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Generalization of Dirac’s monopole to SU, gauge fields
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Dirac’s monopole is generalized to SU, gauge fields in five-dimensional flat space or four-dimensional
spherical space. The generalized fields have SO, symmetry. The method used is related 1o the concept of
orthogonal gauge fields which is developed in an appendix. The angular momenta operators for the SO,

symmetrical fields are given.

I. INTRODUCTION

The Dirac! monopole, which is singular only at the
origin in three-dimensional space, satisfies the follow-
ing properties:

(a) The magnetic flux through any closed surface
around the origin, is 4mg#0, L e.,

14Pf,, de* =4mg#0, (1)

where dx*" is the surface element and is anfisymmeltri-
cal in i and v.

{b) It is spherically symmetrieal.

The Dirac monopole field is uniquely determined by
(a) and {b) for each (allowed) value of g, We remark
that if we remove condition (b) then the field is not
uniquely determined by (a), since, e.g., the addition of
a dipole or any higher order pole to the origin does not
change (a),

A further remark is useful. The integral in (1) is in-
dependent of any distortion of the closed surface since’

fl!v,:\ o u +f1\u,y =0,
or
qu..,),=0- (2}

We want to generalize the Dirac monopole field to
SU, gauge field. Consider a five-dimensional space with
metric

ds? =dxt + dad +dxd + dad + dad. (3)

Consider an SU; gauge field which is singular only at
the origin. The generalization of (1), which is the first
Chern class number, is the second Chern class®
number,

& S fiusdadned = Br/9)C;, @

where the integral is taken over a closed four-dimen-
sional surface enclosing the origin. This integral is
also independent of any distortion of the surface. To
see this we use the rules of the gauge Riemannian cal-
culus of Ref. 4 and find in a straightforward manner,

E (ful‘ufais],r = Z; (fu!ufnjs)ur - P:' (fuipurfnis +f=fufnism} =0,

which is a natural generalization of (2), It follows im-
mediately that (4) is independent of any distortion of the
surface provided it always encloses the origin.
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We thus search for an SU, gauge field satisfying
(a’) C, #0;
(b) It is SOs symmetrical.

As before, condition (b’) is needed to make the field
unique for a given value of C,,

We shall prove that there are fwo and only two solu-
tions & and 8 satisfying (a’') and (b’). They are respec-
tively characterized by

Ci=+1 and Cp=-1, (5)

Furthermore, fields « and  will be defined so that in
orthogonal coordinates &, &, &3, ¢, ¥, where 7 is the
radial variable and &, £, &, 0 are five-dimensional
angular coordinates (to be defined later),

bi=0, bi=0, (6)
b{,(,-_l'um:tion only of 6, E, 7)
Thus b!dy + bide + b{,’, d¢' = independent of v and dr,

This means that the radial coordinate + and the
angular coordinates can be separated, and the gauge
fields ¢ and ¢ are only really dependent on the latter,
One can thus view « and 3 as gauge fields confined to
any sphere S; with its center at the origin. In this 5,
viewpoint, the field o is self-dual and orthogonal every-
where, and the field 8 is self-anitidual and orthogonal
everywhere. These concepts are defined in Appendix A,

In the five-dimensional viewpoint, o and 2 are both
sourceless and analytic everywhere except at the origin,
It is SO; symmetrical.

In the 5, viewpoint, o and @ are both sourceless and
analytic everywhere, and is SO, symmetrical. We de-
fine a total “action”

L=¢JTP 7l d(surtace) (8)

over S;, We shall prove that solutions o and 5 have the
least “action” among fields with their respective second
Chern class numbers C,,

The fields o and 8 will be defined in Secs, II and III
in terms of nonintegrable phase factors. #® A reader
unfamiliar with this geometrical concept can take Egs,
(34) as the algebraic definition of the fields.

The concepts of orthogonal self-dual and self-antidual
fields seem to be very useful. These fields are defined
and discussed in Appendix A, where the relationship be-
tween these concepts and SOy symmetry is also
discussed.

