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Using the ideas developed in a previous paper which are borrowed from the mathe- 
matics of fibre bundles, it is shown that the wave function ~ of a particle of charge Ze 
around a Dirac monopole of strengthg should be regarded as a section. The section is 
without discontinuities. Thus the monopole does not possess strings of singularities in the 
field around it. The eigensections of the angular momentum operators are monopole 
harmonics which are explicitly exhibited. 

1. Introduction 

In this paper,  and a later on classical Lagrangian dynamics,  we s tudy the for- 

mula t ion  of  Dirac 's  magnet ic  monopo le s  wi thou t  strings. The two papers are, how- 

ever, logically and technical ly  independent ,  and may  be read separately.  

Very  soon after  Dirac's original paper [1 ], Tamm [2] studied the wave funct ion  

of  an electr ical ly charged particle around a magnet ic  monopole .  He in t roduced  "gen. 

eralized spherical ha rmonics"  for such wave functions.  These harmonics  possess dis- 

cont inui t ies  or cusps. Later Fierz [3] discussed these harmonics  f rom a different  
po in t  o f  view t . 

Since the space around a m o n o p o l e  is spherically symmetr ical  and wi thou t  sin- 

gularities, the wave func t ion  of  a pos i ton  or e lectron around the m o n o p o l e  s h o u M  

have no singularities. An examina t ion  o f  this quest ion using the concepts  developed 

* Work supported in part by the US ERDA under contract no. E(11-1)-3227. 
** Work supported in part by the National Science Foundation under grant MPS74-13208 A01. 

There are many papers after the publication of refs. [1-3] dealing with magnetic monopoles 
and generalized spherical harmonics which are more or less similar to the essence of these 
papers. We shall not refer to these later papers here. 
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in a recent paper [4] shows that this is indeed the case. By a conceptual change, we 
shall look at the generalized spherical harmonics from a new view point and shall 
call them monopole harmonics. The monopole harmonics are everywhere analytic 
and possess no discontinuities or cusps at all. They form a complete orthonormal 
set and can be used as the basis of expansion of any wave function around the 
monopole. 

In this new view point, the wave function of an electrically charged particle of 
charge Ze around a monopole of strength g shouM not be thought of  as an ordinary 
function. It should instead be considered as a "section" characterized by a number 
q defined by 

q = ~DZ,  (1) 

where D = 2eg = monopole strength in Dirac's unit which is (2e) -1. We have put 

c = ~ = l .  

D is an integer which may be positive, negative or zero. So is 2q. 
The concept of a section is familiar in the mathematics of fibre bundles. For the 

case in question, the wave function is mathematically [5] a section on a C 1 vector 
bundle, or a line bundle. 

2. Wave function as a section 

The basic new point is understandable as follows. The cusps and discontinuities 
arise because any choice of the vector potential A around the monopole must [4] 
have singularities. The situation is similar to that encountered in the choice of a 
coordinate system on the surface of  a sphere, such as the longitude and latitude sys- 
tem. No choice i~s possible which does not have some singularities. Yet the geometry 
of the sphere is ~learly without intrinsic singularities. To avoid introducing singularities 
in the coordinate system one divides the sphere into more than one overlapping re- 
gion and defines a singularity-free coordinate system in each region. In the overlap 
one has singularity-free coordinate transformations between the different coordinate 
systems. 

Imitating this method, we divide [4] the space outside of a magnetic monopole 
into two regions, R a and R b, and define a vector potential (14 u)a in R a and a vector 
potential (Au) b in R b. Using spherical coordinates r, 0, ¢ with the monopole at the 
origin we choose 

Ra: 0 ~ 0 < ~ r r + 6 ,  0 < r ,  0 ~ < ~ < 2 n ,  (2) 

Rb: ~nl _ 6 < 0 < ~ 7 r ,  0 < r ,  0~<q~<27r,  (3) 

