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ABSTRACT. 

The quantum mechaniCl-l of a system of identical interacting particles 
must lead to the classical hydrodynamic equations of motion at high 
temperatures, because of the correspondence principle. On the other 
hand, the behaviour of helium II shows that this is not always the case at 
low temperatures. In this paper it is shown that in certain cases the 
quantum description requires an extra parameter, which is the potential of 
a new velocity field superimposed on the classical motion. Expressed in 
semi-classical terms, the condition for the existence of this new parameter 
is t,hat the probability, in t.he equilibrium state, of a particle having a­
very large de Broglie wavelength (that is, a negligible momentum) is 
finite. This condition is satisfied in one model of a superfluid system, & 

condensed Bose-Einstein gas, but not in a crystal. A tentative theoretical 
interpretation of two basic equations of the empirical two-fluid theory of 
helium II is given, in which thi" new parameter determines the vf'locity 
of thl:' superfiuid. 

§ 1. INTRODUCTION. 

BORX A::-<'O GREEN (1947, 1948) described a method of studying transport 
processes in a system of identical interacting particles obeying quantum 
mechanics by using the analogy with the corresponding classical syst.em. 
Gurov (1948, 1950) carried out a similar calculation. In both cases the 
conclusion was that the equations of hydrodynamics and heat transfer 
were identical in form with the classical equations. These treatments 
assumed that the three quantities describing a "normal" state of the 
system (Born and Green 1947, Chapman and Cowling 1939) were the same 
as for a classical system: the density, velocity and temperature fields. In 
other words, if at one instant the system is in a state described by given 
fields of these three parameters, its state at a later time is sufficiently 
described by the new fields of the parameters resulting from the thermo­
hydrodynamical equations of motion. From the correspondence principle 
it is clear that the three parameters of classical mechanics are suffioient in 
quantum mechanics at high temperatures, but, as we shall see, this is not 
always true at low temperatures. 
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§ 2. PROPERTIES OF THE REDUCED DENSITY MATRICES. 

Suppose t.he system consists of N identical particles of mass m int.er­
acting by central forces whose potential is U, and let the Schrodinger 
representative of the density matrix of the corresponding Gibbs ensemble 
(Dirac 1947) be 

D(qI' ... <Lv; q;, ... q~), 
where q/, .... qN are the position vectors of the N particles, and D is 
Hermitian. The reduced density matrices, which are also Hermitian, are 
defined by 

Rk(qr. ... qk; q;, ... q~)=[N !/(N -k) !] 

X f· .. fD(qI' .. q,y; q; ... q~, qk+I' .. q.y)dqk+I··· dq" (1) 

The equation of motion for D is 

in oDjot=HD-DH, (2) 

where H is the Hamiltonian operator of the system. After setting 
q2=q;, ... q.v=qN, this may be integrated over q2' ... qs, giving 

ili.oR1(qr; q;)jot= -(/i2j2m)(V7- V?)R1(qI; q;)+ HU(qr-qz) 
- U(q;-qz)]Rz(qr, qz; q;, q2) dqz, (3) 

where Vj=%qj' et.c. 
By using Wigner's result (Wigner 1932, Moyal 1949) that a density 

matrix R1(qI ; q;) corresponds to a classical probability density F(x, p) 
for the position x and momentum p of one particle such that 

R 1(qI; q~)'"'-'Jdp:F(-Hql+q;], p) exp [ip . (qI-q;)jh], (4) 

combined with the classical result 

F(x, p) oc exp r -p2j2mkT], (5) 

or alternatively by approximately solving the Bloch equation 
oDjo(kT)-l=-HD (Husimi 1940), we obtain a high temperature 
approximation 

(6) 

for equilibrium at the temperature T. Therefore 

lim R1(q/; q;)=O. . (7) 
I q.-q,' I ~ 00 

At low temperatures (7) may not be satisfied for every type of system. 
To see the physical signilicance of the failure of (7) let us assume for the 
moment that R1(qI_; q;) depends only on I qI-q; 1 and approaches a 
constant value L when 1 qI-q; 1-+ 00. Then the Fourier inverse of (4) 
yields a divergent integral which may be interpreted as 

F(x, p) j(p)+LS(p), (8) 

where f(p) is a regular function. That is to say, the probability of one 
particle having zero momentum is the finite fraction L/R1(x; x). Since (8) 
is in fact an expression for the mean occupation numbers of single-particle 
levels, L must vanish (and (7) therefore be satisfied) in a Fermi-Dirac 
system, where the exclusion principle limits the occupation numbers. 



BOSE SYSTEMS 

§ 3. ASYMPTOTIC BEHAVIOUR OF 'rHE REDUCED DENSITY MA'l'RIX 

FOR ONE PARTICLE. 
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In the general case when (7) does not hold we shall consider the behaviour 
·of R/(q/; q;) for values of I q[-q; I large compared with both h(mkT)-1/2 
.and the range of U. The integral in (3) may be written, using the 
Hermitian property of R 2, 

JU(r)[RZ(ql' q,+r; q;, ql+r)-R;(q;, q;+r; q}, q;+r)] dr. (9) 

Suppose that the asymptotic form of RAql> ql+r; q;, ql+r) for large 
J ql-q; I is 

R.2(qj, qI+r; q;, ql+r),,-,A(ql, r)Rj(q/; q;), (10) 

just as the neighbour distribution function of a liquid obeys 

Rz(qz, qz; ql' qz),,-,R}(qI; ql)R1(q2; qz) (11) 

for large I q}-qzl· For large I ql-q; I (3) becomes 

ih i3RZ(ql; q;)/i3t,,-,-(li2/2m)(V7- V?)R1(ql ; q;) 

+[X(ql)-X*(q;)JR 1(ql ; q;), (12) 

where X(q)= J A(q, r)U(r) dr= V(q)+iW(q). (13) 

Since the variables in (12) are separable the general Rolnt.ion is a linear 
combination of expressions of the form 

'P(qI)lJ'*(q;), (14) 

where ilii3'P/i3t=-(n.2/2m)V2'P+XlJ'. (15) 

At equilibrium D = e - flU, and since the Schrodinger representative of H 
is real, those of D and the R's are also rea.1. The state of the liquid is 
uniform, and, therefore, for large enough I ql- q; I it may be assumed that 

R}(q}; q;) '""-' const. 