O Reprinted with permission from J. Math. Phys. 19(1), 320 (1978). © 1978 by American Institute of Physics.
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The angular momentum operators in five-dimensional
space are exhibited in Sec. X. They contain extra terms
to take into account the angular momenta that reside in
the field, just as the angular momentum operators for a
charged particle in a Dirac monopole field contain extra
terms,

ll. CONSTRUCTION OF THE SOLUTIONS

We first recall the vector potential A for the Dirac
monopole. They can be chosen in two® regions R, and R,
which are defined by (in spherical coordinates », 8, ¢):

R,: 0<8<(n/2)+a,
Ry 726> (n/2)-a (0<a<n/2).

In the two regions they are respectively

AP =AP =0, AP =g(1-cosb), 9)
AP =AY =0, AP =—g(1 +cosb), (10)

where we use tensor notation for the components, so
that the expression for 4, in these formulas is (» sinf)
times the corresponding A, of Ref, 5,

It has been emphasized® that a more intrinsic con-
cept than A is the phase factor, For an infinitesimal
path from P:(r, 8, ¢) to P+dP:(r +dr,8+d8, ¢ +do),
the phase factor is (in R,)

P8 pyp=1+ied, dx*

=1+ieg(l - cost)dp

=(exp(+ 2iegdo) P'”, (11)
where
p(8)=3(1 - cosé). (12)
In B, we obtain
®3\app = [exp(- 2iegdp)]'*®, (13)

Now consider a function, defined everywhere except
along the z axis,

T(r, 6, ¢)=exp(2iged), (14)

which is single valued in view of Dirac’s quantization
condition

2¢e = integer. (15)
Thus,

®aprp = Truap T3 ), (16)

q’i?’)dP)P = (Tilvdp TP):_’(G)- 17)

Since p(0} =0, Eq. (16) is applicable near 6§=0. Simi-
larly, Eq. (17) is applicable near 6 =7 since 1 - p(n)
=0, Equations (16) and (17) define the Dirac field.,

We are now ready to generalize to a SU, gauge field
in five-dimensional space. We shall choose coordinates
£, 6,7 (i=1,2,3) such that

r=@]+teeo+xP? x =rcos (0<d=n). (18)

£y, £2, £3 parametrize the three-dimensional sphere
(Fig. 1)

r=fixed, 6=fixed, or r=fixed, x;=/{fixed, (19)

For the time being we shall not specify how to choose
£y, £q, £5 to avoid unnecessary distraction at this stage.
Consider any

T(gy, &2, 83, 6,7)

which is an element of SU, and is defined and differen-
tiable at all points in the five-dimensional space except
on the x5 axis, Consider any p(#) which satisfies

p(0)=1-p(m)=0. (20)

Then (16) and (17) define a gauge field in R, and R,

respectively, In the region of overlap, we find the

following relationship between Egs. (16) and (17)
Trap®Guarre To =2 Fuaprpe (21)

To prove this we start from

‘1’:;’4}’ w»= (TPﬂf.P T?}:"m':(fpmp T}I]‘-

Thus,
Tilep®EarrrTr = Traap(Truar TH P Tpogp
= [T}:’dp{TPﬂF T}l) Tpup }‘M
=[T3Tpupl™

which leads to Eq. (21).

Equation (21) shows that @'’ and & define the same
gauge field, 7, is thus the “transition function” S for
the overlap, ® It defines the gauge transformation from
region b to region a,

1. CONSTRUCTION OF THE SOLUTIONS
(CONTINUED)

For any T and p(f) satisfying Eg. (20) we have a
gauge field, It remains to choose an explicit form for
T as a function of the coordinates and a p(6) that satis-
fies Eq. (20) so that conditions (a) and (b) are satisfied,
For p(6) we choose Eq. (12), the same as in Dirac’s
case, For T, we endeavor to define it as a function
independent of  and #, again imitating (14) for the
Dirac case, Thus T=T(&y, £, £). Since the sphere (19)
has the same geometry as the SU, group manifold it-
self, it is natural to define T as the group element
represented by the point &, £;, £5 on the sphere (19).
[We observe that this is an exact generalization of the

