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The reports in this monograph have shown great enthusiasm and exuberance for 
the unification of various interactions through the concept of gauge fields. I would 
like to emphasize a point that has not yet been explicitly stated by any of the other 
authors: gauge fields are deeply related to some profoundly beautiful ideas of 
contemporary mathematics, ideas that are the driving forces of part of the 
mathematics of the last 40 years. Recalling the relationship between physics and 
mathematics in earlier periods, general relativity and Riemannian geometry, 
quantum mechanics and Hilbert space, it is all too obvious that physicists may again 
be zeroing in on a fundamental new secret of nature. 

The mathematical development referred to above is the theory of fiber bundles. 
It may appear, a priori, that this theory is quite abstract and is unrelated to the 
structure of the physical world. To show that this is not true, we will start with a 
simple demonstration that electromagnetism and quantum mechanics together lead 
naturally to “nontrivial fiber bundles.” We will then trace the early history of the 
gauge field concept and its generalization, emphasizing three related but different 
conceptual motivations, each of which leads to a general formulation of gauge 
fields. 

MAGNETIC MONOPOLES AND NONTRIVIAL BUNDLES 

The magnetic monopole is the magnetic charge. Though the idea of magnetic 
monopoles probably was discussed in classic physics early in the history of elec- 
tricity and magnetism, modern discussions of this concept date back only to 1931, 
when the important paper of Dirac’ pointed out that magnetic monopoles in 
quantum mechanics exhibit some extra and subtle features. In particular, with the 
existence of a magnetic monopole of strength g, electric charges and magnetic 
charges must necessarily be quantized, in quantum mechanics. We will give a new 
derivation of this result below. 

If  one wants to describe the wave function of an electron in the field of a 
magnetic monopole, it is necessary to find the vector potential A around the 
monopole. Dirac chose a vector potential that has a string of singularities. The 
necessity of such a string of singularities is obvious if  we prove the following 
theorem2 : 

Theorem: Consider a magnetic monopole of strength g f O  at the origin, and 
consider a sphere of radius R around the origin. There does not exist a vector 
potential A for the monopole magnetic field that is singularity free on the sphere. 

This theorem can be proved easily in the following way. I f  there were a 
singularity-free A, we would consider the loop integral 
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Yang: Monopoles, Fiber Bundles & Gauge Fields 87 

around a parallel on the sphere, as indicated in FIGURE 1 .  According to  Stoke’s 
theorem, this loop integral is equal t o  the total magnetic flux through the cap a: 

A,&, =Q,. (1) 
$) 

Similarly, we can apply Stoke’s theorem to cap @, obtaining 

Here, Q, and Q, are  the total upward magnetic fluxes through caps 1y and @, both of 
which are bordered by the parallel. Subtracting these two equations, we obtain 

O = Q A  -QE), (3) 

which is equal to the total flux out of the sphere, which, in turn, is equal to  47rgZO. 
We have thus reached a contradiction. 

Having proved this theorem, we observe that R is arbitrary. Thus, one con- 
cludes that there must be a string(s) of singularities in the vector potential t o  
describe themonopole field. Yet, we know that the magnetic field around the 
monopole is singularity free. This fact suggests that the string of singularities is not 
a real physical difficulty. Indeed, the situation is reminiscent of the problem that 
one faces when one wants to find a parametrization of the surface of the globe. The 
coordinate system that we usually use, latitude and longitude, is not singularity free. 
It has singularities a t  the north pole and at  the south pole. Yet, the surface of the 
globe is evidently devoid of singularities. We deal with this situation usually in the 
manner illustrated in FIGURE 2. We consider a rubber sheet with nicely defined 
coordinates and stretch and wrap it downward onto the globe, so that it covers more 
than the northern hemisphere. Similarly, we consider another rubber sheet with 
nicely defined coordinates and stretch and wrap it upward, so it covers more than 

FIGURE 1. A sphere of radius R with a magnetic 
monopole at its center. The parallel divides the 
sphere into two caps a and 8. 