1 6 < 0 < ~ - ~ + 8 ,  0 < r ,  0 ~ < ~ < 2 n  (overlap), (4) Rab: ~Tr - 
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where we choose 6 such that 0 < 6  1 ~<in. 
The vector potentials are chosen to be 

- g - c o s 0 )  (Ar) a = (Ao) a = 0 ,  (Ae) a - r s-~-n-~ (1 , 

- - g  (1 + c o s 0 ) ,  (5) (Ar) b = (A0) b = 0 ,  (A0) b - ~  

where At, Ao, A~) are the projections of A in the three local orthogonal directions. 
One has 

i 3Sab 1 
(Au)a = (A~)b +Ze  Sab - - '  (6) 

where 

S = Sab = e 2iqo = transition funct ion.  (7) 

S is the gauge transformation phase factor for changing from (Au) b to (Au) a in the 
overlap Rab , 

~a =Sab ~b ,  (8) 

where ~a and ~b are the wave function of a particle of charge Ze in R a and R b, re- 
spectively. A function ~ which assumes values ~a and ~b in R a and R b and satisfies 

~a = Sab ~b = e 2iqc~ ~b (9) 

in the overlap Rab is called a section. ~ is thus a section. 
Let the charged particle interact with the monopole and with a potential V(r) 

which is spherically symmetrical. We assume V(r) to be without singularities for r ;> 0. 
Then 

1 
( g -  ZeA)  2 ~ + V~ =E~ 

2m 
(lo) 

meaning 

1 
2m (p - ZeAa)2 ffa + Vffa = E ~ a ,  in R a , ( l oa )  

1 
2m (p - ZeAb)2 ~/b + V~b = E~b , inRb • (10b) 

It is obvious that these equations are compatible with (8) because of  (6). 
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3. Hilbert space of sections 

It is clear that if ~ is a section, x~ is also a section. Also (p - Z eA)x  ~ is a section. 
Thus r and p - Z e A  are operators on the Hilbert space of sections. We define the 
scalar product of two sections ~, ~ as 

( n , D = f ~ * ~ d 3 r .  (11) 

(The question of convergence at r = oo and r -- 0 is here ignored.) This integral is well 
defined because in the overlap Rab 

G b- * - r / a  ~ a  • 

It is clear that r and p - Z e A  are Hermitian operators. Following Fierz [3] we shall 
now try to construct angular momentum operators. 

Define 

L = r X  ( p -  Z e A )  qr (12) 
r 

It is clear that Lx,  Ly ,  L z are Hermitian operators on the Hilbert space of sections. 
The following commutation rules can be easily verified: 

[Lx, x l = O ,  [ L x , Y l = i z  , [Lx, z ] : - i y ,  

[Lx, Px - ZeAx]  = O,  [Lx, py  - ZeAy]  = i (p  z - Z e A z ) ,  

[Lx, Pz - ZeAz  ] : - i ( p y  - Z e A y )  . (13) 

It follows from these that 

[ Z x , Z y  ] = i Z z ,  etc .  (14) 

Eq. (13), together with its consequence (14), show that L x, Ly ,  L z are the angular 
m o m e n t u m  operators [3]. We emphasize that neither the Hilbert space, nor these 
operators, possess any "singularities". (The singularities ofA a and A b are not real 
singularities because they occur outside of R a and R b, respectively.) 

4. Monopole harmonics Yq,l,m 

Since [r 2, L] = O, we can diagonalize r 2 and study operators L for fixed r 2. I.e. 
we shall study sections of the form 

 (r2 _ 

where ~ is a section dependent only on angular coordinates 0 and 4. 
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L operates then on "angular sections". In the rest of this paper except sect. l 1, 
we shall be dealing with angular sections only. 

