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Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We
extend the static crystal to the dynamic “space-time” crystal characterized by the general intertwined space-
time periodicities in Dþ 1 dimensions, which include both the static crystal and the Floquet crystal as
special cases. A new group structure dubbed a “space-time” group is constructed to describe the discrete
symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is
augmented by “time-screw” rotations and “time-glide” reflections involving fractional translations along
the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions
(1þ 1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry
without the half-integer spinor structure, which constrains the winding number patterns of spectral
dispersions. In 2þ 1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to
protected Floquet semimetal states. We provide a general framework for further studying topological
properties of the (Dþ 1)-dimensional space-time crystal.
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The fundamental concept of crystal and the associated
band theory based on the Bloch theorem lays the founda-
tion of condensed matter physics. Studies on the crystal
symmetry and band structure topology have led to the
discoveries of topological insulators, topological super-
conductors, and Dirac and Weyl semimetal states [1–3].
Periodically driving further provides a new route to
engineering topological states—even in systems originally
topologically trivial in the absence of driving—as explored
in irradiated graphene [4,5], semiconducting quantumwells
[6], dynamically modulated cold atom optical lattices [7],
and photonic systems [8,9]. The periodicity of the quasie-
nergy enriches the topological band structures [10–12],
such as dynamically generated Majorana modes [13], 1D
helical channels [14], and anomalous edge states associated
with a zero Chern number [15,16]. Topological classifica-
tions for interacting Floquet systems have also been
investigated [17–21].
For periodically driven crystals, most studies treat the

temporal periodicity separately from the spatial one. In fact,
the driven system can exhibit much richer symmetry
structures than a simple direct product of spatial and
temporal symmetries. In particular, a temporal translation
at a fractional period can be combined with the space group
symmetries to form novel space-time intertwined sym-
metries, which, to the best of our knowledge, have not yet
been fully explored. For static crystals, the intrinsic con-
nections between space-group symmetries and physical
properties, especially topological phases, have been exten-
sively studied [22–29]. Therefore, it is expected that the
intertwined space-time symmetries could also protect

nontrivial properties of the driven system, regardless of
the microscopic details.
In this Letter, we propose the concept of a “space-time”

crystal exhibiting the intertwined space-time symmetries,
whose periodicities are characterized by a set of Dþ 1
independent basis vectors, generally space-time mixed.
A situation involving separate spatial and temporal per-
odicities is a special case and is also included. The full
discrete space-time symmetries of space-time crystals form
a class of new group structures—dubbed the space-
time group, which is a generalization of a space group
that includes “time-screw” and “time-glide” operations.
A complete classification of the 13 space-time groups in
1þ 1D is performed, and their constraints on band struc-
ture winding numbers are studied. In 2þ 1D, 275 space-
time groups are classified. Nonsymmorphic space-time
symmetry operations, similar to their static space-group
counterparts, lead to protected spectral degeneracies for
driven systems, even when the instantaneous spectra are
gapped at any given time.
Space-time crystal.—We consider the time-dependent

HamiltonianH¼P2/ð2mÞþVðr; tÞ in (Dþ1)-dimensional
space-time. Vðr; tÞ exhibits the intertwined discrete space-
time translational symmetry as

Vðr; tÞ ¼ Vðrþ ui; tþ τiÞ; i ¼ 1; 2;…; Dþ 1; ð1Þ

where ðui; τiÞ ¼ ai is a set of the primitive basis vectors. In
general, the space-time primitive unit cell is not a direct
product between the spatial and temporal domains. There
may not even exist spatial translational symmetry at any
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given time t, or temporal translational symmetry at any
spatial location r. Consequently, the frequently used time-
evolution operator of one period for the Floquet problem
generally does not apply. The reciprocal lattice is spanned
by the momentum-energy basis vectors bi ¼ ðGi;ΩiÞ
defined through bi ·aj¼P

D
m¼1G

i
mu

j
m−Ωiτj ¼ 2πδij. The

(Dþ 1)-dimensional momentum-energy Brillouin zone
(MEBZ) may also be momentum-energy mixed.
Generalized Floquet-Bloch theorem.—We generalize

the Floquet and Bloch theorems for the time-dependent
Schrödinger equation iℏ∂tψðr; tÞ¼Hðr; tÞψðr; tÞ. Because
of space-time translation symmetry, the lattice momentum-
energy vector κ ¼ ðk;ωÞ remains conserved. Only the κ
vectors inside the first MEBZ are nonequivalent, and those
outside the zone are equivalent up to integer reciprocal
lattice vectors. The Floquet-Bloch states labeled by κ take
the form of