FIGURE 2. Method of parametrizing the globe. 
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the southern hemisphere. We now have a double system of coordinates to  describe 
the points on the globe. The description is analytic in the domain covered by each 
sheet, if the globe had experienced n o  violence in the stretching and wrapping. In 
the overlapping region covered by both sheets, one has two coordinate systems that 
are transformable into each other by a n  analytic nonvanishing Jacobian. This 
double coordinate system is an entirely satisfactory way to  parametrize the globe. 

Following this idea, we will now attempt to  exorcise the string of singularities in 
the monopole problem by dividing space into two regions. We will call the points 
outside of the origin, above the lower cone in FIGURE 3, region R,. Similarly, we 
will call the points outside of the origin, under the upper cone, Rb4 The union of 
these two regions gives all points outside of the origin. In R,, we will choose a 
vector potential for which there is only one nonvanishing component of A,  the 
azimuthal component: 

It is important to notice that this vector potential has no singularities anywhere in 
R,. Similarly, in R b ,  we choose the vector potential 

which has no singularities in Rb. It is simple to prove that the curl of either of these 
two potentials gives correctly the magnetic field of the monopole. 

In the region of overlap, because both of the two sets of vector potentials share 
the same curl, the difference between them must be curlless and therefore must be a 
gradient. Indeed, a simple calculation shows 

- (A,,)b =spa, where CY = 2g9, (6)  

where C$ is the azimuthal angle. The Schrbdinger equation for an electron in the 
monopole field is thus 

FIGURE 3. Division of space outside of monopole 
g into overlapping regions R, and Rb. 
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Yang: Monopoles, Fiber Bundles & Gauge Fields 89 

where J/, and J.b are, respectively, the wave functions in the two regions. The fact 
that the two vector potentials in these two equations are different by a gradient tells 
us, by the well-known gauge principle, that J/, and J.,, are relaied by a phase lactor 
transformation 

or 

Around the equator, which is entirely in R,, 4, is single valued. Similarly, 
because the equator is also entirely in Rh,  $,, is single valued around the equator. 
Therefore, S must return to its original value when one goes around the equator. 
That fact implies Dirac’s quantization condition: 

2q=integer. (9) 

HILBERT SPACE OF SECTIONS 

Two J.s, J., and $b, in R, and Rb, respectively, that satisfy the condition of 
transition (Equation 8) in the overlap region are called a section by the 
mathematicians. We see that around a monopole, the electron wave function is a 
section and not un ordinury function. We will call these functions wave sections. 

Different wave sections (which belong to different energies, for example) 
clearly satisfy the same condition of transition (Equation 8) with the same q. Thus, 
we need to develop the concept of a Hilbert space of sections. To develop this 
concept, we define the scalar product of two sections €, 7 (for thesume q) by 

(The question of convergence at r= 0 and r= o, is ignored here.) Notice that in the 
overlap 

(va)*ta =(qb)*tbs (11) 

so that Equation 10 is well defined. 
It is clear that if € is a section, x€ is also a section, because 

x€, = S(X€b). 

Thus, x is an operutor in the Hilbert space of sections. Similarly, we prove that the 
components of (p - eA) are operators, but those of p are not. Furthermore, x and 
p - eA are both Hermitian. 
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Following F i e r ~ , ~  we will now attempt to construct angular momentum 
operators. Define 

(12) 
qr 
r 

L = r x  (p-eA) - -. 

It is clear that L , ,  L,, and L, are Hermitian operators on the Hilbert space of 
sections. The following commutation rules can be easily verified: 

[L,,xl =0,  [L,,yl =iz, [L,,zl = - iy, 
[ L ,  9, - eA, I = 0, 
[L!,s,-eA,l  = - i ( p y - e A y ) .  

1 L, .pY - eA, 1 = i (p,  - eA,), 

It follows from these commutation rules that 

(13) 

[ L, ,L,, ] = iL,, etc. (14) 

Equation 13, together with its consequence (Equation 14), show that L , ,  L , ,  and 
L, are the angular momentum  operator^.^ We emphasize that neither the Hilbert 
space nor these operators possess any “singularities.” (The singularities of A, and 
A ,  are not real singularities, because they occur outside of R,  and R b ,  respectively.) 

