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A theory of equations of state and phase transitions is developed that describes the condensed as well as
the gas phases and the transition regions. The thermodynamic properties of an infiriite sample are studied
rigorously and Mayer's theory is re-examined.

I. INTRODUCTION difference lay, not in the difference of the models, but
in the inadequacy of Mayer's method for dealing with
a condensed phase. This led to a study of the analytical
behavior of the grand partition function of an assembly
of interacting atoms, and we were able, as in the special
case mentioned above, to identify and characterize
quite generally the condensation phenomena. These
general conclusions will. be presented in the present
paper.

The problem is approached by allowing the fugacity
to take on complex values. Although only real values of
the fugacity are of any physical interest, the analytical
behavior of the thermodynamic functions can only be
completely revealed by going into the complex plane,
whereby one is able to obtain a description of the con-
densed phases as well as the gas phase and the transition
regions. This approach is of a very general nature and.
can be applied to other problems of phase transitions
such as ferromagnetism, order disorder transition, etc.
It will be emphasized that also this approach can lead
to practical approximation methods for the description
of systems undergoing transitions. These points will be
discussed in paper II.

Thephysical conclusions of this paper derive from some
mathematical results which we shall state in the form
of two theorems. Due to the nature of the problem
(which involves a double limiting process) it is im-
perative to have mathematical rigor preserved through-
out. The proofs are necessarily of a mathematical nature
and will be given in the appendix.

'HIS and a subsequent paper will be concerned, with
. the problem of a statistical theory of equations of

state and phase transitions. This problem has always
interested physicists both from the practical viewpoint
of seeking for a workable theory of properties of matter
(such as a theory of liquids) and also from the more
academic viewpoint of understanding the occurrence of
the discontinuities associated with phase transitions in
the thermodynamic functions.

The work reported in this paper is quite general and
fairly abstract. We are returning in a subsequent paper
to the illustration and application of the methods here
outlined. In order to present the work of this present
paper in its proper perspective, it may be helpful if we

outline briefly the history of our own thinking on the
subject.

About a year ago one of us was able to make progress'
with the problem of the spontaneous magnetization of
the Ising model, taking advantage of some special
properties of this problem when treated by the Onsager-
Kaufman method. ' We then noted that the solution
there obtained was also the solution of another, physi-
cally quite difterent, but formally identical, problem.
This is the problem of a lattice gas with attractive
interaction between nearest neighbors. We were thus
able to follow in detail the behavior of such a lattice
gas, which in many ways should reveal the features of
an actual gas. In particular, we were able to study and
characterize the condensation phenonenon, and to
identify the liquid, gas, and transition regions in the

p —v diagram. The isotherms thus obtained are flat in

the transition region and rise very rapidly with in-

creasing density in the liquid phase. At this point, we

were led to compare the specific solution with the well-

known work' of Mayer on the theory of condensation of

gases. In particular we were led to inquire as to why, in

Mayer's theory, the isotherms stay Rat beyond the con-

densation point and do not give the equation of state
for the liquid phase. It soon became apparent that this

II. INTERACTION

We consider a monatomic gas with the interaction

U=P u(r, ;),

where r,; is the distance between the ith and jth atoms.
The following assumptions are made about the nature
of these interactions':

(1) The atoms have a finite impenetrable core of
diameter a, so that u(r) =+ ~ for r=a.

(2) The interaction has a finite range b so that' C. N. Yang, Phys. Rev. 85, 808 (1952).
~ L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, Phys.

Rev. 76, 1232 (1949).
3 J. E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and

Ph. G. Ackermann, J. Chem. Phys. 5, 74 (1937);J. E. Mayer an
S. F. Harrison, J. Chem. Phys. 6, 87, 101 (1938); B. Kahn an
G. E. Uhlenbeck, Physica 5, 399 (1938).M. Born and K, Fuchs
Proc. Roy. Soc. (London) A166, 391 (1938).

u(r) =0 for r=b

d (3) u(r) is nowhere minus infinity.
The theory can be easily generalized to include many

body forces and forces with a weak long tail such as
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Qy= l

' ' ' t drI ' 'drIr cxp(—U/kT) (2)

is the con6gurational part of the partition function for
lV atoms and

y = (27rmk T/k') ' exp(y/k T) . (3)

The quantities m, k, and h have the usual meanings,
The gIRnd pRrtition functioIi of the gRS in the volun1e

Vis
3/I

Zv= 2
X=o g! (4)

where M is the maximum number of atoms that can be
ciRn1n1ed into V.