ψκ;mðr; tÞ ¼ eiðk·r−ωmtÞumðr; tÞ; ð2Þ
wheremmarks different states sharing the common κ value.
umðr; tÞ processes the same space-time periodicity as
Hðr; tÞ and is expanded as um ¼ P

Bcm;BeiðG·r−ΩtÞ, with
B ¼ ðG;ΩÞ taking all the momentum-energy reciprocal
lattice vectors. The eigenfrequency ωm is determined
through the eigenvalue problem defined as

X

B0
f½ε0ðkþGÞ − Ω�δB;B0 þ VB−B0gcm;B0 ¼ ωmcm;B; ð3Þ

where ε0ðkÞ is the free dispersion and VB is the momen-
tum-energy Fourier component of the space-time lattice
potential Vðr; tÞ. The dispersion based on Eq. (3) is
represented by a D-dimensional surface in the MEBZ
which is a (Dþ 1)-dimensional torus.
Dispersion winding numbers.—The band structure of

the space-time crystal exhibits novel features that differ
from those of the static crystal. For simplicity, below we use
the 1þ 1D case for an illustration. The dispersion relation
ωðkÞ forms closed loops in the 2D toroidal MEBZ, each of
which is characterized by a pair of winding numbers
w ¼ ðw1; w2Þ. Compared to the static case in which the
band dispersion winds only around the momentum direc-
tion, here ωðkÞ is typically not single valued, and its
winding patterns are much richer. The dispersions in the
limit of a weak space-time potential Vðx; tÞ with a rhombic
MEBZ are illustrated in Figs. 1(a) and 1(b), with details
presented in Sec. I of the Supplemental Material (SM) [30].
When folded into the MEBZ, the free dispersion curve
ε0ðkÞ can cross at general points, not just on high symmetry
ones. A crossing point corresponds to two equivalent
momentum-energy points related by a reciprocal vector
G. When VG ≠ 0, the crossing is avoided by forming a gap
at the magnitude of 2jVGj. The total number of states for
each k value is independent of the strength of Vðx; tÞ;
hence, crossing can only split along the ω direction and

dω/dk is always finite. Consequently, trivial loops with
the winding numbers (0,0) are forbidden. Generally, the
winding directions of the dispersion loops are momentum-
energy mixed. Furthermore, different momentum-energy
reciprocal lattice vectors can cross each other, leading
to composite loops winding around the MEBZ along
both directions, as shown in Fig. 1(b). Hence, in general,
all patterns ðw1; w2Þ are possible except for contractible
loops.
Space-time group.—To describe the symmetry proper-

ties of the Dþ 1 dimensional space-time crystals, we
propose a new group structure, dubbed a space-time group,
defined as the discrete subgroup of the direct product of the
Euclidean group inD spatial dimensions and along the time
direction ED ⊗ E1. Please note that, in general, the space-
time group cannot be factorized as the direct product
between discrete spatial and temporal subgroups. It
includes not only space and magnetic group transforma-
tions in D spatial dimensions but also operations involving
fractional translations along the time direction. Since space
and time are nonequivalent in the Schrödinger equation,
space-time rotations are allowed only in the twofold case.
To be concrete, a general space-time group operation Γ

on the space-time vector ðr; tÞ is defined as

Γðr; tÞ ¼ ðRrþ u; stþ τÞ; ð4Þ

where R is aD-dimensional point-group operation, s ¼ �1

and s ¼ −1 indicate time reversal, and ðu; τÞ ¼ P
imiai

represents a space-time translation with mi values that are
either integers or fractions. If τ ¼ 0, Γ is reduced to a space
group or magnetic group operation according to s ¼ �1,
respectively. If τ ≠ 0, when (u; τ) contains fractions of ai,
new symmetry operations arise due to the dynamic nature
of the crystal potential, including the time-screw rotation
and time-glide reflection, which are a spatial rotation
and a reflection followed by a fractional time translation,
respectively. The operation of Γ on the Hamiltonian is
defined as Γ−1Hðr; tÞΓ ¼ H½Γðr; tÞ� and Γ−1Hðr; tÞΓ ¼
H�½Γðr; tÞ� for s ¼ �1, respectively. Correspondingly,