MONOPOLE HARMONICS Yq,I,, 

Because [s, L ]  =0, we can diagonalize 3 and study operators L for fixed #. 
That is, we will study sections of the form 

w -&!, 
where ( is a section dependent only on angular coordinates 0 and +. L operates, 
then, on “angular sections.” 

Equation 14 shows that [L2  ,L, ] = 0. Simultaneous diagonalization produces 
the familiar multiplets with eigenvalues I (  I+ 1) and m, 

L2Yq.l.m =l(j+1)Yq,1,m; L,Yq,l,m =mYq,l,m, (15) 

where I=  0, 1/2, 1, . . . , and for each value of I,m ranges from - I  to + I  in integral 
steps of increment. Yq,l,m are eigensections, which are called3 monopole har- 
monics. The allowed values of I and m are 

I= Iql, Iql+l ,  Iql+2, .  , . , m= -I, - l + l , .  . . , I .  (16) 

Each of these I,m combinations occurs exactly once. One can choose each Y 
normalized, so that 

ji sinede I Yq,,,, I *d+ = 1. (17) 
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Yang: Monopoles, Fiber Bundles & Gauge Fields 91 

Different Yq,l,,, (for fixed q) are orthogonal, a fact one easily proves in the usual 
way from Equation 15. 

The explicit values of Yq,],,, in terms of Jacobi polynomials were given in 
Reference 3. They were obtained from Equation 15, in exactly the same way one 
usually obtains the spherical harmonics Y,,,, . Indeed, 

The collection of Yq,],,, for fixed q and values of I,m given by Equation 16 form3 a 
complete orthonormal set of angular sections. 

Each (Yq.,.,,), is analytic in R,;  so is (Yq,l,,,)b in R , .  Thus, all of the discon- 
tinuities, cusps, and singularities in A and in $ are removed in a very smooth way. 

Remarks: ( A )  I t  is important to realize that the above-described way of using 
( A  ) a  and ( A  ) b together to describe the magnetic field of a monopole has an ad- 
ditional advantage: It gives the magnetic field H correctly everywhere. In older 
papers, one often used a single A with a string of singularities. Because, by 
definition. 

v * ( v  x A ) = O ,  

the magnetic field described by v x A must have continuous flux lines. Thus, its 
flux lines consist of the dotted lines of FIGURE 4, plus the bundle of lines described 
by the solid line, so as  to make the net flux at the origin zero. Thus, v x A does 
not correctly describe the magnetic field of the monopole, a point already em- 
phasized by Wentzel.’ 

(B) For ordinary spherical harmonics, there are many important theorems, such 
as the spherical harmonics addition theorem and the decomposition of products of 
spherical harmonics by use of Clebsch-Gordon coefficients. These theorems can be 
generalized to  monopole harmonics.6 

(C) In the approximately 40 years since Dirac’s first paper on monopoles, the 
subject has been beset with difficulties due to singularities. Now that we have 
removed the difficulty of string singularities through the introduction of the 
concept of sections, it is revealed that there is yet another difficulty, which we will 
call the Lipkin-Weisberger-Peshkin’ difficulty. This difficulty occurs8 in studying 
the radial wave function of a Dirac electron around a monopole (TABLE 1). It can 
be removed through the introduction of a small extra magnetic moment for the 
Dirac electron. 

(D) It is instructive to go back to the reasoning represented in FIGURE 1 and 
attempt to  repeat the steps for the combined A,, Ab description of the magnetic 
field. Choose the parallel to  be the equator. Then, 

FIGURE 4. Magnetic flux lines due to A. Because 
v * (  v x A)=O, flux lines are everywhere con- 
tinuous. Therefore, there is “return flux” along the 
solid line. 
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TABLE I 
DIFFICULTIES AND METHODS OF WLUTlON FOR STUDYING THE MOTION OF A 

DIRAC ELECTRON IN THE FIELD OF A MAGNETIC MONOPOLE 

Angular Wave Function 
Difficulty of string singularity, 
solved by introducing sections 

Radial Wave Function 
Lipkin-Weisberger-Peshkin difficulty, 
solved by introducing extra magnetic moment 

which is, by Equation 6, equal to the increment of (Y around the equation, that is, 
2g(2r) = 4xg. 

