Quantum spin dynamics of the axial XXZ spin chain in the longitudinal field

Congjun Wu University of California, San Diego

Ref. W. Yang, J. D. Wu, S. L. Xu, Zhe Wang, and C. Wu, submitted.

Nanjing CMT conference 07/20/2016

Outline

- Introduction to spin-1/2 spin chain doped Mott insulators.
- Spin dynamics why Bethe ansatz.
- Methodology procedure of calculation.
- Dynamic spin structure factors low, intermediate and high energy regimes.

Strong correlation physics in 1D systems

- Often exactly solvable (Bethe Ansatz): the Heisenberg model, Hubbard model, etc.
- Low energy effective theory -- Luttinger liquid.
- Fractionalized excitations holon and spinon, spin-charge separations, power-law correlations.

• However, quantum dynamics remains a challenging problem.

Spin-1/2 XXZ model

$$H_{XXZ} = J \sum_{n=1}^{N} (S_n^x S_{n+1}^x + S_n^y S_{n+1}^y + \Delta S_n^z S_{n+1}^z) - H \sum_{n=1}^{N} S_n^z$$

 Δ : anistropy due to spin-orbit coupling, h: magnetic field.

• $\Delta \leq 1$: Power-law correlation, gapless.

 $\Delta = 1 \text{ (Heisenberg): } \langle \vec{S}(0)\vec{S}(x) \rangle \sim (-)^{x} (lnx)^{1/2}/x.$

 Δ > 1 (axial): commensurate Neel long-range order at H=0, spin gapped.

Field-induced incommesurability \rightarrow gapless above $h_c(\Delta)$.

<u>Relation to doped Mott insulator $\Delta > 1$ </u>

- Spin- $\uparrow \rightarrow$ vacuum, spin- $\downarrow \rightarrow$ hard-core boson.
- Neel order $\leftarrow \rightarrow$ spin gap magnetization $\leftarrow \rightarrow$
 - CDW $\leftarrow \rightarrow$ charge gap of hard core bosons doping incommensurability $\leftarrow \rightarrow$ quantum melting of CDW

Experimental systems

Screw chain consisting of CoO_6 octahedra running along the crystalline *c*-axis

$$SrCo_2V_2O_8$$

$$H = J \sum_{n=1}^{N} \left\{ S_n^x S_{n+1}^x + S_n^y S_{n+1}^y + \Delta (S_n^z S_{n+1}^z - \frac{1}{4}) \right\} - g\mu_B h \sum_{n=1}^{N} S_n^z$$

• ESR experiment: THZ light along the *c*-axis. $S^{-+}(q, \omega)$ and $S^{+-}(q, \omega)$ detected for $q = 0, \pm \frac{\pi}{2}, \pi$.

Wang, Zhe, M. Schmidt, A. K. Bera, A. T. M. N. Islam, B. Lake, A. Loidl, and J. Deisenhofer, PRB 91, no. 14 140404 (2015).

Why Bethe Ansatz?

Question to address : spin dynamics over the low, intermediate and high frequency regimes.

- Exact diagonalization: very small size.
- **TEBD:** difficult to handle gapless systems.
- **QMC**: difficult to handle real frequency.
- **Perturbative method:** lacking small parameter.
- Luttinger liquid: only applies at low energy; difficult to manipulate transverse response

Dynamic spin structure factor

• Real-time spin correlation:

$$\langle G|S_i^a(t)S_j^{\overline{a}}(t')|G\rangle$$
 a=+,-,z; $S_i^{\pm} = S_i^x \pm iS_i^y$

• Fourier transform – (q, ω) :

$$S^{a\bar{a}}(q,\omega) = 2\pi \sum_{\mu} \left| \left\langle G \left| S_q^a \right| \mu \right\rangle \right|^2 \delta(\omega - E_{\mu} + E_{GS})$$

propto differential cross sections in inelastic neutron, ESR

Dominant excitatoins

• Bethe ansatz approach:

$$S^{\alpha \overline{\alpha}}(q,\omega) = 2\pi \sum_{\mu} |\langle GS|S_q^{\alpha}|\mu\rangle|^2 \delta(\omega - E_{\mu} + E_{GS})$$

• Dominant excitations:

 S^{-+} : scattering states (real momenta) – psinon pairs ($1\psi\psi$, $2\psi\psi$)

 $S^{+-} \begin{cases} \text{ scattering states: psinon-antipsinon pair } (1\psi\psi^*, 2\psi\psi^*) \\ \text{ bound (string) states: 2, 3-strings } (1\chi^{(2)}R, 1\chi^{(3)}R) \end{cases}$

 S^{zz} scattering states (real momenta) -- psinon anti-psinons $(1\psi\psi^*, 2\psi\psi^*)$ bound states: 2-string states $(1\chi^{(2)}R)$

• Dominance of selected excitations checked $\leftarrow \rightarrow$ exact sum rules.