FIG. 1. The coordinates £y, £,, &3, 8, and » in five dimensions.
7 is the radius r cos =x; as illustrated. The equations »
=const, 6= const is a three~-dimensional sphere symbolized by
the dotted curve. It is the generalization of the azimuthal cir-
cle in the usual spherical coordination system r,8,d. £,%,,%;
parametrizes this S;, as ¢ parametrizes the usual azimuthal
circle,
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2,3

Q)

FIG, 2, Projective coordinate for three-dimensional sphere

S, (in four dimensions), £y,3,5 is symbolically three-dimension-
al flat space. A is the “south” pole of the unit sphere S;. The
point p on S; is projected to the point p’ whose coordinates £
parametrize the point p, The point A on S; corresponds to the
point at = in £ space,

Dirac case where (19) reduces to a circle (Fig, 1). In
that case, if 2eg=1, T as defined by (14) is the group
element that corresponds geometrically to the point ¢
on the circle, ]

The above description gives a geometrical definition
of T. To translate it into an explicit formula, we adopt
a projective coordinate system &y, £,, &3 for the sphere
(19) (Fig. 2):

3 172
x;= (r sin®)2£,(1 + £)*! where g:( Zi} gf) =0,

= 1: 2) 31
xg=(rsind)(1 - (1 + &%,
For fixed »> 0, and 0 <€ <7, the complete £, &, &3
plane plus the point at = maps through Eq, (22) onto the
sphere (19) in a one-to-one mapping, The transforma-

tion xy, ..., %5 &y, &g, &3, 8,7 defined by Egs, (22) and
(18) has the metric

dst=dr? + 72 d6% + ¥ (sin?6)4(1 + £Vt di?,

(22)

(23)

Furthermore, the Jacobian of the transformation is
positive,

8 (¥ X 9X 3% 4X5) -0
3(EqEaEa0) :

We now define the SU, monopole gauge field a by Egs,
(12), (16), and (17) together with’ the following defini-
tion of T,

R(T)=(1+)" (1= 2 +2ik-0) [g=(eF+ 5+ D)),
(24a)
where ¢ are the Pauli matrices satisfying 0,0, =103,
R(T) means the 2%2 representative of 7. Similarly, we

define the SU, monopole gauge field 3 by Egs. (12), (186),
and (17) together with

R(T)=(1+ )71 - £2 - 2i§.0), (245)
IV. POTENTIALS 6"/ AND b "/
Defining the gauge potential b by
Pipuprp =1 = blX, dx", (25)

we can compute in R, and R, respectively '’ and b4
from Egs. (24), (12), (16), and (17). We shall use ten-
sor notation® and write

b}, b, b5, bo, by

for

b{qn b‘(lgh bits)} b;, b:.,

By putting dé =dt'=0 in Eqs, (16), (24), and (25) we
obtain b/, Since T is independent of #, & (p,4p)p = identi=
ty, we have

bi=0 in both R, and R,, (26)
Similarly,

bi=0 in both R, and R,.
Putting d0=dr=0=dt*=dt*, we obtain by Eqs, (25)
and (16),

- b{ (— %cr,) :'D{B}(%g;) T-! in R,

where we have substituted — iv,/2 for X; which it rep-
resents, and we write T for R(T),

(27)

(28)

Substituting Eq. (24) into (28) we can calculate i, To
present the results we define

Bj=(i|B|p, Dj=(|D|}, (29)
and
== 81+ )2 d + 51 - £ + N, (30)
D=-B, (31)
where ~ means transposed, and
3 0 =& &
=&, N=| & 0 -&]). (32)
s —f & O
The following formulas are useful:
Ny=0, N2 =up- 2, BB=16(1+ %2 (33)

Using these definitions, we find

bi=bi=0 for both solutions o and B8, in both R, and R,,

(34)
For' solution a:
bi'® = (1 - cosé)Di/2, b}® =(1+cos6)Bl/2. (34'a)
For solution g:
b= (1= cos®)BY/2, bi®=(1+cosO)Dl/2.  (34')

These equations are obtained from Eq. (28). We notice

i

Bi (— EU}) == R"R'l,

where R stands for R(T) of Eq. (248). Similarly
A ("‘ % U:) ==R R,

where R stands for R(T) of Eq. (24a).