Eq. (14) shows that [L 2, Lz] = O. Simultaneous diagonalization produces the 
familiar multiplets with eigenvalues l(l + 1) and m, 

L2 Yq, l, m = l(l + 1) Yq, l,m ; Lz Yq, I,m = m Yq, l,m , (15) 

where l = O, ½, 1, ... and, for each value of  l, m ranges from - l to +l in integral steps 
of increment. The Yq, l,m are the eigensections which we shall call monopole  har- 
monies. We shall show later that the allowed values of l and m are 

l = l q l ,  l q [ + l , [ q [ + 2  . . . . .  m = - l ,  l + 1  ..... l ,  (16) 

and that each of these l, m combinations occur exactly once. We shall choose each Y 
normalized so that 

f 2. s in0d0  f IYq, l, ml2d~ = 1. (17) 
0 0 

(Notice that in Rab, I(Yq, l,m)al 2 = I(Yq, l ,m)bl2.) Different Yq, l,m (for a fixed q) 
are orthogonal, a fact one easily proves in the usual way from (15). We shall choose 
the phases of Yq, l,m such that the matrix elements o f L  z ,L ) , ,L  z between the Y's 
conform to the convention adopted in ch. 2 of Edmonds'  book [6]. In particular 

(1, x + iLy)  Yq, l,m = (l - rn)l /2(l  + m + 1) 1/2 Yq, l,m+l" (18) 

These monopole harmonics will be explicitly exhibited. Each is analytic. That is, 
(Yq, l,m)a is analytic inR a and (Yq, l, rn)b is analytic inR b. The set of all monopole 
harmonics for a fixed q forms a complete set of sections, as we shall see. 

5. Explicit expressions for Yq,l,m 

Stating from (12) one easily verifies 

L 2= [ r X ( p - Z e A ) ]  2 + q 2 ,  

mYq, l, m = LzYq,  l, m = ( - iO¢  - q) Yq, l,m , 

mYq, l,m = Lz Yq, l,m = (--iO~ + q) Yq, l,m , 

Eq. (20) shows that 

Yq, l,m = Oq, l,m(O) ei(m+q)¢~ i n R a ,  

Yq, l,m = Oq, l,m(O) ei (m-q)~ inRb • 

inR a , 

inR b . 

(19) 

(20) 

(21) 
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The condition for a section, (9), shows that  [Oq, l, m (0)] a = [Oq, l, m (0)] b in the 
overlap. They are, in fact, the same function. Apply (19) to Yq, l, rn" An explicit evalua- 
tion of the operator [r X (p  - ZeA)] 2 acting on Yq, l,m gives 

1-1  1 [ l ( l + l ) - q 2 ]  Oq'l'm = sin0 30 sin0 +--(msin2 0 + q c°s0)2 Oq, l,m • 
(22) 

Writing cos0 = x ,  this gives 

[ l ( l + l ) - q 2 ] O = - ( 1 - x 2 ) ®  ' ' + 2 x ® ' + l _ l x 2 ( m + q x ) 2 0  

- l ~ < x ~ < l  , (23) 

where prime means differentiation with respect to x. This equation can be treated 
in the usual way, through analyzing the indical equations at x = +1. We shall, how- 
ever, pursue a different method which yields the normalization constant and phase 
factor automatically. 

Before proceeding we note that since Y is single valued in each region, (21) shows 
that 

m - q = integer.  

Thus 

l - q = integer.  (24) 

Now (19) shows that 

l(1 + 1) i> q2.  (25) 

Eqs. (24) and (25) show that the allowed values of l are among those given in (16). 
We shall now show that each value of l in (16) is allowed, by constructing, for 

each of them, the explicit function (~q,l ,m : 

Oq, l_t :Nq,l lvq------d-q lvqT;t+q, 

where 

I - I q I = integer/> 0 ,  (26) 

[" (2 l+1 ) !  11/2 
Nq'I = [_4n(22l) (] - -q)!  (I + q)i :> 0 .  (27) 

To show this one substitutes (26) into (23) and verifies that the latter is satisfied. 
The factor Nq, l is inserted so that  Yq, l , - l  is normalized in the sense of (17). 