Sum rules

• Integrated intensity: $c_a = \pm 1, 0$, for $a = \pm, z$.

$$R_{a\bar{a}} = \frac{1}{N} \sum_{q} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} S^{a,\bar{a}}(q,\omega) = \frac{1}{4} + \frac{m}{2}c_a$$

• Transverse first frequency moment (FFM).

$$W_{\perp}(q) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\omega \left(S^{+-}(q,\omega) + S^{-+}(q,\omega) \right) = \alpha_{\perp} + \beta_{\perp} \cos q$$
$$\alpha_{\perp} = -e_0 - \Delta \frac{\partial e_0}{\partial_{\Delta}} + mh \qquad \beta_{\perp} = (2 - \Delta^2) \frac{\partial e_0}{\partial_{\Delta}} + \Delta e_0$$

• Longitudinal first frequency moment (FFM).

$$W_{\parallel}(q) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \ \omega S^{zz}(q,\omega) = (1 - \cos q)\alpha_{\parallel} \quad \alpha_2 = -e_0 + \Delta \frac{\partial}{\partial_{\Delta}} e_0$$

Bethe-Gaudin-Takahashi (BGT) equations

- Reference state: all spins up. Spin-down particles act as particles.
- String states: multi-particle bound states with complex rapidities.

Bethe quantum numbers					
$-\frac{M-1}{2} - S^{z} < I_{\alpha}^{(n)} < \frac{M-1}{2} + S^{z}$: N=32, M=8 (spin-down).					
-	$-\frac{23}{2}$	$-\frac{7}{2}$ $-\frac{3}{2}$	$\frac{1}{2}$	$\frac{5}{2}$ $\frac{7}{2}$	$\frac{23}{2}$
Ground state:	0000000				0000000
1 $\psi\psi$ state:	0000000	φ) (0000000
1 $\psi\psi^*$ state:	ψ^*	γ ψ			0000000
					unbound particles
$1\chi^{(2)}R$ state:	0000000				000000
	0000	0000		0000	0

Length-two string

$$\begin{aligned} \frac{\text{Determinant Formulas for Form Factors}}{|\langle \mu | S_q^- | \lambda \rangle|^2} &= N \delta_{q,q\{\lambda\}-q\{\mu\}} |\sin(i\eta)| \frac{\Pi_{j=1}^{M+1} |\sin(\mu_j - i\eta/2)|^2}{\Pi_{j=1}^M |\sin(\lambda_j - i\eta/2)|^2} \\ \Pi_{j>k=1}^{M+1} |\sin^2(\mu_j - \mu_k) - \sin^2(i\eta)|^{-1} \Pi_{j>k=1}^M |\sin^2(\lambda_j - \lambda_k) - \sin^2(i\eta)|^{-1} \\ \frac{|\det H^-|^2}{|\det \Phi(\{\mu\})| |\det \Phi(\{\lambda\})|} \end{aligned}$$

V. E. Korepin *Commun. Math. Phys.* 86, 391 (1982)
J. M. Maillet and J. Sanchez De Santos *arXiv: q-alg/9612012* (1996)
N. Kitanine, J. M. Maillet and V. Terras *Nucl. Phys. B* 554, 647 (1999)

• For string states, the formulas need to be regularized.

J. Mossel, and J-S Caux New J. Phys., 12.5 (2010)

• String deviations can be treated in exact manner.

R Hagemans, and J-S Caux. J. Phys. A 40.49 (2007)

Algorithm for calculating DSF

Transverse DSF S^{+-} , S^{-+} 2m = 0.1des Cloiseaux-Pearson (DCP) S^{-+} mode, h=0, $\Delta = 1$ $\Delta = 2$ $\hbar\omega/J$ ε S^{+-} , S^{-+} , S^{zz} h breaks TR S^{+-} symm. 2.7. Three-string states Ι. Two-string $3\pi/2$ 2π () $\pi/2$ π states states with real momenta

Transverse DSF - S^{+ -}

2m = 0.4

- Low energy: collective Larmor mode.
- Magnetic field induced incommensurability.

$$\frac{1}{i\hbar}[S^{+-}(q=0),H] = hS^{+-}(q=0)$$
 at $\Delta = 1$

2 and 3-string states: excitations see the gapped Neel ordered background.

 π

Transverse DSF - S⁻⁺

• Analogy of the des Cloiseaux-Pearson mode

2m = 0.1

 S^{-+} : N=200, $\langle \mu | S^+ | G \rangle$ $\Delta = 2$ $\hbar\omega/J$ π $q = 2m\pi$ $|G\rangle \rightarrow |\mu\rangle$: flip \downarrow to \uparrow Hubbard chain at half-filling \rightarrow Heisenberg

<u>Transverse DSF – Evolution with magnetization</u>

Comparison with sum rules – transverse DSF

• Saturation of sum rule of integrated intensity: (a) for S^{-+} , (b) for S^{+-} .