III. THE LIMIT OF INFINITE VOLUME

The average pressure and the average density of such
a gas in V are calculable in terms of gr by the standard
treatment of statistical mechanics, Rnd are evidently
dependent on V. In thermodynamics, however, one is
only interested in an infinite sample and the thermo-
dynamic functions are limits of these average quantities
as V~ +& . Thc pl'cssulc p and density p Rrc accordingly
given by

p 1
=LHI1 —loggri

kT &~~ V

van der AVRals' force. But for clarity we shall first treat
only interactions with the properties enumerated above.

Consider a box of volume V kept at a constant tem-
perature T. If it is allowed to exchange atoms with a
reservoir at a given chemical potential p, per atom, the
relative probability of having X atoms in the box is

Q~y"/&!
where

from the same interaction (1) through the considera-
tions of statistical mechanics.

We shall try to resolve these problems and prove
that (5) and (6) do give a complete description of the
equation of state of both the gas and condensed phases.
In fact in paper II we shall give a concrete example in
which it is seen how the same partition function de-
scribes both phases, and in which the two-phase-equi-
librium region is exactly known.

We hrst state the following:
Tkeorem I.—(Proved ln Appendix I.) Pol all posltlvc

real values of y, V ' loggr approaches, as V~~, a
limit which is independent of the shape of V. Further-
more, this limit is a continuous, monotonically increas-
ing function of y.

The assumption is made, of course, that the shape of
V is not so queer that its surface area increases faster
than V:.

One might be ten1pted to conclude from the inde-
pendence of the limit on the shape of V that the system
under consideration exists only in fiuid phases (i,e., gas
and liquid) with no elastic resistance against shearing
strain. It is to be emphasized that this is not the case.
The independence of the limit on the shape of V is not
due to the lack of elastic resistance against shearing
strain, but rather due to the fact that for an infinite
sample changing the shape of V does not produce a
strain in the interior which might serve to differentiate
between a Quid and a solid. This is so because the strain
at the boundary only penetrates to a finite depth and
is inconsequential for an infinite sample.

To study tlM llmlt of (8/8 log/) V loggr we notice
that gr is a polynomial in y of finite degree M. This is
a direct consequence of the assumed impenetrable core
of the atoms. It is therefore possible to factorize gr
and write

8
p=Lim — —loggj.

&~~ 8 logy V

The question of whether these limits do exist is
usually not discussed. 4 It is, however, generally believed
that in the gas phase such limits do exist and that (5)
and (6) give the correct equation of state. At the point
of condensation and in the liquid phase the situation
has been extremely unclear. As a matter of fact doubts
have been raised' as to whether the equation of state
of both the liquid and the gas phase can be obtained

4The behavior of the partition function Q~ as the volume
approaches infinite was discussed by L. von Hove, Physica IS 951
(1949), where it is proved that X ' logQ~ approaches a limit as
the volume approaches infinity at constant density. His proof is
similar to our proof of theorem 1.

5 There was apparently some discussion on this point at the
Interi. .f i~nal Conference held in Amsterdam, 26 November 1937.
The doubts &'an perhaps be formulated in the form of the question:
"How can t e gas molecules know when they have to coagulate
to form a lit, iid or solidP" See p. 391 of reference 3 (Born and
I'uchs).

where yi y~ are the roots of the algebraic equation

gr(y) = O. (g)

Evidently none of these roots can be real and positive,
since all the coefficients in the polynomial gr are
positive.

As V increases these roots move about in the complex

y plane and their number 3f increases (essentially)
linearly with V. Their distribution in the limit V—+ ~
gives the complete analytic behavior of the thermo-
dynan1ic functions in the y plane. In fact one can prove
the following:

Theorem Z.—(Proved in Appendix II.) If in the
complex y plane a region R containing a segment of the
positive real axis is always free of roots, then in this
region as V~~ all the quantities:

1 ( 8 )1 ( 8 )21—«ger I I

—»gee I I
—loge ",

V (8 logy) V (8 logy) V
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This gives, together with (5) and (6),

p= (8/8 logy)(p/kT). (10)

IV. PHASE TRANSITIONS

The quantity (8/8 logy) V log/~ does not, however,
always RpploRch R limit p fol all values of p'. Physically
this must evidently be as the density of the system does
not assume a single value at the point of condensation.
It is clear therefore that the problem, of phase transition
is intrinsically related to the form of the regions E
d.escribed in theorem 2. We discuss the following cases:

(1) The roots of gv(y) =0 do not close in onto the
positive real axis of y as V~ ~, or more exactly, there
exists a region R which contains the whole positive
reR1 axis and ls flee of loots.

