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Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling *

WU Cong-Jun(吴从军)1**, Ian Mondragon-Shem1,2, ZHOU Xiang-Fa(周祥发)3
1Department of Physics, University of California, San Diego, CA 92093
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(Received 3 August 2011 and accepted by XIANG Tao)
According to the “no-node” theorem, the many-body ground state wavefunctions of conventional Bose–Einstein
condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We
find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this
paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction.
In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree–Fock level
due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate
through the “order-from-disorder” mechanism. In a strong harmonic confining trap, the condensate spontaneously
generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal
symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial
spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.

PACS: 71.35.−y, 73.50.−h, 03.75.Mn, 03.75.Nt DOI:10.1088/0256-307X/28/9/097102

The conventional many-body ground state wave-
functions of bosons satisfy the celebrated “no-node”
theorem in the absence of rotation, as written in Feyn-
man’s textbook,[1] which means that they are positive-
definite in the coordinate representation. This theo-
rem implies that time-reversal (TR) symmetry can-
not be spontaneously broken. It applies to various
ground states of bosons including Bose–Einstein con-
densates (BEC), Mott-insulating states, density-wave
states and supersolid states, thus making it a very
general statement.

It would be exciting to search for novel types of
quantum ground states of bosons beyond the no-node
paradigm. This theorem does not apply to spin-
ful bosons with spin-orbit (SO) coupling, whose lin-
ear dependence on momentum invalidates Feynman’s
proof. Artificial SO coupling from laser-atom in-
teractions has been applied to ultra-cold boson sys-
tems and its effects have been investigated.[2−9] Ex-
citons in semiconductors[10,11] exhibit SO coupling in
their center-of-mass motion.[12,13] In particular, excit-
ing progress has been made in indirect exciton sys-
tems in coupled quantum wells where electrons and
holes are spatially separate.[14,15] The extraordinarily
long lifetime of indirect excitons provides a wonderful
opportunity to investigate exciton condensation with
SO coupling.

In this Letter, we show that spin-orbit coupled
bosons develop unconventional BECs beyond the no-
node theorem. A Rashba SO coupled BEC with
spin-independent interaction exhibits frustration at
the Hartree–Fock level. Quantum zero-point fluctu-
ations select a coherent condensation in the presence
of weak spatial inhomogeneities, which exhibits spi-

ral spin-density waves and spontaneous TR symme-
try breaking. In a strong external harmonic trap, the
ground state condensate develops orbital angular mo-
mentum, which can be viewed as a half-quantum vor-
tex. Moreover, the spin density distribution exhibits
a cylindrically symmetric spiral pattern as skyrmions.

We begin with a 3D two-component boson system
with Rashba SO coupling in the 𝑥𝑦-plane and with the
contact spin-independent interaction, described by

𝐻 =

∫︁
𝑑3𝑟𝜓†

𝛼

{︁
− ℎ̄2∇2

2𝑀
− 𝜇

}︁
𝜓𝛼

+ ℎ̄𝜆𝑅𝜓
†
𝛼

{︁
−𝑖∇𝑦𝜎𝑥 + 𝑖∇𝑥𝜎𝑦

}︁
𝜓𝛽 +

𝑔

2
𝜓†
𝛼𝜓

†
𝛽𝜓𝛽𝜓𝛼,

(1)

where 𝜓𝛼 is the boson operator; the pseudospin indices
𝛼 =↑, ↓ refer to two different internal components of
bosons; 𝜆𝑅 is the SO coupling strength, which carries
the unit of velocity; 𝑔 describes the s-wave scattering
interaction. Equation (1) possesses a Kramer-type TR
symmetry 𝑇 = 𝑖𝜎2𝐶 satisfying 𝑇 2 = −1, where 𝐶 is
the complex conjugate operation and 𝜎2 operates on
the boson pseudospin degree of freedom.