Repeated application of (18) onto the monopole harmonics Yq, l ,-I  (given by 
(21) and (26)) leads to, (for l, m satisfying (26)), the explicit expression for Yq, l,m 
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given below. (As stated above, this method leads to automatically normalized Yq, l,m 
starting from normalized Yq, l , - l ' )  

(Yq, l, m)a = Mq, l,m (1 - x)  cd2 (1 + x) M2 P~'~(x) e i(m +q)¢ , 

( Yq, l,m )b = (Yq, l,m )a e -  ziqO , (28) 

where 

a = - q  - m, ~ = q - m, n = l + m ,  x = cos0 , (29) 

= 2mr21 + 1 (l - rn)! (l + m)!-] 1/2 
Mq'l'm [_ 47r ~ ] ~ _ ~ . ~ / ¥ ~ . T j  ' (30) 

and Pff'~(x) are [71 the Jacobi polynomials, 

- - _ _  d r/  

pa,  t3(x ) _ (-1)"2nn! (1 - x)-C~(1 + x )  - ~  dx n [(1 - x)~+n(1 +x)~+n] ,  (31) 

which are defined if 

n, n + a , n  +fl and n + c~ +/3 are all integers~> 0 .  (32) 

Eq. (28) will be proved in appendix A, and some properties of the Jacobi polyno- 
mials will be discussed in appendix B. 

6. Completeness of monopole harmonics 

For a given q (q may be negative) the set of  Yq, l,m with l, m satisfying (16) form 
a complete set of orthonormal sections. I.e. every continuous section (i.e. a section 
satisfying (9), with ~a and ~b being continuous in R a and Rb)  can be expanded as a 
series 

~ a l  m Yq, l,m " 
l,m ' 

Proof: According to appendix C, Yq, l,m can be expressed in terms ofp/al,l~l(x).  
Now for fixed q = integer or half-integer, and q + m = integer, there are four pos- 
sible cases: 

a~>0,  /3~>0, s o t h a t - m ~ > l q l  and v = l + m ,  (33) 

a~>0,  fl~<0, so tha t  I r n l ~ < - q ,  q~<0 and v = l + q ,  (34) 

a<~O, fl>~O, sothat[rnl<~q, q>~O and v = l - q ,  (35) 

a~<0,  fl~<0, s o t h a t r n ~ > l q l  and v = l - m .  (36) 
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In case (33), the allowed values of l, according to (16), are l = Im l, Jml + 1 . . . .  which 
are precisely 

v = 0, 1, 2, . . . .  (37) 

In case (34), the allowed values of l according to (16) are l = -q,  - q  + 1 . . . .  which are 
also precisely (37). Continuing this way we conclude that given q = integer or half- 
integer, q + m = integer, the allowed values of l according to (16) are always precisely 
those given by (37). 

Now for fixed Ic~J, I~1, the Jacobi polynomialsP.taI,L~l, (u = 0, 1 ,2  . . . .  ) form [7] 
a complete set. The exponential  functions ei4)(m+qf, (m + q = all integers) also form 
a complete set. It can be proved from these results that Yq, l,m forms a complete set 
of sections for fixed q. 

7. Examples and analyticity of  Yq,l,m 

For the case q = 0, a =/3, and (31) shows that 

p-m, -m _ ( - 1 )  m l! _ x2)m/2 er ~ 
t+m 2 m ~ m - - ) !  (1 , 

Table  1 

E x a m p l e s  of  x/~Yq, l, m in reg ion  a 

(38) 

q l m ( ~ Y q ,  L m)a  

L 1 ! - e i q ~ x / l  - x 
2 2 2 

I I e 0 ~" "~/I --~ --~- +X 
3 
~ 3 x ~ e 2 i O x / 1  + x (1 - x )  

3 1 
~ - x / ~ e i ~ x / 1  - x ( 1  + 3 x )  

3 1 

3 3 
2 --2- 

- , ~ 7 2 e ° ~  x( l  3x) 

e- iO,Ji  - x(1 +x) 

1 1 ~ e 2 i 0 ( l  - x )  