In this case from the two theorems one concludes
that the pressure and density of the system are analytic
functions of y (along the positive real axis). They are
related by Kq. (10). Furthermore, p is an increasing
function of y. Wc shall show in Appendix III that p
is also an increasing function of y. Consequently in the

p —p diagram, on the isotherm p increases analytically

RpproRch llQllts which Rle Rnalytlc with respect to g.
Furthermore the operations (8/8 logy) and Limy
commute in 8 so that, e.g.,

8 1 8
Llm —log gv = —L1m —log gv. (9)
& ~ i9logy V &logy &~~ V

as the speciGC volume e decreases. The system under
consideration is thus a single phase system (see Fig. 1).

(2) The roots of gv(y) =0 do close in onto the real
axis as V—+ ~, say at the points y=t~, t2, and regions
R~, E2, and E3 free of roots enclose, respectively, the
three segments of the positive real axis as in Fig. 2(a).

By the same reasoning as in the previous case one
concludes, within any one of these three segments, that
the system, exists in a single phase, that p and p are
RDRlytlc Rnd increasing functions of g that p ls

(kT) '(8p/-8 logy), and that on the isotherm p increases
analytically as v decreases.

At the points y=t~, f2 the pressure p is continuous

(by theorem 1),but its derivative p has in general a dis-
continuity, By Appendix III one shows easily that p
increases across the discontinuity. The functions p and

p are schematically plotted in Figs. 2(b) and 2(c) which

together give the isotherm in Fig. 2(d).
As the temperature varies the points t~ and. t2 will in

general move along the y axis. If at a certain tempera-
ture T, the roots cease to close in onto one of the points,
say t3, then T, is the critical temperature for the transi-
tion phase 1&-+ phase 2. If, on the other hand, t~ and t2

merge together at a particular temperature To, we

wouM then have a triple point at that temperature.
It may be remarked that at y= t& or t2 the density p

may in some cases be continuous (although its deriva-
tive will m general be dlscontmuous). At the critical
temperature this will happen, but not at neighboring
temperatures. If, however, this happens over an
extended temperature range, one would have a transi-
tion of second (or higher) order.

It is clear therefore that phase transitions of the
system occur only at the points on the positive real y
axis onto which the roots of g(V) =0 close in as V-+ 0D.

For other values of the fugacity y a single phase system
obtains.

As mentioned before, the theory can be easily gener-
alized to include many body forces and forces with a
weak. long tail. In fact, the generalization does not lead
to any alterations of the conclusions reached above.

Generalization can also be made to other kinds of
phase transitions such as order-disorder phenomena and
ferromagnetism, as will be discussed in paper II. The
study of the equations of state and phase transitions
can thus bc reduced to the investigation of the dis-
tribution of roots of the grand partition function. In
many cases, as will be seen in paper II, such distribu-
tions")turn~out to have some surprisingly simple
regularities.

{d)
FIG. 1. Analytical behavior at a given temperature of thermo-

dynamic functions for a single phase system. The quantity y is
de6ned by Eq. (3) in the text. The region R is free of roots of Eq.
(8). Notice that the density p of (c) is proportional to the slope
of the P—logy curve in (b).

We first notice that by expanding in powers of y
one obtains from (7)

1. 00—loge~=Z &i(V)y'
V



I. THEORY OF CONDENSATION. 407

where
~1 p'

b (V)= Z
fV r-i &y)

(12)
y - plane

Com, bining (11) and (3) we have

=coefficient of yN in exp[V g b~y']. (13)
t- j.

Comparison of this equation with Mayer's theory shows
that the bi's defined by (12) are identical with the
reducible cluster integrals defined6 by Mayer. It is
interesting to notice that these reducible cluster
integrals are, according to (12), closely related to the
moments of the roots y; of Eq. (8). It should be em-
phasized that in both (12) and in Mayer's definition the
b~'s are functions of the volume V. It is evident from
Mayer's definition that they approach definite limits
b i( ~ ) as V~ Qe .