In the homogeneous system, the single particle
states are the helicity eigenstates of 𝜎 · (𝑘× 𝑧) with a
dispersion relation given by 𝜖±(𝑘) = ℎ̄2

2𝑀 [(𝑘∓ 𝑘
SO

)2 +

𝑘2𝑧 ], where 𝑘
SO

= 𝑀𝜆𝑅

ℎ̄ . The energy minima are lo-
cated on the lower branch along a ring with the radius
𝑘SO in the plane of 𝑘𝑧 = 0. The corresponding two-
component wavefunction 𝜓+(𝑘) with |𝑘| = 𝑘

SO
can be

solved as 𝜓+(𝑘) = 1√
2
(𝑒−𝑖𝜑𝑘/2, 𝑖𝑒𝑖𝜑𝑘/2)𝑇 , where 𝜑𝑘 is

the azimuth angle of the projection of 𝑘 in the 𝑥𝑦-
plane. The interaction part in Eq. (1) in the helicity
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basis can be represented as

𝐻int =
𝑔

2

∑︁
𝜆𝜇𝜈𝜌

∑︁
𝑝1𝑝2𝑞

⟨𝑝1 + 𝑞;𝜆|𝑝1; 𝜌⟩⟨𝑝2 − 𝑞;𝜇|𝑝2; 𝜈⟩

× 𝜓†
𝜆(𝑝1 + 𝑞)𝜓†

𝜇(𝑝2 − 𝑞)𝜓𝜈(𝑝2)𝜓𝜌(𝑝1), (2)

where the Greek indices 𝜆, 𝜈, 𝜇, 𝜌 are the helicity
indices ±; the matrix elements denote the inner prod-
uct of the spin wavefunctions of two helicity eigen-
states at different momenta, e.g., ⟨𝑝1 + 𝑞;𝜆|𝑝1; 𝜌⟩ =
1
2 [1 + 𝜆𝜌𝑒𝑖(𝜑𝑝1

−𝜑𝑝1+𝑞)].

-kso kso
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q

֓q
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Fig. 1. The low energy ring with the radius 𝑘SO in mo-
mentum space. The coherent condensate involves points 𝐴
and 𝐵 with orthogonal spin polarizations. The low energy
Bogoliubov excitations within |𝑘−𝑘SO | < Λ, |𝑘𝑧 | < Λ and
Λ/𝑘SO ≪ 1 are classified into two regimes I (inside two
cylinders centering around 𝐴 and 𝐵 with radius of Λ) and
II (outside).

The low energy Rashba ring brings degeneracy
for the condensate configurations, i.e., frustrations.
Bosons tend to avoid the positive exchange energy for
repulsive interactions, which is the driving force for
BECs. Spin polarizations at two opposite ends of a
diameter of the low energy ring are orthogonal to each
other and thus condensations with these states are free
of exchange interactions. Without loss of generality,
we define the fragmented and coherent condensates of
Φ𝑓𝑟𝑎𝑔 and Φ𝑐𝑜ℎ, respectively, as

Φ𝑓𝑟𝑎𝑔 =
1√

𝑁𝐴!𝑁𝐵 !
[𝜓†

+(𝑘𝐴)]𝑁𝐴 [𝜓†
+(𝑘𝐵)]𝑁𝐵 |0⟩, (3)

Φ𝑐𝑜ℎ =
1√
𝑁0!

{︁√︂𝑛𝐴
𝑛0
𝜓†
+(𝑘𝐴)+𝑒𝑖𝜑

√︂
𝑛𝐵
𝑛0
𝜓†
+(𝑘𝐵)

}︁𝑁0

|0⟩,
(4)

where 𝐴 and 𝐵 are points with 𝑘𝐴 = (−𝑘
SO
, 0, 0) and

𝑘𝐵 = (𝑘
SO
, 0, 0); (𝑁𝐴, 𝑁𝐵) is the particle number par-

tition satisfying 𝑁𝐴+𝑁𝐵 = 𝑁0 with 𝑁0 the total par-
ticle number in the condensate; 𝑛𝐴,𝐵 = 𝑁𝐴,𝐵/𝑉 , and
𝑛0 = 𝑁0/𝑉 ; the phase 𝜑 in Eq. (4) can be absorbed
by the shift of the origin. At the Hartree–Fock level,
Φ𝑓𝑟𝑎𝑔 and Φ𝑐𝑜ℎ with an arbitrary partition 𝑁𝐴,𝐵 have
the same energy. Since fragmented condensates with
different 𝑁𝐴,𝐵 carry different momenta, they do not
mix in the ideal homogeneous systems. However, even
very weak spatial inhomogeneity can build up coher-
ence among them and leads to coherent condensates.
In the following we consider coherent condensates Φ𝑐𝑜ℎ

in Eq. (4) and leave a detailed study of the competi-
tion between fragmented and coherent condensates to
a later work.