1 0 - ~ e i O  l ~ / ] ~ - x  2 

1 - 1  3 x / ~ e  0 (1 + x)  

x = c o s 0 .  To  o b t a i n  Yq, l,m i n R b  a p p l y  (9). 
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where P / i s  the associated Legendre function. Substitution of  (38) into (28) shows 
that 

Yo,l,m = usual spherical harmonics Yl, m • 

We tabulate in table 1 a few of the monopole harmonics for q - 1 - ~, 1, These ex- 
amples illustrate the fact that Yq, l,m is analytic everywhere. I.e., (Yq, l,m)a is ana- 
lytic inR a and (Yq, l,m)b is analytic inR b. For example, (Y1 t ~)a is clearly 
analytic in Ra,  which includes the point 0 = 0, and ~ -  

( Y ! !  1)b 1/2)b = X/~ - cos 0 / ~ / ~  (39) 
2 2 2  

is clearly analytic in R b which includes the point 0 = It. 

8. Zeros of Yq,l,m 

Table 1 shows that each of the Yq, t,m exhibited has at least one zero. This is in 
fact a special case of a general topological theorem that for q 4: 0, any continuous 
section must have at least one zero. This theorem can be proved as follows. If  ~ is a 
continuous section and has no zeros, trace the value of ~a I~al-1 in the complex plane 
as one goes along the parallel r = 1,0 = 00, from q~ = 0 -> 2rr. ~a I~a I-1 (= the phase 
of ~a) describes a loop which is confined to the unit circle, As 00 changes, the loop 
is continuously distorted, remaining always on the unit circle. As 00 -+ 0, the loop 
shrinks to a point. Thus for any 00 satisfying 0 < 00 <½rr + 6 (see (2)), the loop is 
always shrinkable, along the circle, to a point. The same is true for the loop described 
by ~bl~b I-1 for ~Tr -- 6 < 00 < 7r. Now take 00 = ½7r. These two last statements to- 
gether contradict (9) i fq  ¢ 0. 

9. Global gauge transformation on Yq, l,m 

The monopole harmonics exhibited above are for a special gauge [4] in which 
the regionsR a, R b and the vector potential A u were chosen to be that given in 
(2) -+ (5). One can make global gauge transformations [4] which change the regions, 
the vector potent ialAu,  and the value of Yq, l,m in a coordinated manner. 

gds / p 

Fig. 1. Pseudomagnetic field produced by current segment ds. It is equal to gds × rr-3 where 
g = current. 
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Monopole Monopole Monopole 

L C C -L 

Fig.2o Fig. 2b Fig. 2c 

Fig. 2. Half line L and hall" curve C carrying current g, and complete  circuit C + ( - L ) .  

For example, one could make a global gauge transformation by merely contract- 
ing and expanding the regionsR a and R b without changing either Au or Yq, l,m, 
provided R a and R b together always fill the whole space outside of the origin, and 
provided R a does not include the line 0 = ~ while R b does not include the line 
0 = 0 .  

To discuss a more interesting global gauge transformation we shall first try to 
find some other possible vector potent ia lA '  a inR a. To this end, define as in fig. 1 
the pseudomagnetic field produced, according to Biot -Savar t ' s  law, from a segment 
of electric current g. (The field is called a pseudomagnetic field and not a magnetic 
field, because of two related facts: (i) The current segment itself does not give con- 
served current. (ii) The pseudomagnetic field is not curlless outside of the current 
segment. The total pseudomagnetic field produced by a complete electric circuit is 
the magnetic field.) It is easy by straightforward integration to find that (5) satis- 
fies 

(A)a -- total pseudomagnetic field generated by half line L ,  

carrying current g (fig. 2a) .  (40) 

Now define 

(A')a = total pseudomagnetic field generated by any half curve C ,  

Then 

Thus 

carrying current g (fig. 2b ) .  

(A')a - (A)a = total pseudomagnetic field generated by C + ( - L ) ,  

carrying current g (fig. 2c ) .  

= magnetic field generated by same.  