In Mayer's theory the cluster integrals b~ are replaced
from the very beginning by their limiting values b&(ae).
He then considers the series

~(y)= Z bi(")y'

Phasel

log t,

(c)

Phase 5
P

log y

loot

, log y

log t~

and its analytical continuation along the positive real
axis. If one calls the first singularity of x(y) along the
positive real axis t~, one shows in Mayer's theory that

(1) for densities p less than

FIG. 2. Analytical behavior at a given temperature of thermo-
dynamic functions for a system that undergoes two phase transi-
tions. The transitions occur at t1 and )2 which are the points at
which the roots of Eq. (8) close in onto the positive real y axis.
The regions R1, R2, and R3 are free of roots. The three phases 1, 2,
and 3 are indicated in (c). The horizontal parts of (d) represent
two-phase-equilibrium regions.

the system exists in a single phase;
(2) for p= pi, the pressure p (at a given temperature)

becomes independent of the density. Consequently, one
identifies the density p& as the density of the gas at
condensation.

An essential difficulty of Mayer's theory is that it
does not admit of the existence of a liquid phase with
finite density, since the isotherm remains horizontal for
all specific volume less than pi '. This is clearly due to
the replacement of the volume dependent b~'s by their
limiting values. The question is therefore often raised'
as to exactly at what point on the isotherm Mayer's
theory breaks down.

In the present theory by retaining the volume de-
pendence of the partition function gr we do not en-
counter these difhculties. To clarify the relationship with
Mayer's theory, we refer back to Fig. 2(a) and draw a
small circle C within E~ with the center at the origin.
The series

Z br(V)y'
l~l

' See for example Eq. (13.5) in J. E. Mayer and Mayer, Statis-
tical j/Iechanics (John Wiley and Sons, Inc. , New York, 1946),
p. 280.' See, for example, reference 3 (K;i,hn and Uhlenbeck), p. 415.

is easily shown' to converge uniformly in the circle C.
By a well-known mathematical theorem on double
limiting processes one concludes that in C

»m Z bi(V)y'=2 bi( )y'
7'-moo 1 1

The left-hand side of this equation is by definition

Lim V—' loggv,

and the right-hand side x(y). Therefore within C the
function x(y) in Mayer's theory is indeed (kT) ' times
the pressure p as defined by (5). By analytical con-
tinuation one concludes that this holds throughout the
region Ei.

In t, ~e interval O~y(t~ it is evident that p& p~ and
Mayer's theory is seen to give a correct description of
the system.

Beyond the point y= ti (i.e., y—t,) it is not possible
in Mayer's theory to analytically continuate x(y). The
p —log y and p —logy diagrams [Figs. 2(b) and 2(c)]
therefore exist in his theory only to the left of the first
singularity. This explains the nonexistence of the liquid
phase in Mayer's theory.

8 All roots y~ have absolute values larger than the radius 0 of
the circle C. By Eq. (12). we have ib~ ~i~(M/V)l '0 ' But 3E/V.
is bounded. Hence the statement.
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We thus remark:
(1) Throughout the gas phase (i.e., p(pi) Mayer's

theory gives correct results.
(2) For p=pi Mayer's conclusion that the p —o

diagram becomes horizontal is, as already mentioned,
incorrect for high densities due to the existence of the
liquid phase. It is not even justified for densities im-
mediately above p», as for transitions of high order the
lsotlierm does not even have any horizontal part at all.

We are indebted to Professor J. R. Oppenheimer for
criticism and comment.

APPENDIX I

To prove theorem 1 we first establish the following:
Lemma 1.—Let V and 8' be two cubes of linear

dimensions I and 1.+(f/2), respectively. Keeping b

6xed one has as L~ ~,
LimW '(logos —loggv) =0. (1&)

Proof.—Put V completely inside W and write gs
as the sum of contributions Ao, A» from configura-
tions with zero, one. . . atoms outside of V. Now (a)
since the interaction has 6nite range, each atom
interacts with at most a 6nite and de6nite number of
other atoms. Also (b) the available volume for the first
atom outside of V is 5=8'—V. If the volume of the .

impenetrable core of an atom is a, the available volume
for the second atom outside of V is less than 6—a, the
third, 6—2o., etc. Combining (a) and (b) one concludes
that

Next draw within each small cube lV; a concentric
cube V; with linear dimension 2'L (b/—2). Since b is
the range of interaction, clearly atoms in different V s
do not interact. Hence,

8' ' loggv, «log/, .

Equations (19) and (20) give

(20)

Now consider a volume V of arbitrary shape. For suf-
ficiently large V one can build two 0-type boxes 0» and
Q2 such that 0» is contained in V and Q~ contains V
and that

( (ni/n2) —1i (o.