FIG. 1. Folding the band dispersions of the 1þ 1D space-time
crystal into the first rhombic MEBZ in the weak lattice limit. The
momentum-energy reciprocal lattice vectors of nonzero VB
values are represented by dashed lines. The low-energy part of
the free dispersion curve evolves to closed loops. (a) Two loops
with the winding numbers wr ¼ ð1; 0Þ (the red curves) and
wb ¼ ð0; 1Þ (the blue curves). (b) An extra nonzero VG value
connects two loops in (a), forming a new one with w ¼ wr þ wb.
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the transformation MΓ on the Bloch-Floquet wave func-
tions ψκðr; tÞ isMΓψκ ¼ ψκ½Γ−1ðr; tÞ� and ψ�

κ ½Γ−1ðr; tÞ� for
s ¼ �1, respectively.
Now we present a complete classification of the 1þ 1D

space-time groups. Because of the nonequivalence between
the spatial and temporal directions, there are no square and
hexagonal space-time crystal systems. The point-group-
like operations are isomorphic to D2, including reflection
mx, time reversal mt, and their combination mxmt, i.e.,
the twofold space-time rotation. Consequently, only two
space-time crystal systems are allowed—oblique and
orthorhombic. There exist two types of glide reflections:
the time-glide reflection, gx, and gt, denoted as “glide time
reversal,” which is time reversal followed by a fractional
translation along the x direction.
The above 1þ 1D space-time symmetries give rise to 13

space-time groups, in contrast to the 17 wallpaper space
groups characterizing the 2D static crystals. The oblique
Bravais lattice is simply monoclinic, while the orthorhom-
bic ones include both primitive and centered Bravais
lattices. The monoclinic lattice gives rise to two different
crystal structures with and without twofold space-time
axes, whose space-time groups are denoted by P1;2,
respectively, as shown in Fig. 2(a). For the primitive
orthorhombic lattices, the associated crystal structures
can exhibit the point-group symmetries mx and mt, and
the space-time symmetries gt and gx. Their combinations
give rise to eight space-time crystal structures, denoted
as Pmx, Pmt, P2mxmt, Pgx, Pgt, P2gxgt, P2mxgt, and
P2gxmt, respectively, as shown in Fig. 2(b). Four of them
possess the twofold space-time axes, as indicated by the 2s
in their symbols. For the centered orthorhombic Bravais
lattices, three crystal structures exist, with their space-time
groups denoted as Cmx, Cmy, and C2mxmt, respectively,
as shown in Fig. 2(c). They all exhibit glide-reflection
symmetries, and the last one possesses the twofold space-
time axes as well. Two unit cells are plotted for the centered
lattices to show the full symmetries explicitly, and their
primitive basis vectors are actually space-time mixed.
The classifications of the space-time groups in higher

dimensions are generally complicated. A general method is
the group cohomology presented in Sec. II of the SM [30].
Specifically, a classification of the 2þ 1D space-time
group is outlined in Sec. III of the SM [30], in which
the space-time group’s structures are further enriched by
spatial rotations and time-screw rotations. Compared to the
3D static crystals, the cubic crystal systems are not allowed,
and two different monoclinic crystal systems appear with a
perpendicular axis along the time and spatial directions,
respectively. In total, there are seven crystal systems and 14
Bravais lattices, but 275 space-time groups.
Protection of spectral degeneracy.—The intertwined

space-time symmetries besides translations can protect
spectral degeneracies. Below, we consider the effects
from the Kramers symmetry without spin and the

nonsymmorphic symmetries for the 1þ 1D and 2þ 1D
space-time crystals, respectively.
Consider a 1þ 1D space-time crystal whose unit cell is a

direct product of spatial and temporal periods λ and T,
respectively. We assume that the system is invariant under
the glide time-reversal operation gtðx; tÞ ¼ ðxþ 1

2
λ;−tÞ,

whose operation on the Hamiltonian is defined as
g−1t Hgt ¼ H�½gtðx; tÞ�. The corresponding transformation
Mgt on the Bloch-Floquet wave function ψκðx; tÞ of Eq. (2)
is antiunitarily defined asMgtψκ ¼ ψ�

κ ½g−1t ðx; tÞ�. This glide
time-reversal operation leaves the line of κx ¼ π/λ in the
MEBZ invariant. Mgt becomes a Kramers symmetry for
states with κx ¼ π/λ,

M2
gtψκ ¼ ψκðx − λ; tÞ ¼ e−iκxλψκ ¼ −ψκ; ð5Þ

without involving the half-integer spinor structure. It
protects the double degeneracy of the momentum-energy
quantum numbers of ψκ and Mgtψκ. Hence, the crossing at
κx ¼ π/λ cannot be avoided, and the dispersion winding
numbers along the momentum direction must be even.