In the overlap region R,, #i' and b} are related
by a gauge transformation, since they were computed
from (25) using (16) and (17), which are related by the
gauge transformation (21). The gauge transformation
(i, e., transition function) from 5® to b’ is thus T
which is given by (24a) or (245),

In the rest of the paper, we concentrate on R,, Re-
sults for R, are oblained by applying the gauge trans-
Sformation (21) to that for R,
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V. FIELD STRENGTHS f, | FOR FIELD §
Applying Eq. (34) to the definitions
Fiv=bhy = V= ClbL,
Cly=C}=Cly==Ch=- Ciy=~Ci=1,
we obtain for field 3, in region R,
fo=rh=0, (35)
fh=- (sin6)BY/2, (35°8)
and
fh==p(p-1)C{,BIB}.
We have used the relation
Bja- B}, ;- Cl, BBy =0 (36)

which can be verified directly from definition (30) of Bi,
It can also be verified by putting p(6)=1 in Eq. (16).
{2, 4py» is then obviously gauge transformable to unity.
Thus the field strength in such a case should vanish,
Now when p(6)=1, Eq, (28) states that b]=B]. Equa-
tion (36) is then the statement that the field strengths
vanish, which we already proved,

(35"8)

Explicit evaluation starting from Eq. (35) gives in R,
for field j3:

féi=4(sin®) (1 + £1)?[,8 + (L= £9)/2],
faa=4(sind) (1 + £)°[£18, - &),
fos=4(sind)(1 + )¢ 85 + &,
fhy=8(sin*)(1 + £ 8; + (1 - £9)/2],
fir=8(sin®O)(1 + £ 18, - &,
f=8(sin?)(1 + )£y + £s].

(378)

Other components of f§, and f}, can be obtained from Eg.
(378) by cyelic permutation of all indices 1, 2, and 3

(i. e., simultaneously of the SU, index and the £ sub-
script). The field strengths /!, in R, are obtained from
(378) by a gauge transformation as discussed in Sec, IV,
In the rest of the paper we snall concentrate on R,

The field strengths for field @ are similar to these.
They are discussed in Appendix B,

Since conditions (6) and (7) are satisfied, we can take
the S; viewpoint mentioned in the Introduction. We apply
then the concepts of Appendix A to field 38, Obviously,
by (A1),

Tavap= (8sin°O)r (1 + £9)% y0p 38)

One can then evaluate f* from Eq. (378), arriving at

fr=~F. (398)
Similarly for field o one proves this way that
Fr=f (39a)

Thus fields o and 8 are respectively self-dual and self-
antidual,

Using Eq, (378) we can prove (Appendix C) that field
B is self-antidual and ovthogonal everywhere, and

H==E==(1+E)BEr)L, (40)

a=r"2, (41)

One can similarly show that field a is self-dual and
orthogonal everywhere, with the same amplitude a
given by (41). The inverse square dependence of @ on
7 is the same as in Dirac’s monopole.

VI. ANALYTICITY AT =0AND @ =

For the Dirac monopole, the choice (9) of b, in R,
has an apparent singularity at #=0, since 4, cannot be
defined there., However, in Cartesian coordinates at a
point on the +z axis,

l-cosf . 1 ¥y
A==87ome M ==81 om0 12
1-cost 1 X
= = = T e — 2
¥ ¥ siné 0s¢ gi-*cosﬁ el “2)
A,=0,

Thus A'? is analytic at =0, Similarly we can prove
that A ig analytic at 6=1.