W; 'loggv;«W, 'log/; W—; 'log/;+2 'yL 'logP.
(21)

The last term approaches zero as i~~. Also by
Lemma 1, W; '(log&; —log9v;)~. Thus as j)i~~

W, ' log/, —W, 'log/, —&0. Hence the lemma.
Proof of the theorem. Given—any o)0 there exists

by Lemma 2 a large enough box 5' such that

~E—W 'logos
~

(o.
In fact by the same reasoning as used in proving that
lemma, one easily sees that this can also be made true
of any box 0 which can by adding partitions be divided
into cubes of size 5":

where p is a constant. (This inequality is obtained by
comparing the contributions to A and gv of a dis-
tribution of atoms with, say, E atoms inside of V and
m a'tolils outside. ) Adding all 2 s oile obtains

one proves easily that V ' loggv also approaches X.
That this limit monotonically increases with y

follows from the same property of V ' loggv. That it is
also continuous fo~.lows from, the observation that
(8/8 logy)V 'loggv;. as a finite and definite upper
bound (equal to the density of closest packing).

But 6 L', and clearly

Hence the lemma.
Lemmg Z.—Let 8",be a cube of linear dimension O'L

and g; an abbreviation for gw;. Then

Lim W; ' log/, =%exists.

APPENDIX II

We erst prove the following:
Lemma 3.—Consider the series

where

~
h(V)

~

«Ao
Proof. Consider W; to—be built up from 8' ' smaller

cubes W;(j) i). Evidently the number of atoms inter-
acting across the boundaries of the small cubes is at
most proportional to the area of such boundaries and
hence is less than 8~'2 'y, (y=constant). Should one

neglect these interactions, g, would become g, raised
to the power 82 '. The inclusion of these terms violates
this identity by not more than a constant factor p
raised to the power 8~'2 ', i.e.,

A and 0 being positive constants. For all real s between
—o' aild +o' asslliile L1II1Sv(s) 'to exist, as V~ oo . Tlleil
(a) Limbi(V) as V~~ exists and will be denoted by
bi{~).(b) Sv(s) approaches the limit

Z &i(~)s'

log&;=8' 'log&, +8'2 *'y»gp.
as V~~ for all ts~ (o. The series (22) is convergent

{19) for all ts( (o.
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—1 sf t'] q'
(U)= P I

—
(

fort
V/ ~=~ Es;)

(28)

M

bo(V) = Q—log—.
y.

(29)

~S,(e) —S~(.) ~
&",

lb.(V)-b.(lU) I
«.

(23)

(24) If 0 is the radius of C, since C is free of roots we have

~
z,

~
=o. Hence by (28)

Proof (—a) Evidently bo(~) exists and is equal to where

Limsr(0) as V—+~ . To prove the existence of Limbi(V):
Given any real e between 0 and o/2 consider the con-
vergence of Sr(c) and bo(U) as V~ ~. There exists a
volume VD such that for any volumes V and W greater
than Vo one has

00 Ae'
~Q bi(V)e'~ ~ =2Ae'
l=2 1—~f7 '

The same is true if one replaces V by 8'. Using

eb, (V) =Sr(e) —bo(V) —P bi(V) ei,
Z=2

(25)
fbi(V)i=(M/V)t 'a ' for t~1.

But 3II/U is bounded; hence we can use Lemma 3 and
the theorem is proved in C.

By similar arguments we can extent the theorem into
a circle C' lying inside R with its center inside C. One
can easily prove the theorem in the whole region E. by
repeating this process.

one proves easily with the aid of (23), (24), and (25)
that

e
i bi(V) —bi(W) i

& (2+4A) e'.

Hence Limbi(V) exists as V~~. Similar proof holds
for the other b~'s.

(b) The series +bi(V)s' evidently converges uni-

forrnly in s for
~

s
~
& o. The lemma follows from a well-

known theorem on double limits.
Proof of theorem Z.—Consider first a circle C, lying

inside E., vrith its center at the point y=g along the
positive real axis. We shall erst prove the theorem
inside this circle. Making the displacement s=y —p we
express (7) in the form

~ ( s) (sip

s;) &y, )

APPENDIX III

To prove that p is an increasing function of y it is
only necessary to show for any 6nite V the inequality

d2
'

log gr )0.
(d logy)'

Now gr is a polynomial in y with positive coefficients.
Regarding the various terms of gr as relative proba-
bilities we have obviously

loggr = (S),
d logy

where ( ) means "average. "Also

loge'= (&')—Q')'= ((»)')
(d logy)'where s,=y,—q are the roots of gr. Expanding

V ' loggr in powers of s one obtains

1 00—»gZr =Zfbi(U)s'
&=0 »=x—(cv).

which is always positive. Here 6Ã is the deviation of
E from the average

(27)


