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We investigate the topological insulating states of the p-band systems in optical lattices induced by the

on site orbital angular momentum polarization, which exhibit gapless edge modes in the absence of

Landau levels. This effect arises from the energy-level splitting between the on site px þ ipy and px � ipy

orbitals by rotating each optical lattice site around its own center. At large rotation angular velocities, this

model naturally reduces to two copies of Haldane’s quantum Hall model. The distribution of the Berry

curvature in momentum space and the quantized Chern numbers are calculated. The experimental

realization of this state is feasible.
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The precise quantization of the Hall conductance in the
integer quantum Hall (QH) effect is due to the topologi-
cally nontrivial band structure characterized by the
Thouless–Kohmoto–Nightingale–den Nijs (TKNN) num-
ber, or the Chern number [1,2]. The origin of the QH effect
is also deeply connected to the parity anomaly of 2D Dirac
fermions [3–5]. Although breaking time-reversal (TR)
symmetry is required for the QH effect, Landau levels
(LL) are not necessary. For example, Haldane [5] con-
structed a QH model with an average zero flux per unit
cell but with complex-valued hopping integrals. QH insu-
lators have been generalized to the topological quantum
spin Hall (QSH) insulators which keep TR symmetry and
are characterized by a Z2 topological number [6–14].

The anomalous Hall effect describes the dependence of
the Hall current on the spin magnetization, not the external
magnetic field, whose mechanism has been debated for a
long time, including the anomalous velocity from the
interband matrix elements [15], the screw scattering [16],
and the side jump [17]. Recently, a new perspective has
been developed from the topological band Berry curvature
[18,19]. Its quantum version, topological insulators arising
from spin magnetization, has been proposed and investi-
gated in semiconductor systems [20–22].

The development of cold atom physics has provided
another new opportunity for the study of the QH effect.
Several methods have been proposed including globally
rotating the trap or optical lattice, or introducing effective
gauge potential generated by laser beams [23–27].
Recently, a construction of Haldane’s model has also
been proposed [25] by superposing a periodic light-
induced gauge potential with a honeycomb optical lattice.

In this article, we propose an orbital analogue of the
quantum anomalous Hall (QAH) effect in solid state sys-
tems, i.e., the QAH effect arising from orbital angular
momentum polarization without LLs. This can be achieved
by rotating each optical site around its own center. The lift
of the degeneracy between px � ipy orbitals gives rise to

nontrivial topological band structures and provides a natu-
ral way to realize Haldane’s model. Increasing rotation

angular velocity induces topological phase transition by
changing the Chern numbers of the band structure. We also
present the study of the QH effect arising with LLs in this
system.
We study the px;y-orbital band with spinless fermions in

the honeycomb lattice described in Ref. [28–30] with the
new ingredient of rotation as

H0 ¼ tk
X
~r2A

fpy
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~r

n~r;

HL ¼ i�z

X
~r

fpy
~r;xp~r;y � py

~r;yp~r;xg;
(1)

where ê1;2 ¼ �
ffiffi
3

p
2 êx þ 1

2 êy and ê3 ¼ �êy are the unit

vectors pointing from a site in the A-sublattice to its three
neighbors in the B-sublattice; pi � ðpxêx þ pyêyÞ � êiði ¼
1–3Þ are the projections of the p-orbitals along the êi
direction; � is the chemical potential; a is the nearest-
neighbor bond length. Since there is no overall lattice
rotation, the vector potential due to the Coriolis force and
the centrifugal potential across the entire lattices do not
appear. The effect is to break the degeneracy between px �
ipy as described by HL.

The band structure of Eq. (1) is presented as follows.
Under the chiral transformation C, i.e., prA;x;y ! prA;x;y,

prB;x;y ! �prB;x;y, combined by the time-reversal trans-

formation T, Eq. (1) transforms as ðCTÞ�1ðH0 þHLÞ�
ðCTÞ ¼ �ðH0 þHLÞ; thus, its spectra are symmetric re-
spect to the zero energy. At �z ¼ 0, it exhibits two dis-
persive bands touching at Dirac cones located at
K1;2 ¼ ð� 4�

3
ffiffi
3

p
a
; 0Þ and other two flat bands [28,29]. The

dispersive bands touch the flat bands at the Brillouin zone
(BZ) center K0 ¼ ð0; 0Þ. At nonzero �z, gaps open be-
tween different bands as depicted in Figs. 1(a)–1(c). If �z

is small, the effective Hamiltonian close to the Dirac points
of K1;2 becomes massive with the gap value of � ¼ �z.