(41) 

(42) 

V × [(A')a - (A)a ] = 0 outside of L and C .  (43) 

If C is chosen completely outside of Ra,  then (43) asserts that V × (A')a is the ma D 
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netic field of the monopole in R a and thus we may use (A')a as the vector potential 
inR a. 

! 

Using (Au) a and (A~) b as the vector potentials requires a global gauge transfor- 
mation from (A/~)a and (Au) b. In other words, we can find a transformation phase 
factor Ta, a such that 

i /)Ta:a 1 
, = inR a . (Au)a (A")a+~eeTa'a ~xU (44) 

For any section ~, 

~a' = Ta'a ~a • 

Comparison of (44) and (42) shows that 

Ta, a = exp( - iZeg  ~ )  = e x p ( - i  qf2) ,  

(45) 

(46) 

where ~ is the solid angle subtended by circuit C + (--L) in fig. 2c at the point where 
Ta, a is evaluated. Actually f2 is defined and is continuous not just in R a but in all 
space outside of a surface bordered by the closed circuit C + ( - L ) .  Take the surface 
to be the shaded area in fig. 2c. On the surface, but outside of  the border C + ( - L ) ,  
f2 increases discontinuously by 4~r in going from above the diagram to underneath 
the diagram. Since D is an integer, ira, a is single valued. 

The transition function in the overlap region Rab is now 

Sa, b = Ta,aSab = exp(2iq~ - i q~ ) .  (47) 

We have thus defined completely the new gauge: regions R a, R b and transition func- 
tion Sa, b. We have also defined the gauge field in this new gauge: (AtL)a, (Ap) b. We 
have, in addition, exhibited the global gauge transformation Ta, a between the old 
gauge and the new. 

! 

Notice that the continuation of  (Au) a into R b yields singularities not on L, but 
on C. 

If  we had taken another half curve C' outside of  Ra, we would have gotten 
(A % another new vector potent ia l ,  ~,a" Any linear combination 

p tp  ~ ~ ~e tF (Au)a = a(Au)a + a (Au) a + a (Au) a , (48) 

with 

~ +O~r+O~ ' ' =  1 , 

where c~, cr' and ~" are positive or negative real numbers, is also a possible vector 
t ¢ ¢  potential in R a. Notice that the continuation of (A u )a i n t °Rb  has, in general, sin- 

gularities on L, C and C'. Thus the position of  the singularities of (Au) a, when con- 
tinued into space not covered by Ra,  is in general quite arbitrary. 
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10. Rotation of coordinate axes 

A rotation of coordinate axes generates [6] a linear combination of the usual 
spherical harmonics, 

l 

Yo, l,m(O,,~),)= ~ y ,a a,,Q)(I) m,=__l O,l, rn'W,~) m'm ' (49) 

where c-/? depends on the rotation. Does this hold also for the case q 4= o? Define 

1 

Zq, l,m(O' , dp') = ~ Yq, l,m,(O, ~b)Q)(m/!m , 
m'=_l 

(5o) 

for q ¢ 0. Zq, l, m is Yq,l,m(O'dp') but in a different gauge, because the vector potential 
A u has not yet been changed to that which conforms with convention (5) for the 
new coordinate system. If one performs a global gauge transformation on Zq, l, m by 
first changing (Au) a so that its singularities after continuation become the new nega- 
tive z-axis, and then changing (Au) b so that its singularities after continuation be- 
come the new positive z-axis then Zq, l, m ~ Yq, l, m (0', 9 ' )X (phase factor which is in- 
dependent of m). 