The zero-point quantum fluctuations lift the de-
generacy among coherence condensates with different
partitions of 𝑛𝐴,𝐵 . We define a momentum scale 𝑘int
satisfying ℎ̄2𝑘2int/(2𝑀) = 𝑔𝑛0, where 𝑔𝑛0 is the in-
teraction energy scale. We only consider the limit of
strong SO coupling, i.e., 𝑘𝑖𝑛 ≪ 𝑘

SO
, and leave the

general case for a later study. We chose an interme-
diate momentum cutoff Λ satisfying 𝑘int ≪ Λ ≪ 𝑘SO

and study the Bogoliubov excitations in a cylindrical
shell of

⃒⃒⃒√︁
𝑘2𝑥 + 𝑘2𝑦 − 𝑘

SO

⃒⃒⃒
< Λ, |𝑘𝑧| < Λ. (5)

Within this shell, interaction energy is stronger than
the kinetic energy, thus particle and hole states are
mixed significantly. We further divide this shell into
two parts I and II as depicted in Fig. 1. Part I is inside
two cylinders with the radius of Λ centering around
points 𝐴 and 𝐵, and part II is outside these two cylin-
ders.

For part I, we define boson operators in the
lower branch as 𝑎𝑞 = 𝜓+(−𝑘SO𝑒𝑥 + 𝑞) and 𝑏𝑞 =
𝜓+(𝑘

SO
𝑒𝑥 + 𝑞), and ⟨𝑎𝑞=0⟩ =

√
𝑁𝑎 and ⟨𝑏𝑞=0⟩ =√

𝑁𝑏, respectively. The low energy excitations in
this region have been calculated in Ref. [9]. By
defining 𝛾†1(𝑞) = 1√

𝑁0
(
√
𝑁𝑎𝑎

†
𝑞 +

√
𝑁𝑏𝑏

†
𝑞), 𝛾†2(𝑞) =

1√
𝑁0

(
√
𝑁𝑏𝑎

†
𝑞 −

√
𝑁𝑎𝑏

†
𝑞), the mean-field Hamiltonian,

up to the order of 𝑞2, is expressed as

𝐻𝑀𝐹,1 =
∑︁
𝑞

{︁
𝐸(𝑞)𝛾†1(𝑞)𝛾(𝑞) + 𝑔𝑛0[𝛾†1(𝑞)𝛾†1(−𝑞)

+ H.c.] + 𝐸(𝑞)𝛾†2(𝑞)𝛾2(𝑞)
}︁
, (6)

where 𝐸(±𝑞) ≈ ℎ̄(𝑞2𝑥 + 𝑞2𝑧)/(2𝑀) up to the or-
der of 𝑂(𝑞3/𝑘SO). The Bogoliubov modes mixing
𝛾†1(𝑞) and 𝛾1(−𝑞) exhibit the spectrum of ℎ̄𝜔(𝑞) =√︀
𝐸𝑞(𝐸𝑞 + 2 𝑔𝑛0) ≈

√︁
ℎ̄𝑔𝑛0

𝑀

√︀
𝑞2𝑥 + 𝑞2𝑧 . This is the

phonon mode describing the overall density fluctua-
tions, which exhibits linear dispersion relation for 𝑞
in the 𝑥𝑧-plane and becomes soft for 𝑞 along 𝑒𝑦. The
𝛾2 mode represents the relative density fluctuations
between two condensates which describes spin wave
excitations. This mode remains a free particle spec-
trum 𝐸(𝑞). Both the 𝛾1,2 modes only depend on the
total condensation fraction 𝑁0. Hence, the contribu-
tion from part I does not lift the degeneracy between
different partitions of (𝑁𝐴, 𝑁𝐵) up to the quadratic
order of 𝑞.