We have arrived at an identity. I have provided this simple argument because it 
is exactly the gist of the proof of the famous Gauss-Bonnet-Allendoerfer-WeiI- 
Chern theorem and the later Chern-Weil theorem, which play seminal roles in 
contemporary mathematics. 

In fact, gauge fields, of which electromagnetism is the simplest example, are 
conceptually identical to some mathematical concepls in fibcr bundle I hcory. 
TABLE 2 gives translations for the terminologies used by physicists, on the one 
hand, and mathematicians, on the other. We notice that,  in particular. Dirac’s 
monopole quantization (Equation 9) is identical to the mathematical concept of 
classification of U( 1) bundles according to the first Chern class. 

The last two entries of TABLE 2 identify electromagnetism.with and without 
magnetic monopoles with connections to trivial and nontrivial U(1) bundles. Why 
is electromagnetism without monopoles “trivial”? We cab gain some un- 
derstanding by looking at a paper loop and a Moebius strip (FIGURE 5). If they are 
cut along the dotted lines, each would break into two pieces. Looking at the 
resultant pieces, we cannot differentiate between the two. The paper loop and the 
Moebius strip are different only in the way the resultant pieces are put together. For 
the latter, a twist of one of the resuitant pieces is necessary. The difference between 
a trivial and a nontrivial bundle resides only in the processes of joining: for the 
nontrivial bundle, a twist is needed in the joining process. In the case of elec- 
tromagnetism, the joining process is given by Equation 7 or 8. If there is no 
monopole, S= 1, and the bundle is trivial. If there is a monopole, S f  1, and the 
bundle is nontrivial. (We may describe the nontrivial nature by saying that a twist 
of phase is necessary.) 

EARLY HISTORY OF THE CONCEPT OF GAUGE FIELDS 

Einstein’s discovery of the relationship between gravitation and the geometry of 
space-time stimulated work by many great geometers: Levi-Civita, Cartan, Weyl. 
and others. In his book, Raum, Zeit und MQterie (space, time and matter), Wey19 
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TABLE 2 
TRANSLATION OF TERMINOLOGIES 

Gauge Field Terminolonv Bundle Terminology 

Gauge (or global gauge) 
Gauge type 
Gauge potential /J: 
S(Equation 8) 
Phase factor 8 
Field s t r eng thE  
Source (electric) 8 
Electromagnetism 
Isotopic spin gauge field 
Dirac’s monopole quantization 

Electromagnetism without monopole 
Electromagnetism with monopole 

principal coordinate bundle 
principal fiber bundle 
connection on a principal fiber bundle 
transition function 
parallel displacement 
curvature 

connection on a U, bundle 
connection on a SU2 bundle 
classification of UI bundle according 

connection on a trivial Ul bundle 
connection on a nontrivial U bundle 

? 

to first Chern class 

FIGURE 5 .  Examples of trivial (leff) 
and nontrivial (or Moebius strips, right) 
fiber bundles. 

attempted to unify gravity and electromagnetism through the use of the geometric 
concept of a space-time-dependent scale change. The basic idea is summarized 
below. 

scalechange I f 

In the summary above, the first line indicates how the scale changes in going from a 
point xp to a neighboring point xp + d r p  of space-time. The second line shows how 
a function of space-time changes as a result of the change in argument from x” to x” 
+ d x p .  Finally, if the scale change is applied to the function f ,  one obtains at 
x’ + du” the product 

Expanding to first order in the small displacement gives the last line in the sum- 
mary. The increment in f is, then, 

(a/axr + s,, ) fdrr .  (18) 
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94 Annals New York Academy of Sciences 

Weyl tried to incorporate electromagnetism into a geometric theory by iden- 
tifying the vector potential A, with a space-time-dependent S, , generating scale 
changes as described. This attempt proved, however, unsuccessful. 