FIG. 2. The classification of 13 space-time groups in 1þ 1D
and the associated crystal configurations. The solid oval marks
the twofold space-time axis, and the parallelogram represents the
twofold axis without reflection symmetries. The thick solid and
dashed lines represent reflection and glide-reflection axes,
respectively. Configurations of the triangles and the diamond
denote the local symmetries under reflections. (a) The oblique
lattices with and without twofold axes. Their basis vectors are
generally space-time mixed. (b) Primitive and (c) centered
orthorhombic lattices. According to their reflection and glide
reflection symmetries, the crystal configurations are classified
into eight groups in (b), and three groups in (c).
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As a concrete example, we study a crystal potential with
the above spatial and temporal periodicities, Vðx; tÞ ¼
V0ðsin½ð2πÞ/T�t cos½ð2πÞ/λ�xþ cos½ð2πÞ/T�tÞ. Except for
the glide time-reversal symmetry, it does not possess other
symmetries. Its Bloch-Floquet spectrum is calculated based
on Eq. (3), and a representative dispersion loop is plotted in
the MEBZ shown in Fig. 3(a). The crossing at κx ¼ π/λ is
protected by the glide time-reversal symmetry giving rise to
a pair of Kramers doublets. As a result, the winding number
of this loop isw ¼ ðwx; wtÞ ¼ ð2; 0Þ. If a glide time-reversal
breaking term δV ¼ V 0

0 cosð½ð2πÞ/λ�xÞ is added into the
crystal potential, the crossing is avoided, as shown in
Fig. 3(b). Consequently, the dispersion splits into two loops,
both of which exhibit the winding number (1,0). Similarly,
out of the eight primitive orthorhombic space-time crystals,
three of them, Pgt, P2gxgt, and P2gtmx, enforce this
nonspinor-type Kramers degeneracy, while the other five
generally do not protect against such a degeneracy.
Next, we present a 2þ 1D Floquet semimetal state

whose spectral degeneracies are protected by nonsymmor-
phic space-time group operations. Consider that the
space-time little group of the momentum k contains two
nonsymmorphic space-time group operations g1;2, both of
which do not flip the time direction; hence, they are
represented by unitary operators. If they satisfy

g1g2 ¼ Tg2g1; ð6Þ

where T is a translation of integer lattice vectors. As shown
in Sec. IVof the SM [30], T can be a spatial translation only
by not involving the time, denoted as TðuÞ. Assuming
k · u ¼ 2πp/q, with p and q being coprime, we find that
the Bloch-Floquet wave functions exhibit a q-fold degen-
eracy at the momentum-energy vector κ ¼ ðk;ωÞ, which is
proved as follows. Since g1 belongs to the little group,
ψκðr; tÞ can be chosen to satisfyMg1ψκ;1 ¼ μψκ;1, in which

case ψκ, Mg2ψκ;M2
g2ψκ;…;Mq−1

g2 ψκ are the common

Bloch-Floquet eigenstates sharing the same κ but exhibiting
a set of different eigenvalues of g1: η; μη; μη2;…; μηq−1,
with η ¼ eiπp/q. They are then orthogonal to each other,
forming a q-fold degeneracy. Compared to the case of a
nonsymmorphic space group protected degeneracy
[23,24,27], here g1;2 are space-time operations for a
dynamic space-time crystal. For the case in which one
or both g1;2 values flip the time direction, the situation is
more involved due to the involvement of antiunitary
operations. Protected degeneracies are still possible, as
presented in Sec. IV of the SM [30].
We employ a 2þ 1D tight-binding space-time model as

an example to illustrate the above protected degeneracy.
A snapshot of the lattice is depicted in Fig. 4(a), which
consists of two sublattices: The A-type sites are with integer
coordinates ði; jÞ, and each A site emits four bonds along e⃗i
to its four neighboring B sites at ði� 1