Next we turn to the Bogoliubov spectra in part II
where 𝜓+(𝑘) is degenerate with 𝜓−(−𝑘) but not with
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𝜓+(2𝑘𝐴,𝐵 − 𝑘). The mean-field Hamiltonian reads

𝐻𝑀𝐹,2 =
∑︁
𝑘

𝜓†
+(𝑘)𝜓+(𝑘)

{︀
𝜖(𝑘) +

𝑔

2
(𝑛0 − ∆𝑛 cos𝜑𝑘)

}︀
+ 𝑔

√
𝑛𝑎𝑛𝑏

{︀
𝜓†
+(𝑘)𝜓†

−(−𝑘) cos𝜑𝑘𝑒
𝑖𝜑𝑘 +H.c.

}︀
,

(7)

where ∆𝑛 = 𝑛𝑎 − 𝑛𝑏. The Bogoliubov spectra can be
solved as 𝐻𝑀𝐹,2 =

∑︀
𝑘

{︀
𝜔(𝑘)(𝛾†3(𝑘)𝛾3(𝑘) + 1

2 )
}︀

with

𝜔(𝑘) =

√︂
𝜖𝑘(𝜖𝑘 + 𝑔𝑛0) +

𝑔2𝑛20
4

𝑓(𝑥) +
𝑔𝑛0
2
𝑥 cos𝜑𝑘,

(8)
where 𝑥 = ∆𝑛/𝑛0 and 𝑓(𝑥) = sin2 𝜑𝑘 + 𝑥2 cos2 𝜑𝑘.
The second term in Eq. (8) averages to zero and thus
the total zero-point energy in regime II depends on 𝑥2.
It reaches the minimum at 𝑥 = 0, or, 𝑛𝑎 = 𝑛𝑏, which
describes a spin-density-wave spiral in the 𝑥𝑧-plane
with the condensate wavefunction as

𝜓cond = [cos(𝑘SO𝑥), sin(𝑘SO𝑥)]𝑇 . (9)

An accurate evaluation of the zero-point energy needs
to deal with the ultraviolet divergence of the integral
over momentum space, which will be postponed to a
later publication.

The above results can be captured by an effective
Gross–Pitaevskii (GP) equation. The interaction pa-
rameters in the GP equation are renormalized from
their bare values in Eq. (1) by the zero-point motions.
Since the kinetic energy only possesses 𝑆𝑂(2) symme-
try, an extra spin-dependent term should be generated
as

𝑔′
[︁
𝑛↑(𝑟) − 𝑛↓(𝑟)

]︁2
, (10)

where 𝑛↑,↓ are particle densities of two spin compo-
nents. Obviously, 𝑔′ < 0 selects the spin-spiral con-
densate involving the 𝑠𝑧 component (e.g. Eq. (9) even
though the total 𝑠𝑧 averages to zero, while 𝑔′ > 0
selects the plane-wave condensate with spin polariza-
tion in the 𝑥𝑦-plane (e.g. 𝜓cond = 1√

2
𝑒𝑖𝑘SO

𝑥(1, 𝑖)𝑇 ).
According to the result of Eq. (9), we conclude that
𝑔′ < 0 is the case for Eq. (1). Furthermore, 𝑔′ is at the
order of 𝑔2 from the power-counting of the integral of
the zero-point energy.

Next we consider a strong confining potential
𝑉𝑒𝑥(𝑟) = 1

2𝑀𝜔2
𝑇 (𝑥2 + 𝑦2) and a relatively weak inter-

action. The condensate along the 𝑧-axis is set uniform.
In this case, the single particle energy dominates over
the interaction energy, which mixes the plane-wave
states along the low energy ring. We define the SO
energy scale 𝐸

SO
= ℎ̄𝜆𝑅/𝑙, where 𝑙 =

√︀
ℎ̄/(𝑀𝜔𝑇 )

is the length scale of the trap, and the dimension-
less parameter 𝛼 = 𝐸SO/(ℎ̄𝜔𝑇 ) = 𝑙𝑘SO . Let us now
gain some intuition in the strong SO limit 𝛼 ≫ 1.
The harmonic potential in the momentum represen-
tation becomes 𝑉𝑒𝑥 = 1