In 1925, the concepts of quantum mechanics emerged. A key concept in 
quantum mechanics is the replacement of the momentum p, in the classic 
Hamiltonian by an operator: 

For a charged particle, the replacement is 

In 1927, Focklo observed that one could base quantum electrodynamics on this 
operator. London1’ pointed out the similarity of Fock’s to Weyl’s earlier work. 
Comparing Equations 18 and 19, Weyl’s identification would be correct if one 
makes the replacement 

S,- -i(elhc)A,. 

In other words, instead of a scale change 

(1 +S,dX,), 

one considers a phase change 

[ 1 - i (  elhc) A, dxfi ] = exp [ - i (  e/hc) A, dx, 1, (20) 

which can be thought of as an imaginary scale change. Weyl put all of these ex- 
pressions together1* in a remarkable paper (which also first discussed the two- 
component theory of a spin-112 particle) in which the transformation of the elec- 
tromagnetic potential 

A, -A; =A, +a,a (second-type transformation), (21) 

and the associated phase transformation 

(L- $ ‘ = (Lexp(iea/hc) (first-type transformation), (22) 

of the wave function of a charged particle were explicitly discussed.I3 
Although the phase change factor (Equation 20) is no longer a scale factor, Weyl 
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kept the earlier terminology’t that he used in 1918-20 and called both the trans- 
formation (Equation 20) and the associated phase change of wave functions 
“gauge” transformations. 

Generalization: With the discovery of many new particles after World War 11, 
physicists explored various couplings between the “elementary particles.” Many 
possible couplings can be written down, and the desire to find aprinciple to choose 
among the many possibilities was one of the motivations”J8 for an attempt to 
generalize Weyl’s gauge principle for electromagnetism. The point here is that for 
electromagnetism, the gauge principle determines, all at once, the way in which any 
particle of charge qe, a conserved quantity, serves as a source of the electromagnetic 
field. Because the isotopic spin I is also conserved, a natural question was, “Does 
there exist a generalized gauge principle that determines the way in which I serves as 
the source of a new field?” 

Another motivation for an attempt at generalization is the observation that the 
conservation of I implies that the proton and the neutron are similar. Which to call 
a proton or, indeed, which superposition of the two to call a proton, is a convention 
that one can select arbitrarily (if the electromagnetic interaction is switched off). If 
one requires this freedom of choice to be independent for observers at different 
space-time points, that is, if one requircs localized freedom of choice, one is led to a 
generalization of the gauge principle. 

These two motivations were. of course, intertwined and led quite naturally to the 
formulationI8 of non-Abelian gauge fields. 

A third approach19 to a generalized gauge principle came later and is the “in- 
tegral formalism” of gauge fields. It starts from the observation thet the gauge 
principle of Weyl deals with a phase factor (Equation 20) between two neighboring 
points. Along a path from space-time point A to space time point B, the resultant 
phase factor is 

B 
aBA =exp[ - i (e lhc)  A , d P ] ,  

which is path dependent, that is, nonintegrable. (Diracl had already discussed, in 
1931, “non-integrable phases for wave functions.”) If one analyzes the meaning of 
electromagnetism in quantum mechanics, especially through a discussion of the 
Bohm-Aharonov experiment,20t one reaches the conclusion2 that “electromag- 
netism is the gauge invariant manifestation of a non-integrable phase factor.” 

Once this conclusion is reached, a natural generalization is to replace a 

The idea of scale invariance, discussed in Reference 9, was developed c d i c r .  in 1918-19, 
in three papers by Weyl (submitted on May 2 and June 8, 1918 and on January 7,1919). In the 
first two  of them, he used the term Masssrub Invariant (see Reference 14); in the third paper, 
he settled on the term Eich fnuarianz. 