Green: $1\psi\psi^*$ Blue: $2\psi\psi^*$ Red: two-string states Black: three-string states

• Momentum-resolved: (a) for 2m=0.1, (b) for 2m=0.4, (c) for 2m=0.7.

Pink: S^{-+} Blue: real states in S^{+-} Red: two-string states in S^{+-} Black: three-string states in S^{+-}

 \mathcal{A}

Evolution of DSF intensity at specific momenta

Pink: S^{-+} Blue: real states in S^{+-} Red: two-string states in S^{+-} Black: three-string states in S^{+-}

String stats occupy regions of higher energies, and the peaks are more smeared.

Longitudinal DSF $S^{zz}(q, \omega)$ - intensity plot $\hbar\omega/J$ $\hbar\omega/J$ $\hbar\omega/J$ π π π 2m=0.3 2m=0.1 2m=0.5 $\hbar\omega/J$ $\hbar\omega/J$ π π 2m=0.7 2m=0.9

<u>Comparison with sum rules for longitudinal DSF</u>

Saturation of momentum-integrated intensity

momentum-resolved intensity

2m=0.1

2m=0.4

2m=0.7

Blue: $1\psi\psi^*$ Red: $2\psi\psi^*$ Black: two-string states

<u>Summary</u>

- Dynamic spin structure factor S^{-+} , S^{+-} and S^{zz} for the axial XXZ model.
- Dominant excitations identified-- excellent agreement with sum rules.
- Low energy gapless, magnetic-field-induced incommensurability

Intermediate and high energies -- gapped Neel background

Derivation of determinant formulae

 $\langle \mu | S_n^a | \lambda \rangle = \frac{\langle \Psi(\{\mu_i\}) | S_j^a | \Psi(\{\lambda_j\}) \rangle}{\sqrt{\langle \Psi(\{\mu_i\}) | \Psi(\{\mu_i\}) \rangle} \cdot \sqrt{\langle \Psi(\{\lambda_i\}) | \Psi(\{\lambda_i\}) \rangle}}$ Quantum inverse problem: $\sigma_i^- = \prod_{i=1}^{i-1} (A+D)(\xi_\alpha) \cdot B(\xi_i) \cdot \prod_{i=1}^N (A+D)(\xi_\alpha),$ $\sigma_i^+ = \prod_{i=1}^{i-1} (A+D) \left(\xi_\alpha\right) \cdot C(\xi_i) \cdot \prod_{i=1}^{N} (A+D) \left(\xi_\alpha\right),$ $\sigma_i^z = \prod_{i=1}^{i-1} (A+D) \left(\xi_\alpha\right) \cdot (A-D)\left(\xi_i\right) \cdot \prod_{i=1}^{N} (A+D) \left(\xi_\alpha\right)$ $\alpha = 1$ $\alpha = i + 1$ F-basis: $\widetilde{D}_{1...N}(\lambda;\xi_1,\ldots,\xi_N) \equiv F_{1...N}(\xi_1,\ldots,\xi_N) \ D_{1...N}(\lambda;\xi_1,\ldots,\xi_N) \ F_{1...N}^{-1}(\xi_1,\ldots,\xi_N)$ $= egin{array}{ccc} N \otimes \ i=1 \end{array} egin{pmatrix} b(\lambda,\xi_i) & 0 \ 0 & 1 \end{pmatrix}_{\scriptscriptstyle \Gamma \cdot 1}.$ $\widetilde{B}_{1\dots N}(\lambda) = \sum_{i=1}^{N} \sigma_i^- c(\lambda,\xi_i) \underset{j\neq i}{\otimes} \left(\begin{array}{cc} b(\lambda,\xi_j) & 0\\ 0 & b^{-1}(\xi_j,\xi_i) \end{array} \right)$

Algebraic Bethe Ansatz

Yang-Baxter Equation:

 $R_{12}(\lambda_1, \lambda_2)R_{13}(\lambda_1, \lambda_3)R_{23}(\lambda_2, \lambda_3) = R_{23}(\lambda_2, \lambda_3)R_{13}(\lambda_1, \lambda_3)R_{12}(\lambda_1, \lambda_2)$

Monodromy matrix:

$$\mathcal{T}(\lambda) = R_{0n}(\lambda, i\frac{\eta}{2}) \dots R_{02}(\lambda, i\frac{\eta}{2}) R_{01}(\lambda, i\frac{\eta}{2}) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix}_{[0]}$$

Transfer matrix and XXZ Hamiltonian:

$$T(\lambda) = \text{Tr}\mathcal{T}(\lambda)$$
 $H = \sin(i\eta)\frac{d}{d\lambda}\ln T(\lambda)|_{\lambda=i\eta/2} + \text{const.}$

Magnon creation operator:

$$\Psi(\lambda_1, \lambda_2, ..., \lambda_r) = B(\lambda_1) B(\lambda_2) ... B(\lambda_r) |\uparrow\uparrow ... \uparrow\rangle$$

L. A. Takhtadzhan and L. D. Faddeev Russ. Math. Sur. 34,11 (1979)