For the fields o and 8 in five-dimensional space we
can, by using Cartesian coordinates at a point on the
+xg axis, in exactly the same manner, prove that
b9 in Cartesian coordinates is analytic at =0, Simi-
larly we find that i® in Cartesian coordinates is
analytic at #=#, Thus the fields « and B are both every-
where analytic except at the origin,

In the S, viewpoint, fields « and g are analytic
everywhere,

VII. PROOF OF SO, SYMMETRY

An S0; rotation around the origin generates a new
field a’ from field o, We shall prove now that field o
can be gauge transformed into field a’. This can be
done by considering infinjtesimal SO; rotations, We
shall, however, present a different and better proof in
the following steps:

(a) Since fields @ and o’ are both self-dual orthogonal
everywhere in the S; view, and they have the same am-
plitude (41), their f}, can both be gauge transformed
into the same standard form (A10), [Equation (35) in-
sures that .f,,",, =0 always. | Thus their field strengths
are gauge transformable into each other,

(b) Now adopt gauges for a and o’ so that (f},),
= (ff,) = standard form (A10). It remain to be proved
that (b%)er= (b%),. To do this we observe that (b)),
= (bl),.=0 by definition (since the gauge transformants
that we used are independent of ), Next we write down
the Bianchi identities for o and ¢’ and subtract the cor-
responding equations from each other, resulting in

Ch(ab)fE + (cyclic permutations of prA)=0,  (43)
where

abl = (b1) o= (bL),.
Choose p, v, A to be three of the coordinates £;£,£,0,
There are four ways of doing this, Sincei=1, 2, or 3
in Eq. (43), we thus have 12 equations in the 12 un-

knowns aAbl, The determinant of these two 12 equations
are known from the standard form (Al11), It is simple
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to evaluate and it is equal to 16a'%=16+»"*20, Thus
AbL =0
and we have proved that a and @' are gauge equivalent,

The proof for the gauge equivalence of § and 3’ is
similar,

VIiIl. ADDITIONAL PROPERTIES
(a) Fields a and B are both sourceless, i.e.,
=0, (44)

This is true both when the field is viewed from the five-
dimensional viewpoint, if we exclude the origin, or
from the S; viewpoint, To prove it for the latter view,
we use Eqs, (A2), (A3), and f[*==f,

S = M /2= 4 /2

which is zero because of the Bianchi identity. The
proof of Eq. (44) for the five-dimensional view follows
from this easily.

(b) fi,F'** can be evaluated, using Eqs, (A12) and
(41),

f:yf“w= 12.},--1. (45)
(c) In the S; viewpoint we can evaluate, via Eq. (Al3),
fh =127, (46)

where + is for field o, - for field 5. We can now
evaluate (4) on a sphere 7 =const,

RLILP i fladnvet= r"'m dlarea)== 32, (47)
verifying (4) with Cs=x1,
{d) Consider the S; viewpoint, The sourceless condi-

tion (44) which we just proved is? the condition that the
“action”

L= gj;ﬁ fl,ri*¥d(surface)

over the sphere is stationary against changes of the
gauge field. But we can prove a stronger statement,
Consider any SU, gauge field on the sphere, Using the
notation of {AB8) we see that

fhfer=o(E - E' - B HY, (48)
wSh it =4E - B, (49)

Integrating Eq, (48) over the sphere we get L. Integrat-
ing Eq. (49) over the sphere we get by definition (4),
(87%/3)C,. Thus

L=>12|87%Cy/3| =32q%|Cy). (50)

Sinee the Chern class number C, is always an integer,
we find that for all fields for which C,#0, L attains an
absolute minima 327° for fields @ and 8, This conclu-
sion is the same as a corresponding one in Ref. 10.

For fields o and 3, Eq, (45) leads to L =327%,

1X. FIELDS o AND 3 AS THE ONLY SO4
SYMMETRICAL FIELDS

We shall now prove that fields o and 3 are the only
50, symmetrical SU; gauge fields other than the trivial
case of all f,=0.