11. Schr6dinger equation 

It is simple to show by explicit evaluation, and with the aid of (19) that 

1 3 ( O - r ) 1  [ r X ( p - Z e A ) ] 2  ( P -  Z e A ) 2 -  r 2 3r r2 +-~ 

r 2 3r r2 r 2 [ L 2 _ q 2 ] .  (51) 

The Hamiltonian in (10) thus commutes with L 2 and L z. Hence in solving (10) we 
can choose specific eigenvalues for L 2 and L z. I.e. we take 

¢ = R(r)  Yq, l ,m, (52) 

obtaining 

- 2 m r  2~r  r2 + + V - E  R = 0 .  (53) 
2mr 2 

For the case that V = 0 this equation was solved by Tamm [2] who found that R is 
a Bessel function, i fE  > 0, 

R = @ . .  Ju (k r ) ,  (54) 
v ~ r  
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where 

/a = x /~ l+  1 ) - q 2  +~ = x /~+  ½)2_ q2 > 0 ,  

k = W/~-~-. 

I fE  < 0, (53) has no meaningful solution. 

It is a pleasure to thank Professor Shiing-shen Chern for enlightening us on the 
mathematical concepts of fibre bundles and sections. 
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(55) 

Appendix A 

Proof of (28) 

A straight forward computation shows that in R a 

L x + i L y = e i ¢ I _ ~  ~_+ x ~ 1 - x  
3x i x / l _ ~ a  ~ q ~ x X l  ' (A.1) 

where 

X = COS 0 . 

Substitute this into (18) and use (21). One obtains, in Ra, 

1 I_.lx/-~_x2ddx mx l~_x2] Oq, t,m+l - -  q .  Oq, l,m 
X/-(l-m)(l+rn +1) X / 1 - x  2 

_ - ~ / 1 - x  +q - x  2-m (A.2) 
m ; 1) % , , m  

Repeated application of (A.2) gives 

I ~  1 71+m(l_x2)l/2Oq, l,_l" (A.3) Oq, l, m = ( c o n s t ) ( l - x 2 )  m/2 +q 1-x2J 

Now use 

d 1 _ V l - x q  d ¢ l + x  q (A.4) 
+q l - x Z  l Y x  dx 1 - x  

One obtains eq. (28) from (A.3). (The constant in (A.3) can be evaluated explicitly 
in the repeated application of (A.2).) 
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Appendix B 

Some properties of  P~' ~ 
n 

Pn,~(x) as defined by (31) and (32) is a polynomial of degree n. It satisfies 

P~, ~ ( - x )  = ( - 1 )  n Pn ~' ~ (x ) ,  (B.1) 

n 

p,~,#(x) = 2_n ~ (n + a)! (n + /3)! (x - 1 ) n - X ( x  + l) x, (B.2) 
~=0 X!(n + a E  X)! ( n -  X)!@+X)! 

in which m! is defined to be oo when m < 0 and 0! = 1. To prove (B.2) we arrange 
the square bracket in (31) into a product of 2n + a +/3 factors, each being (1 - x) or 
(1 + x), and choose ~. factors (1 - x) and n - )~ factors (1 + x) for differentiation. 
(B.2) then follows 

We shall now show 

p,7+~ = 2_~(x _1),~ ,~!(n +,~+/3)! .v~,~ (B.3) 
(n +/3)! (n + ~)! 

n! (n + a +/3)! pn,~ (B.4) Pff'+-~= 2-~(x  + l )~ (n + /3)! (n + a) ! , 

Pn+a+t~ = 2-c~-3(  x - 1)'~( x + 1)3Pff '~ .  (B.5) 

To show (B.3) we use (B.2), 

2n+~p-a,~ = x ~  0 n! (n + a + / 3 ) [  1)n+c,-X(x )x n+~ : ~ ! ( ; , ~ ) !  ( , , + ~ . , ~ + ~ ) ! ( ~ -  +l  

n 

n!(n +a+/3)! n -~  
= ~ same = (x - 1) ~ ( f f+a~ . ( ,~¥~) !  2 1" n' , 

~=0 

which leads to (B.3). Eq. (B.4) can be proved similarly. Eq. (B.5) can be proved by 
using (B.3) and (B.4) in succession. 

Define 

R n' ~ -- (1 - x)  ~/2 (x + 1) 9/2 2 -  (~+t3)/2 e n '  9. 