The masses at K1;2 are of opposite signs. The bottom band

is no longer flat at nonzero �z. Its minimum at K0 is
pushed down by the value of 3

2�z and that of the second

band is pushed up by the same value. This opens a gap of

PRL 101, 186807 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

31 OCTOBER 2008

0031-9007=08=101(18)=186807(4) 186807-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.186807


3�z. A similar analysis applies to the top and the third
bands.

As �z approaches
3
2 tk, the middle two bands at K0 are

pushed to zero from both up and below, respectively. A
single gapless Dirac cone is formed at the BZ center K0 ¼
ð0; 0Þ as depicted in Fig. 1(b). We define the four-
component spinor as c ¼ ðpx;A; py;A; px;B; py;BÞT , and

two bases of �1 ¼ 1
2 f1; i;�1;�ig and �2 ¼ 1

2 �f1;�i; 1;�ig for the middle two bands. The Dirac cone
Hamiltonian at K0 can be expressed as

H2ð ~kÞ ¼ �ð�z � 3
2 tkÞ � 3

2 tkðkx þ ikyÞ
� 3

2 tkðkx � ikyÞ �z � 3
2 tk

 !
: (2)

We notice that a single Dirac cone of the chiral fermion is
allowed in the 2D bulk lattice systems, which actually does
not contradict to the fermion doubling theory proved for
3D lattices [31].

As�z goes even larger, the lower and upper two pairs of
bands are projected into the single orbital bands of px �
ipy, respectively. The lower two are described by the px þ
ipy orbital with a nearest-neighbor hopping of

tk
2 .

Furthermore, a Haldane type NNN hopping is generated
as depicted in Fig. 1(d): one particle at site A in the px þ

ipy orbital hops to the high energy orbital of px � ipy at its

nearest neighbor B, and hops back into the px þ ipy state

at the NNN site A0. Along the directions indicted by
arrows, this hopping amplitude can be calculated from

the second order perturbation theory as tnn ¼
t2k=ð2�zÞeið2=3Þ�. As pointed out in Ref. [5], this generates

two massive Dirac cones with gap � ¼ 9
2 tnn at ~K1;2 of

masses with opposite signs.
The above bands exhibit nontrivial topological proper-

ties. Let us label the four bands with indices from 1 to 4

as energy increases. The Berry curvature Fn;xyð ~kÞ, or the
gauge field strength, in the momentum space for the n-th

band is defined as Fn;xyð ~kÞ ¼ @kxAn;yð ~kÞ � @kyAn;xð ~kÞ,
where An;�ð� ¼ x; yÞ is the gauge potential defined as

An;� ¼ ihc nð ~kÞj@k� jc nð ~kÞi [1,2]. The eigenstates of

different bands are related by the combined chiral and

TR transformation as jc 4ð� ~kÞi ¼ ðTPÞjc 1ð ~kÞi and

jc 3ð� ~kÞi ¼ ðTPÞjc 2ð ~kÞi; thus, the Berry curvatures of

different bands satisfy F4;xyð� ~kÞ ¼ �F1;xyð ~kÞ and

F3;xyð� ~kÞ ¼ �F2;xyð ~kÞ. Fn;xy of the lower two bands is

depicted in Fig. 2 at different angular velocities. The total
flux in the BZ for the n-th band is quantized known as the

Chern number Cn ¼ 1
2�

R
d2kFn;xyð ~kÞ [1,2]. At all values

of �z > 0, C1 is quantized to 1, in spite of a significant
change of distribution of F1;xy as increasing�z as depicted

in Figs. 2(a), 2(c), and 2(e). The maximal of F1;xy are
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FIG. 2 (color online). The distribution of the Berry curvature

Fn;xyð ~kÞ in the Brillouin zone for the lower two bands at different
�z. (a), (c), and (e) [(b), (d), and (f)] are Fn;xyð ~kÞ of the first