To be precise, we assume that field y, whose
strength is not equal to 0, defined on all five-dimen-
sional space except the origin, can be gauge trans-
formed to become any SO; rotation of itself, We shall
prove that v is gauge transiormable to either field o
or field B.

{(a) Use the coordinates &y, £, &3, 0,7, Consider a
point P and write the twelve elements £} (i=1,2,3, 6;
i=1,2,3) as a 4%8 matrix M, An SOy rotation around
the » axis at P generates a transformation A on the i
index. SO, invariance reguires that there is a com-
pensating gauge transformation R so that

AMR =M,
Thus,
AMMA = MM,

Since A is _an irreducible representation of SO; and the
rank of MM <3, we find MM=0. i.e., M=0. Thus

f,=o0. (51)

(b) Consider a sphere S;: = const. The sphere is
geometrically SO, symmetrical. y is clearly pointwise
S50, symmetric at any point P on the sphere, Using
Lemma 3 of Appendix A we conclude that y is orthogonal
and self-dual or self-antidual at P, Thus it can be gauge
transformed to the standard form (A10) or (All). SO
symmetry implies that a is a function of » alone. Thus
a=a(r). Since the gauge transformation can be made
independently at every point in five-dimensional space,
we conclude that in a proper gauge,

(fh)e= @ fla or se (52)

(c) Now we can imitate the arguments of Sec. VI (b)
and write down the Bianchi identities for the field y,
and for & or 8. Multiplying the latter by (a?) and sub-
tracting from the former we obtain for u, v, A2,

Chh(abl)(@r®) (f}) a or s + (cyclic permutation of pra)=0,
(53)
where
AbL = (L), = (b)) a ors-

Just as in Sec, VII (b), Eq. (53) implies abl =0 (u=7),
Substitution into Eq. (52) further leads to

ar?=1, (54)

(d) We need only prove now that b{=0, To do this we
subtract the Bianchi identity again, like in Eq. (53), but
in addition use ar* =1 and take one of j, v, A to be 7.
Because of Eg, (39) we get

c.iik(ab”(f;)mnr s=0. (55)

It follows trivially that abj=0, i.e., bi=0.

X. ANGULAR MOMENTUM OPERATORS

In Dirac’s monopole field, the angular momentum of
a particle of charge Ze is®?

L=rxX(p- ZeA) - Zegrvl, (56)
We want to generalize this formula to the field o {or 5),
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Consider the motion of a particle of isospin / in field
« or B in five-dimensional space. Let ¥y, ¥y, ¥; be the
representation of generators X, X,,X; for isospin J,
Then the generalization of Eq, (56) is

L;.uo:xu(au + Yl'b:) - xv(au + Ytb:} - Taf:vyk-
(1,v=1,2,3,4,5).

It is important to notice that the wavefunctions are
sections,”® The transition function S,, can be read off
from Eq. (21), so that a section is defined by

${¢}= Rep(nwlﬂr

where Rep(T) is the representation of T in the rep-
resentation generated by the ¥’'s, This formula is ex-
actly the same as the corresponding one in Ref, 5. As
in that reference, we consider the Hilbert space of
sections, Equation (57) is then a Hermitian operator in
the Hilbert space. The commutation rules of L, can be
obtained by direct calculation, After some algebra we
obtain

[Luw Laﬁ] = '31;«['&;8 = buaLus . 5,,3Lu at 6118['»&! (59]

which shows that L, are the angular momentum
operators,

(57)

=_L|-I-l

(58)

One can now generalize the monopole harmonies of
Ref. 5 to SU, monopole harmonies which are harmonic

sections on a sphere » =const in five-dimensional space.

We shall return to this problem in a later paper.
One notices that if we make the replacement
Y,——iZ, bt—eA,, -ily—1L, (60)
then Egq. (57) reduces to Eq. (56).