This is of the form (14) with 'P=const. If the density matrix of a non­
equilibrium state is sufficiently similar to e-~H the required solution of (12) 
will still be a single expression of the form (14) : 

R 1 (q}; q;) r-.., 'P(qz)'P*(q;). (16) 

The example of a condensed Bose gas may clarify the argument of this 
-section. Equation (16) is true, with 'P the wave-function of the single­
particle state into which condensation has taken place. Husimi's formula 
{1940) 

R z(q1t qz; q;, q;)=R}(q}; q;)R1(qz; q;)+Rj(q}; q;)R}(qz; q;) 

is not valid for a condensed Bose gas; for example, at absolute zero, when all 
the particles are in the ground state, 

R}(ql; q;)= 'P(ql)lJ'*(q;) , 

R z(ql> qz; q;, q;)= 'P(qz)'P(qz)'P*(q;)lf'*(q;)· 
The correct formula is 

Rz(qI> CIz; q;, qz')=R}(qz; q;)Rz(qz; q~)+Rl(q}; q;)R}(qz; 

-lJ'(ql)'P(qZ)'P*(q;)'P*(q;) 
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(compare London 1943). Assuming that this formula holds for non­
equilibrium states, (10) and (11) may be yerified, with 

A(q, r)=Rj(q+r; q+r)+R(q; q+r)lJ'(q+r)/lJ'(q)-lJ'(q+r)lJ'*(q+r). 

Madelung's transformation (1927) brings equations (15) and (16) into a 
form similar to the hydrodynamic equations of motion with velocity 
potential cp, density /lJ' /2, external forces of potential V and a sourCl" 
distribution of strength 2/lJ' /2Wj Ii : 

RJ(qJ; q~) ~Q<Xl(qJ; q;) exp {im[cp(qJ)-cp(q;)]jli}, (18) 

wherl" Q<Xl(ql; q;)= 1lJ'(qj) 11lJ'(q;) L 1 
a 1lJ'12/at+V'·( 1lJ'12V'cp)=2/lJ'/2Wlli, ~ . (19) 

a1>/at+!( V'cp)2+ Vjm=li2 V'2/lJ' II 2m2 1lJ'1 ~ O. J 
At equilibrium Qoo depends only on the density and temperature, so 

that even for non-equilibrium states it is a function of the parameters of 
the classical description. On the other hand, the velocity V'cp corresponds 
to no quantity in the classical description; it differs from the classical 
velocity in its laws of change and in being irrotational. 

§ 4. THE Two-FLUID MODEL OF HELIUM H. 

The two-fluid model may be interpreted tentatively as follows: Assume 
that real functions QlI(qj; q'J) and Qs(ql; q;) can be chosen, with 
Q" -+ 0 as / ql-q; /-+ 00, such that if at one instant 

Rj(qJ; q;)=Qn(ql ; q;) exp {im(ql-q;) . U(Hql+q;]),' Ii} 

+Qs(ql; q;) exp {im[cp(ql)-cp(q;)]ln} 

+O(V'u) +O(V'V'cp). (20) 

(where the velocities u and V'cp do not alter appreciably in a distance 
1i(mkT)-1I2), then at later instants it is of the same form, with new real 
functions Q1P Q., U, and cp. If Qs=O this would describe a system with 
cla.ssical velocity field u (Gurov 1948). The density is 

p(x)=mR(x; x)=mQ,,(x; x)+mQs(x; x) 

=Pn(X)+ps(x), 
and the current density (Born and Green 1948) 

J(x)=-(inj2)(V'I- V';)Rj(qJ; q;) 

=Pn(x)u(x)+ Ps(x) V'cp(x). 

(21) 

(22) 

These two equations are the basis of the two-fluid theory (Landau 1941. 
Tisza 1947) ; in Landa.u's version the superfluid velocity is irrotational. 

§ 5. EXAMPLES. 

Two examples will illustrate the argument. In a crystal the single­
molecule wave-functions are confined to small regions, so that (7) is true­
and classical ideas should explain its mechanical properties. In a condensed 
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Bose-Einstein gas with negligible repulsive forces and periodic boundary 
conditions (Bogoliuboy 1947) 

R/(q/; q;)=B-IL'n. exp il· (q/-q;), 
• 

1 
i 
~ 

I 
J 

(23) 

where B is the volume of the container and n. is the mean occupation 
number of the single-particle state whose wave-number is 1, given by 

n.=[exp (12li 2J2mkT)-lJ-l, [17"'=0], 1 

J 
(24) 

Bogoliubov claimed that such a system shows superftuidity. 
We conclude that (7) is the condition for the classical equations of heat 

transfer and hydrodynamics to apply, and that when (7) is not satisfied a· 
new quantity enters the equations. This quantity is the potential of a 
new velocity field superimposed on the classical motion. 
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