(second) band at �z=tk ¼ 0:3, 1.3 and 1.7, respectively. The

Chern number of the first band is 1, and that of the second band
changes from 0 to �1 at �z=tk ¼ 3
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FIG. 1 (color online). The band structure of Eq. (1) at �z > 0
as shown in (a), (b), and (c). Only the lower two bands are
presented, and the upper two are symmetric respect to the zero
energy. (a) �z=tk ¼ 0:3; (b) �z=tk ¼ 1:5 where a single gapless

Dirac cone appears; (c) �z=tk ¼ 3 where two massive Dirac

cones appear at K1;2 between the lower two bands and also

between the upper two bands; (d) The pattern of the induced
NNN hopping (complex valued) at �z � tk, which is generated

by the virtual hopping between orbitals with opposite chirality.
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distributed among a ring around the BZ center at small
values of�z, and are pushed to the two vertexes of the BZ
at K1;2 as �z increases. C2 is more subtle. At small �z,

each of two massive Dirac points at K1;2 approximately

contribute a flux of 1
2 . As �z=tk ! 3

2 from below, the

maximum of F2;xy is shifted to the new Dirac point at the

BZ center, which approximately contributes the flux of 1
2 .

However, these contributions are canceled by the back-
ground negative flux � 1

2 when �z=tk < 3
2 , and thus the

Chern number is 0. A topological quantum phase transition
occurs at �z=tk > 3

2 beyond which the flux from the Dirac

point K0 flips the sign to � 1
2 . Combined with the back-

ground contribution � 1
2 , the Chern number of C2 changes

to �1. In analogy to electron systems, the transverse con-
ductivity can be defined as the ration between the mass
flow and the potential gradient as �xy ¼ �Jx=@yV.

The above band structure gives rise to topological stable
gapless edge modes lying inside the band gap. Figure 3
depicts the spectra with the open boundary condition on the
zigzag edges. When the Fermi level lies in the band gap
between the nth and nþ 1th bands, �xy is quantized as the

sum of the Chern numbers of the occupied bands as
�xyðn; nþ 1Þ ¼ m

@

P
1�nCi [1,2], which is just the number

of the chiral edge modes inside the gap. At �z <
3
2 tk, the

Chern numbers reads C1 ¼ �C4 ¼ �1 and C2 ¼ �C3 ¼

0, giving rise to �xyðn; nþ 1Þ=ðm
@
Þ ¼ 1 for n ¼ 1, 2, 3.

Thus, edge modes exist in all of the three band gaps with
the same chirality. At�z >

3
2 tk, C2 and C3 change to C2 ¼

�C3 ¼ �1, giving rise to �xyðn; nþ 1Þ=ðm
@
Þ ¼ 1, 0, �1

for n ¼ 1, 2, 3. Thus, the edge modes between bands 1 and
2 and that between band 3 and 4 are of the opposite
chiralities. No edge mode appears between band 2 and 3.
This agrees with the picture that Eq. (1) reduces to two
copies of Haldane’s model at �z � tk.
We also study the QH effect of Eq. (1) arising from LLs

by replacing the hopping part to

Hhop ¼ tk
X
~r2A

fpy
~r;ip~rþaêi;ie

i
R

r

rþaei

~A�d~r þ H:c:g; (3)

where the vector potential- ~A can be generated through
another overall lattice rotation or by light-induced gauge
potential. We will take the flux per plaquette � and �z as
two independent variables. The spectra of the above
Hamiltonian does not depend on the gauge choice, but
the physical wave functions differ by a gauge transforma-
tion. For the calculation convenience, we use the Landau
gauge for an open boundary system along the zigzag edge
and take �=ð2�Þ ¼ 0:05.

In the presence of ~A, ðCPÞðHhop þHLÞðCPÞ�1 �

�ðHhop þHLÞ; thus, the spectra are no longer symmetric

respect to the zero energy. Generally speaking, all of the
four bands split into a number of flat LLs with dispersive
edge modes lie in between. The pattern of edge modes does
not change much as varying the value of �, but signifi-
cantly changes as increasing �z. At small values of �z