XI. REMARKS

(a) The fields ¢ and 3 on a sphere S; {in five dimen-
sions) exhibit SO; symmetry. The sphere has a nonflat
geometry. Does there exist corresponding solutions on
a flat four-dimensional space with ds®=dx} + dx} + dx}
+dx}? The answer is no if we require maximum sym-
metry consistent with the geometry, i.e,, if we require
50, symmetry plus displacement symmetry, (The sym-
metry group, which we shall call the Poincaré group,
has 10 generators and is the natural extension to flat
R* space of the SO; group for S, geometry, )

To prove the nonexistence in B! of a SU, gauge field &
with Poincaré symmetry we proceed exactly as in Sec.
IX, If 6 exists, it is pointwise SO, symmetrical at
every point P, Lemma 3 of Appendix A then shows that
it is orthogonal and self-dual or self-antidual at every
point. Lemmas 1o and 15 then lead to the conclusion
that 6 can be gauge transformed to the standard form
(A10) or (All), where a’=G, Now Eq. (A5) and dis-
placement symmetry imply G =numerical constant,
Thus @ =const in Eq, (A10) or (All), i.e., fi, is in-
dependent of x;xyvryx,. The Bianchi identity then reads

(61)

If a#0, this is 12 equations in the 12 numbers b, The
determinant is not equal to 0, as in Eq. (43). Thus &)
=0, Therefore,

e =0, (62)

Cipbl fA + (eyclic permutation of pra)= 0,

If a=0, then automatically Eq. (62) also holds. Thus in
R! there is no SU, gauge field with strengths not equal
to 0 that is SO, invariant and displacement invariant.

Belavin, Polyakov, Schwartz, and Tyupkin'® have ex-
hibited a solution which they call a pseudoparticle solu-
tion, It is a sourceless SU, gauge field on R* which is
everywhere analytic. It has a second Chern class num-
ber C,=+1. It does not have displacement invariance,
in agreement with the conclusion above, The relation-
ship between this pseudoparticle solution and O(5)
symmetry has been discussed by Jackiw and Rebbi, !!
who found that the pseudoparticle when conformally
mapped to a sphere Sy is O(5) symmetrical. According
to Sec. IX above, the conformally mapped solution is,
exactly, the O(5) symmetrical SU, gauge field which is
the generalization of Dirac’s monopole. Further com-
ments on this relationship will be communicated in a
separate paper.

(b) Does there exist a SO, symmetrical SU, gauge
field on the n-dimensional flat space (with positive
signatures) minus the origin? (We do not consider the
trivial case of f!,=0,) We have seen in Sec, IX that for
n=>5, there are two such fields a and 3. We shall now
prove that for n= 6, there are no such fields.

Take the case n=6, Choose orthogonal coordinates
EyEqabst by where v is the radius, We can first easily
prove the generalization of Eq, (51),

fA=0 (i=1,2,3,4,6).

Next consider a point P and choose the scales of
E1E283bsks so that gy =gy =gy =gy =25=1 at P. Con-
sider f], for u,v=1,2,3,4, SO, symmetry in the direc-
tions of &i£.£4E, leads to

fh=xr1,

by an argument similar to that in See. IX, Similarly,
if we consider u,v=1,2,3,5 we obtain

i
fi2= =-‘)":1‘5-

Now take u,v=2,3,4,5, SO; symmetry in the directions
of E5EqE,&, implies orthogonality, so that

f3s534=0.
Thus

fllzfltz =0,
i.e.,

f=0.

We thus find all components of f=0, The proof for the
case # > 6 is similar.

(¢) What happens for n=4? One can find SO; sym-
metric selutions, singular only at the origin, in the
following way:

Consider a path A — B not passing through the origin,
Project the path radially onto the unit sphere »=1, Let
the projection be called A’B’, Let p be a real number,
Each point a,b,¢,...,z along the path A'B’ corresponds
to an element of SU, which we shall denote by a,b,...,
z. If the path A’B’ is A’ab+. . zB' we define

‘pgaz '@B‘A‘= (E:E-l)r(ﬂ-i}y_ . (Er-l}"
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To show that this gauge field is SO, invariant, consider
any two fixed elements of the group £,71. Let Zg=Ezm,
Bi=E¢B'n, ete.

