at which the spin channel contribution to
entropy dominates. In comparison, the nonmonotonic
behavior of �SUð2NÞ is weak in the SU(2) case. The above

data agree with the picture that large values of 2N enhance
spin fluctuations and thus the Pomeranchuk effect. We also
calculate the local particle number fluctuations in a

small subvolume: �sub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hn̂2subi � hn̂subi2�=hn̂subi

q
(n̂sub

is the total particle number operator within the subvolume).

FIG. 2 (color online). The isoentropy curves for the half-filled
SU(6) Hubbard model on a 10� 10 square lattice. The dashed
line denotes the spin superexchange scale in the strong coupling
regime J=t ¼ 4t=U.

FIG. 3 (color online). Particle number fluctuations vs T with
parameters U=t ¼ 4 and different values of 2N on a 10� 10
lattice. (a) The on-site density fluctuations �SUð2NÞðTÞ. The inset
shows the convergence of �SUð6ÞðTÞ with L ¼ 8, 10, and 12 for

the SU(6) case. (b) The local particle number fluctuations in a
2� 2 subvolume.
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As shown in Fig. 3(b), for the SU(4) and SU(6) cases, the
local density fluctuations in a 2� 2 sublattice �2�2 also
exhibit nonmonotonic behavior similarly to the case of the
on-site density fluctuation.

Next, we study spin correlations of the SUð2NÞ Hubbard
model. The SUð2NÞ generators can be represented through
fermion operators ci;�ð� ¼ 1� 2NÞ as S��;i ¼ cy�;ic�;i �
ð1=2NÞ���ni. There are only ð2NÞ2 � 1 independent

operators due to the constraint
P

�S�� ¼ 0. They satisfy
the commutation relations ½S��;i; S��;j� ¼ �i;jðS��;i��� �
S��;i���Þ. We define the SUð2NÞ version of the two-point

equal-time spin-spin correlation as

Sspinði; jÞ ¼ 1

ð2NÞ2 � 1

X
�;�

hS��;iS��;ji: (4)

The spin structure factors SSUð2NÞð ~qÞ are calculated at half-

filling and a low temperature, which are defined as

SSUð2NÞð ~qÞ ¼ 1

NL2

X
~i; ~j

ei ~q� ~rMspinði; jÞ; (5)

where ~r is the relative vector between sites i and j. The
distributions of SSUð2NÞð ~qÞ with 2N ¼ 2, 4, 6 are plotted in

Figs. 4(a)–4(c), respectively. The sharpness of the peaks at
q ¼ ð�;�Þ indicates the dominant AF correlations in all
the cases. With increasing 2N, peaks are broadened,
showing a weakening of the AF correlations.

The current experimental limit to the entropy per parti-
cle for the two-component systems is SSUð2Þ � 0:77kB. The
corresponding temperature scale is T � t, which is still
larger than J [35]. In contrast, as we analyzed above, the
SU(6) Mott-insulating state has more entropy capacity,
which means that, for a fixed entropy per atom, the
corresponding temperature of the half-filled SU(6)
Mott-insulating state is lower than that of the SU(2) case.

As shown in Fig. 2, for SSUð6Þ � 0:77kB, the corresponding
temperature of the Mott-insulating state (U=t ¼ 12) can
reach the border of the magnetic superexchange scale J.
As for the experimental consequences of the Pomeranchuk
cooling, although it is difficult to directly measure tem-
peratures in the lattice, the nonmonotonic behavior of the
local particle fluctuations, shown in Figs. 3(a) and 3(b), can
be tested by high-resolution in situ measurements which
have been used to observe the antibunching in ultracold
atom Fermi gases [36]. Repeated measurements of the
local particle numbers of identically prepared systems
give rise to particle fluctuations within the observed vol-
ume, which may contain one or several lattice sites.
Recently, the Pomeranchuk cooling has been observed in
173Yb fermions in optical lattice [SU(6) Hubbard model].
However, we should point out an important difference
between the experiment and our calculation, namely, that
the filling factor in the experiment [34] is 1=6 (one fermion
per site) as opposed to the assumed half-filling in our
simulations.
In conclusion, we have performed DQMC simulation for

the thermodynamic properties of the 2D SUð2NÞ Hubbard
model at half-filling in the temperature regime of direct
interest to current experiments. The large numbers of
fermion components enhance spin fluctuations, which
facilitates the Pomeranchuk cooling to temperatures com-
parable to the superexchange energy scale. We have
focused on half-filling, although it is interesting to ask
whether the Pomeranchuk cooling can appear in other
filling factors, especially in the the case of 1=6 filling
corresponding to one atom per site in the SU(6) model.
In this case, DQMC calculation is plagued by the sign
problem. Nevertheless, in some situations, for example,
at high temperatures or small values of U, DQMC calcu-
lation can still give rise to reliable results if the sign
problem is not severe.
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