The English translation of Eich fnvuriunz was “calibration invariance” in Henry Brose’s 
1921 translation of the fourth edition of Weyl’s book Space, Time andMuffer” (republished 
by Dover). The translation “gauge invariance” was not used, 1 suspect, until after Weyl’s 
1929 article.” It appeared (probably not for the first time) in Dirac’s article’ of 1931. 

t The transformation (Equation 21) that leaves field strengths unchanged must have been 
known in the nineteenth century. It did not, however, seem to have a specific name. In the 
many editions of Foppl-Abraham-Becker-Sauter on electricity and magnetism, which started 
in 1894, Eich or “gau e” was not used until the 1964 English translation Electromagnetic 
Fieldsundlnf~f*cfionsP16 in which the term “Lorentz gauge” was inserted in a footnote. 

$ The experiment was performed by( Ii;unihcr\. ” 
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“nonintegrable phase factor” by a “nonintegrable element of a Lie group.” One 
thus obtains naturally an integral formalism of gauge fields. 

We illustrate in FIGURE 6 the three approaches to the general concept of gauge 
fields. The three approaches are, of course, deeply interrelated, because phases, 
symmetry, and conservation laws are themselves related. 

It is my opinion that, conceptually, the integral formalism of gauge fields is to 
be preferred to the earlier differential approach. The integral formalism has more 
structure and more meaning. It brings to the fore problems of global topology not 
easily formulated in terms of the differential approach. For example, in our earlier 
discussion of the field around the magnetic monopole, we did not introduce the 
concept of nonintegrable phase factors. We did not run into any conceptual dif- 
ficulties, only because we had not raised such questions as a rotation of the coor- 
dinate axes. As soon as such questions are raised, it becomes apparent that the 
integral formalism is more superior, because it specifies that intrinsic meaning is 
unrelated to the choice of coordinate axes and of regions R, and Rb . 

Differential formalism, however, is used in computing. (The relationship 
between differential and integral formalisms is quite similar to that between Lie 
algebras and Lie groups.) In fact, a gauge-Riemannian calculus has been 
developed.2’ 

Electromagnetism is, as we have seen, a gauge field. That gravitation is a gauge 
field is universally accepted, although exactly how it is a gauge field is a matter still 
to be ~larified.‘~.” Whether weak and strong interactions are also due to gauge 
fields is a matter that has been intensively studied in recent together with 
the question of the renormalizability of non-Abelian gauge fields.”# If one may 
borrow a term used by the biologists, one would say that there is gradually forming 
a “dogma” that all interactions are due to gauge fields. Because of the 
mathematical difficulties involved in the solution of quantized gauge fields, 

NONINTEGRABLE 
PHASE 

\ 
integral 
formalism 

/ \ 
GAUGE 
FIELD 

\ 

CONSERVED QUANTITY 

SYMMt I m i  
SOURCE OF FIELD ---- 

FIGURE 6. Three motivations that led to the concept of gauge fields. 

0 Abers and Leez3 also contains a review of earlier works of R. P. Feynman, L. D. Faddeev, 
V. N. Popov, and M. T. Veltman. 
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however. I believe it will be a long time before the question can be definitively 
answered as to exactly how strong and weak interactions are due to gauge fields. 

Reflecting on how the concepts basic to gauge fields were formulated by 
physicists, we see that at every step, the development was tied to the problem of the 
conceptual description of the physical world. Firstly, Maxwell equations originated 
with the four fundamental experimental laws of electricity and magnetism and with 
Faraday’s introduction of the concepts of field and flux. Maxwell’s equations and 
the principles of quantum mechanics led to the idea of gauge invariance. Attempts 
to generalize this idea, motivated by physical concepts of phases, symmetry, and 
conservation laws, led to the theory of non-Abelian gauge fields. That non-Abelian 
gauge fields are conceptually identical to ideas in the beautiful theory of fiber 
bundles, developed by mathematicians without reference to the physical world, was 
a great marvel to me. In 1975, I discussed my feelings with Chern, and said, “This 
is both thrilling and puzzling, since you mathematicians dreamed up these concepts 
out of nowhere.” He immediately protested, “No, no, these concepts were not 
dreamed up. They were natural and real.” 
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