[e.g., �z ¼ 0:2tk as shown in Fig. 4(a)], gapless edge

modes go through the entire spectra from the very band
bottom to top. Landau levels close to the zero energy arise
from Dirac cones at K1;2 with opposite masses. The 0th LL

is pushed to the negative energy at the gap value around
�0:26tk. The number of chiral edge modes between levels

of n ¼ 0 and �1 is 1 with opposite chirality and that
between n ¼ �1 and �2 is 3. The energies of n ¼ �1
and n ¼ �2 appear roughly symmetric to zero energy. All
of these agree with the picture of LLs from two massive
Dirac cones. Next, let us look at �z ¼ 3

2 tk where a single
gapless Dirac cone appears as shown in Eq. (2). Indeed, the
0th LL appears close to the zero energy but with a small
deviation, which is understandable as no exact symmetry
to protect it right at the zero energy. It is tempting to think
the appearance of the half-integer QH effect, but this is
impossible in free-lattice fermion systems [5]. Another
half has to be contributed from the high energy part of
the band structure. As a result, the number of chiral edge
modes between LLs n ¼ 0 and 1 is 1

2 þ 1
2 ¼ 1, while that

between LLs n ¼ 0 and �1 is � 1
2 þ 1

2 ¼ 0. Thus, the

spectra from bottom to top become disconnected without
edge modes connecting them. This disconnection actually
begins to appear even earlier at �z ¼ 1:2tk, and is en-

hanced as�z goes larger. At large values of�z, the model
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FIG. 3. The gapless edge excitations with the open boundary
condition along the zigzag edge of the hexagon lattice.
(a)�z=tk ¼ 0:3; (b)�z=tk ¼ 1:7. A topological phase transition

occurs at �z=tk ¼ 3
2 above which the edge modes between the

middle two bands disappear.

PRL 101, 186807 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

31 OCTOBER 2008

186807-3



reduces to two copies (px � ipy) of Haldane’s model. The

patterns of LLs between bands 1 and 2, and between bands
3 and 4 become those of the two massive Dirac cones with
opposite mass signs. When Fermi level lies in between
LLs, the transverse conductance �xy is quantized at the

value of the number of chiral edge modes.
The experimental techniques to realize QAH insulators

are basically available. Spinless fermions can be realized
by polarized 6Li or 40K atoms. The honeycomb optical
lattice was constructed quite some time ago [32]. The
rotation of each lattice site around its own site center has
been performed by Gemelke et al. [33] as follows. Electro-
optic phase modulators are applied to the laser beams
forming the lattice. This results in an oscillation of the
overall lattice translation at a radio frequency which is
much larger than the harmonic frequency of each site;
thus, atoms only feel an averaged potential with a small
distortion along the oscillation axis. This axis is controlled
to rotate at an audio frequency �z, which induces the
rotation of each site around its own center.�z can be tuned
from zero to a few kHz, which is at the order of the recoil
energy ER corresponding to the temperature scale of
0:1 �K and is experimentally realizable. An application
of such method to the hexagonal lattice is expected fea-
sible. As calculated in Ref. [29], by varying laser intensity
tk can be easily tuned from the same order of ER to one
order smaller; thus, we have a large flexibility to tune
�z=tk. QAH insulators are still band insulators, and thus

are robust at temperatures small compared to band gaps.

Band gaps are comparable to tk as shown in Fig. 3, which

can be tuned to the order of ER; thus, the temperature scale
to realize QAH insulators is experimentally realizable. The
direct detection of QAH insulators through transport mea-
surement in cold atom experiments might be difficult, and
a recent proposal based on the Streda formula through the
time of flight measurement of particle density has been
provided in Ref. [26].
In summary, we investigate the topological insulating

states in the p-orbital systems in the honeycomb lattice.
The orbital angular momentum polarization generates the
nontrivial Chern number structure giving rise to the orbital
counterpart of QAH effect without LLs. QH effect arising
for LLs are also investigated, which shows quantitative
different features from those in graphene.
C.W. thanks D. Arovas, M. Fogler, and J. Hirsch for

helpful discussions, and N. Gemekel for the introduc-
tion of the method of rotating optical lattices. C.W. is
supported by the Sloan Research Foundation, ARO-
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FIG. 4. Edge and bulk states spectra of Eq. (3) with the open
boundary condition along the zigzag edge. The flux per plaquette
�=ð2�Þ ¼ 1=20. (a) �z=tk ¼ 0:2; (b) �z=tk ¼ 1:5.
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