2
; j� 1

2
Þ. The space-

time Hamiltonian within the period T is

HðtÞ ¼ −
X

r⃗∈A;r⃗þa
2
e⃗i∈B

fwe⃗iðtÞc†r⃗dr⃗þa
2
e⃗i þ H:c:g; ð7Þ

where a is the distance between the two nearest A sites, and
the we⃗iðtÞ values are hopping amplitudes with different
strengths. Their time dependence is illustrated in Fig. 4(b):
Within each quarter period, we⃗i does not vary, and the

FIG. 3. (a) The Floquet-Bloch band spectrum with the space-
time lattice potential possessing the glide time-reversal symmetry
gt. When applied to the states with κx ¼ π/λ, gt becomes a
Kramers symmetry protecting the double degeneracy. (b) Lifting
the Kramers degeneracy by adding a glide time-reversal sym-
metry breaking term.

FIG. 4. (a) The 2þ 1D space-time lattice structure of the
Hamiltonian equation (7). The bond directions are indicated as
e⃗1;3 ¼ � 1

2
ðx̂þ ŷÞ and e⃗2;4 ¼∓ 1

2
ðx̂ − ŷÞ. (b) The time-dependent

hopping pattern rotates 90° every one quarter period. The bonding
strengths weiðtÞ of the R, B, G, and Y bonds equal 0.2, 3, −3.2,
and 0.5, respectively. (c) The momentum Brillouin zone with
high symmetry points Γ ¼ ð0; 0Þ, M ¼ ð�π;�πÞ, and X ¼
ð0;�πÞ and ð�π; 0Þ. (d) The dispersions along the cuts from
Γ to X to M to Γ. Twofold degeneracies appear at X and M.
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pattern rotates 90° after every T/4 period. At each given
time, the lattice possesses a simple 2D space group
symmetry p2111, which includes only twofold rotations
around the AB-bond centers without reflection and
glide-plane symmetries. For example, the rotation Rπ

around ðða/4Þ; ða/4ÞÞ transforms the coordinate ðx; y; tÞ →
ðða/2Þ − x; ða/2Þ − y; tÞ. In addition, there exist time-screw
operations—say, an operation S defined as a rotation
around an A site (0,0) at 90° followed by a time translation
at T/4, which transforms ðx; y; tÞ → ðy;−x; tþ ðT/4ÞÞ. Rπ

and S are generators of the space-time group for the
Hamiltonian equation (7). Since S is a time-screw rotation,
this space-time group is nonsymmorphic. It is isomorphic
to the 3D space-group I41, while its 2D space subgroup
p2111 is symmorphic. We have checked to ensure that, for
a static Hamiltonian having the bond configuration shown
in Fig. 4(b), the energy spectra are fully gapped. However,
the nonsymmorphic space-time group gives rise to spectral
degeneracies. Its momentum Brillouin zone is depicted in
Fig. 4(c). The space-time little group of the M point ðπ; πÞ
contains both R and S, satisfying RS ¼ TðaŷÞSR ¼ −SR.
Similarly, the X point ðπ; 0Þ is invariant under both R and
S2, satisfying RS2 ¼ Tðax̂þ aŷÞS2R ¼ −S2R. Hence, the
Floquet eigenenergies are doubly degenerate at the M and
X points, as shown in Fig. 4(d), showing a semimetal
structure.
In conclusion, we have studied a novel class of (Dþ 1)-

dimensional dynamic crystal structures exhibiting the
general space-time periodicities. Their MEBZs are
(Dþ 1)-dimensional tori and are typically momentum-
energy entangled. The band dispersions exhibit nontrivial
windings around the MEBZs. The space-time crystal
structures are classified by space-time group, which
extends the space group for static crystals by incorporating
time-screw rotations and time-glide reflections. In 1þ 1D,
a complete classification of the 13 space-time groups is
performed, and there exist 275 space-time groups in
2þ 1D. Space-time symmetries give rise to a novel
Kramers degeneracy independent of the half-integer spinor
structure. The nonsymmorphic space-time group opera-
tions lead to protected spectral degeneracies for space-time
crystals. This Letter sets up a symmetry framework for
exploring the novel properties of space-time crystals. It also
serves as the starting point for future studies, for example,
dynamical topological phases of matter based on their
space-time groups.
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Scientific Research under Grant No. FA9550-14-1-0168.
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Note added.—Recently, we noticed an interesting and
important work by T. Morimoto et al. [34] classifying

Floquet topological crystalline insulators with twofold
space-time symmetries.
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