2𝑀𝜔2
𝑇 (𝑖𝜕𝑘 − 𝐴(𝑘))2, where

𝐴(𝑘) = 𝑖⟨𝜓+(𝑘)|𝜕𝑘|𝜓+(𝑘)⟩ carrying a 𝜋-flux located

at 𝑘 = (0, 0). 𝑉𝑒𝑥 quantizes the orbital motion around
the ring as

∆𝐸𝑚+ 1
2

=
1

2
𝑀𝜔2

𝑇

(︁𝑚+ 1
2

𝑘SO

)︁2

=
1

2𝛼2
ℎ̄𝜔𝑇

(︁
𝑚+

1

2

)︁2

.

(11)
The single particle ground state forms the Kramer
doublets corresponding to 𝑚+ 1

2 = ± 1
2 . Equivalently,

in the real space, due to the 2D rotational symmetry,
the wavefunctions can be denoted by the total angu-
lar momentum 𝑗𝑧 = 𝑚 + 1

2 . The ground state single
particle wavefunctions form a Kramer doublet as rep-
resented in cylindrical coordinates as

𝜓 1
2

=

(︂
𝑓(𝑟)
𝑔(𝑟)𝑒𝑖𝜑

)︂
, 𝜓− 1

2
=

(︂
−𝑔(𝑟)𝑒−𝑖𝜑

𝑓(𝑟)

)︂
, (12)

where 𝑓(𝑟) and 𝑔(𝑟) are real functions. At 𝛼 ≫ 1,
these doublet states have nearly equal weight in the
spin up and down components, i.e.,

∫︀
𝑑𝑟𝑑𝜑 𝑟|𝑓(𝑟)|2 ≈∫︀

𝑑𝑟𝑑𝜑 𝑟|𝑔(𝑟)|2, thus the spin moment averages to
zero. In the presence of weak interactions, bosons con-
dense into one of the TR doublets, the average orbital
angular momentum per particle is ℎ̄/2, i.e., one spin
component stays in the 𝑠-state and the other one in
the 𝑝-state. This is a half-quantum vortex configura-
tion spontaneously breaking TR symmetry.[16,17]

We have performed numerical calculations to con-
firm the above picture. The interaction energy scale is
defined as 𝐸int = 𝑔𝑁0/(𝜋𝑙

2𝐿𝑧), where 𝐿𝑧 is the system
size along the 𝑧-axis and the dimensionless parameter
𝛽 = 𝐸int/(ℎ̄𝜔𝑇 ). The GP equation reads{︁

− ℎ̄2∇2

2𝑀
+ ℎ̄𝜆𝑅(−𝑖∇𝑦𝜎𝑥,𝛼𝛽 + 𝑖∇𝑥𝜎𝑦,𝛼𝛽) + 𝑔𝑛(𝑟, 𝜑)

+
1

2
𝑀𝜔2

𝑇 𝑟
2
}︁
𝜓𝛽(𝑟, 𝜑) = 𝐸𝜓𝛼(𝑟, 𝜑), (13)

where 𝑛(𝑟, 𝜑) is the particle density. The parameter
values are chosen as 𝛼 = 2 and 𝛽 = 5. We show the
radial density profiles of both spin components |𝑓(𝑟)|2
and |𝑔(𝑟)|2 in Fig. 2(a). All of them oscillate, which
originate from the low energy ring structure and, thus,
are analogous to the Friedel oscillations. The spin den-
sity, defined as 𝑆(𝑟, 𝜑) = 𝜓*

𝛼(𝑟, 𝜑)𝜎𝛼𝛽𝜓𝛽(𝑟, 𝜑), exhibits
a spin texture configuration. Let us first look at its
distribution along the 𝑥-axis where the supercurrent
is along the 𝑦-direction and the spin lies in the 𝑥𝑧-
plane. We express 𝑆𝑧(𝑟, 𝜑) = 1

2 (|𝑓(𝑟)|2 − |𝑔(𝑟)|2) and
𝑆𝑥(𝑟, 𝜑) = 𝑓(𝑟)𝑔(𝑟). The radial oscillations of |𝑓(𝑟)|2
and |𝑔(𝑟)|2 have an approximate 𝜋 phase shift, which
arises from the different angular symmetries. As a
result, 𝑆 spirals as plotted in Fig. 2(b). The spin den-
sity distribution in the whole space can be obtained
through a rotation around the 𝑧-axis, which exhibits
the skyrmion configuration.