Then (B.3), (B.4) and (B.5) together show that 

Rn ,t3 = (_l)(C~-Ial)/2RIc~l,l~l 

where 

v = n +½(~ + /3 -  I~1 - 1/31). 

(B.6) 

(B.7) 

(B.8) 
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Using (28) as the definition of  Yq, l,m, we obtain by utilizing (B.5) 

Yq*l, = ( - 1 )  q+m (B.9) m Y - q , l , - m  , 

which is a useful formula. It is correct in both regionsR a andR b. If we take q = O, 
(B.6) reduces to the usual formula for the complex conjugate of  Yl, m" 

Appendix C 

AIternative expression fbr  Yq, l, m 

Using (28) and (B.6) we obtain 

m - M  2(a+~)/2Ra'~e i(m+q)~ (Yq, l, ) a -  q,l,m n • 

Now use (B.7) to obtain 

(Yq, l ,m)a=(Cons t ) (1  - x)Pal/2 (l + x)1/31/2 p,Ic~l, 1/31 ei(m +q)~ 

where u is given by (B.8), and n, a and/3 are given by (29). 

(c.1) 

(c.2) 

Appendix D 

Clebsch-Gordan coefficients 

We shall define the usual Clebsch-Gordan coefficients 

( I m f m ' l l l ' j m !  ) (D. 1) 

as in ref. [6]. Some usage of  these coefficients for combining sections will be dis- 
cussed below: 

(a) Consider the product of  two sections Yq l m (0, 4) Yq' l' rn'(O 4) o f  the same 
argument  O, (~. The result is clearly a section witil q -- q + q". 'The usual vector ad- 
dition theorem applies and we have 

, Yq, l,m Yq', l', m' ( lml 'm' l l l ' l 'm])  = K Yq+q',Lm/ , (D.2) 
rnm 

where K depends on q, l, q', f ,  and j but not on m. Notice that sometimes K is zero. 
For example, for Yq, l, rn Yq, l,m', it is well known that the CG coefficients are sym- 
metrical (with respect to m ,e, m' )  for/" = 2l - even integer and antisymmetrical for 
/ = 2l - odd integer. For the latter case clearly K = O. Notice also that if/' < [q + q ' l ,  
then the right-hand side of (D.2) must vanish, since Yq+q' ,Lm/does  not then exist. 
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For example, for the case Yl,l ,m Y0,1,m' the final j value is, a priori, 2, 1 or 0. But 
the case j = 0 vanishes since Y1 0 mj does not exist. This can indeed be checked with 
the aid of tables 1, and the approprxate values of Yo,l,m' and the Clebsch-Gordan 
coefficients 

YI,I,1 (~/1 - X2 e-i(~) - Y I , 1 , 0 ( V ~ )  + Yl , l , - l ( - - 'v /~ - x2 eiO) = 0 .  (D.3) 

Similarly, Y1 1 m Y1 1, m' can be linearly combined, a priori, to give Y2 2,m. Y2 1,m 
and Y2,0,m" But the latter two do not exist, giving rise to the following identity 
which can be checked with table 1 

YI,I,1 YI,1,-1 - YI,1,0 YI,I,O + YI,1,-1YI,I ,1 = 0 .  (D.4) 

(b) For a problem with two particles of different charges Ze, Z'e moving in the 
field of a magnetic monopole, the wave function is a "double" section with respect 
to both r and r'. Then 

,Yq, l,m (0, ~) Yq,, l', m'( 0', cp') (ll~mlllml'm') = Fq, q,,L m/ , 
mm 

(D.5) 

is a double section that transforms under a simultaneous rotation of 0 and ~ like Y/m. 
. . . .  ~ J does. One has to, however, remember that after the rotation one is using a different 

gauge, as discussed before in sect. 10. 
(c) For a particle with spin S, the total angular momentum is 

J = L  + S = r × ( p - Z e A ) - q r + s .  (D.6) 
F 

The addition of  L and S is achieved with the Clebsch-Gordan coefficients in the 
usual way with no difficulty. 
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