Due to the non-linearity of the GP equation, the
superposition principle does not apply. Nevertheless,
if we only keep the 𝑆𝑈(2) invariant interaction term in
the GP equation, all of the linear superpositions of the
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Kramer doublet 𝜓± 1
2

in Eq. (12) can rotate into one
another, thus are degenerate. Therefore, in real ex-
periment systems, if the initial state is prepared with
total angular momentum 𝑗𝑧 = 0, we will obtain a su-
perposition of 𝜓± 1

2
. In addition, if the initial state is

prepared with the average 𝑗𝑧 per particle ± 1
2 , say, by

cooling down from the fully polarized spin up or down
state, then 𝜓± 1

2
will be reached. If we go beyond the

Hartree–Fock level to include the zero-point motion
correction, the extra spin-dependent term of Eq. (12)
will also lift the above accidental degeneracy.
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Fig. 2. (a) The radial density distribution of spin up and
down components, and the total density distribution in
the unit of 𝑁0 at 𝛼 = 2 and 𝛽 = 5. (b) The skyrmion
type spin texture configuration plotted in the 𝑥𝑧-plane.
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Fig. 3. The phase diagram boundary of 𝛽𝑐 vs 𝛼 between
(I) the half-quantum vortex condensate and (II) spin-spiral
condensate. The transition from (I) to (II) breaks rota-
tional symmetry.

So far we have presented two different types of con-
densations. The half-quantum vortex condensate pre-
serves rotational symmetry, which is stable for weak
interaction strengths. Instead, the spin-spiral con-
densate breaks rotational symmetry, which is favored
by interactions. With fixing 𝛼, a transition between
them occurs by increasing the interaction energy scale
𝛽. We have performed the numerical study for the
critical line in Fig. 3. We calculate the expectation
value of ⟨𝐺|𝑗2𝑧 |𝐺⟩ of the condensate wavefunction. In
regime I, the condensate is chosen as the eigenstate

with 𝑗𝑧 = 1
2 (− 1

2 ) and thus ⟨𝐺|𝑗2𝑧 |𝐺⟩ = 1
4 . In regime II,

⟨𝐺|𝑗2𝑧 |𝐺⟩ deviates from 1
4 . The condensate starts to

involve high angular momentum components and thus
breaks rotational symmetry. It is qualitatively in the
same phase of spin-spiral condensate with cylindrical
boundary condition.

The recent research focus of the “synthetic gauge
fields” in cold atom systems provides a promising
method to observe the above exotic BECs.[5−8] Other
systems are the indirect excitons in 2D coupled double
quantum wells. The real space spin configurations of
exciton condensations can be detected through pho-
toluminescence from electro-hole recombination. The
recent experiment has observed spin-textures of the
coherent exciton systems which arise from SO cou-
pling and exhibit a similar pattern shown in Fig. 2.[21]

In summary, we find that bosons with spin-orbit
(SO) coupling exhibit complex-valued condensations
beyond Feynman’s no-node paradigm. The coherent
spin-spiral BEC is realized when interaction energy
is dominant, while the half-quantum vortex BEC is
stable when the trapping potential is strong. The
half-quantum vortex condensate exhibits the skyrmion
type spin-texture configuration.

C. W. thanks helpful discussions with L. Butov, L.
M. Duan, M. Fogler, J. Hirsch, T. L. Ho, L. Sham, S.
C. Zhang and F. Zhou.

Note added: After the third version of this
paper was posted on arXiv, there appeared two
experimental works[8,21] and several theoretical
investigations.[22−27]
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