Then
Ebpa = (5B 27 P (2y g - - - (gaATIETY
= (Biza' P (2" - -+ (@A"Y
=& g a4

Now the path Aj— By is an SO, rotation of A" — B’, since
the transformation z —- 2, = £z7 is an SO, rotation,
Furthermore, every SO, rotation is such a transforma-
tion, Thus an SO, rotation only produces a gauge trans-
formation,

Notice that p is an arbitrary real number, So we have
exhibited a 1 parameter family of SOy symmetrical SU,
gauge fields in R* minus origin,

(d) For n=3, we are in more familiar geometry, To
construct an SO; symmetrical SU, gauge field ¢ we take
a Dirac U(1) monopole b, and put bi=5% =0, bi=b,.
Such gauge fields are, however, not really interesting
because the space does not have enough dimensions to
develop the full complexity of the group. One conse-
guence of this lack of enough dimensions is the fact,
demonstrated in Ref, 6, that field ¢ is of the same
gauge type (i. e., same fibre bundle) as the vacuum field
Fav=0.

This work was done in April, 1976 during the author’s
visit to Futan University, China, It is a pleasure to
acknowledge the hospitality the author enjoyed during
the visit. The work had been reported at the CERN
conference of July, 1976.

APPENDIX A: SOME PROPERTIES OF SU,
GAUGE FIELDS IN FOUR DIMENSIONS

Consider a SU, gauge field in four-dimensional space,
with signature ++++, flat or otherwise. We define the
antisymmetrical tensor n by

MNapuw = \’?fnrﬂuw [A-l)

where e =% 1 is the antisymmetrical symbol, We define
the dual /™ of a field 7 by

F&= MNasuvfum (A2)
Clearly,
fre=f (A3)

We only consider coordinate choices that leave gy
=0, In other words, a reflection in four-dimensional
space is not considered a legitimate transformation, We
adopt the terminology at any point P,

*=fat P—fis self-dual at P,
f*=—=Ffat P-—Fis self-antidual at P. (a4)
We further call a gauge field “orthogonal” at a point P
if at that point
f! f.rl.n-:n'eﬁljén + ﬂf_”hfb“ (Aﬁ)

It is clear that the orthogonality and self duality prop-
erties of a field f at a point is independent of the choice

of gauge or the choice of the coordinate system, We
shall call the scalar a the amplitude of the orthogonal
field at P, It is independent of the choice of coordinates
and can be positive or negative,

Consider any field f at a point P, Adopt a coordinate
system so that at P the metric g,,=6,,. Write the field
strengths in the following form:

0 H -H E
-H; 0 H Ei
H -H 0o E|
-E{ -E{ -F{ 0

f;l‘:v ol (ffg = Hé, ete. ). (AB)

We shall consider f? (j=1,2,3) as three 6-vectors,
The matrices

H% H; H Ei Ez E}
H=|H, H; H}|, £=|E} E} Ej (AT)
HY H H} E} E} E3

will be called magnetic and electric matrices, It is
obvious that

& =/ ~— self-duality,
& =—4 — self-antiduality,
By substituting (A6) into (A5) we find

(A8)

£=4, H=al — self-duality + orthogonality,
E==4, H=al - self-antiduality + orthogonality.
(A9)

In Eq. (A9), [ is an orthogonal matrix with determinant
+1,

A gauge transformation multiples £ and /4 from be-
hind by an orthogonal 3 X3 matrix R of determinant
unity. Thus if 4 =al, there always exists a gauge
transformation to make #/ —al. Hence, we have

Lemma lo: Consider a gauge field which is self-dual
and orthogonal at a point P, Consider any coordinate
system so that at P, g,,=6,,. The field at P can be
gauge transformed to a standavd form for such fields:

0 00 1 0 0-10
0 olo 0 0 01
1 _ 2 _
fw=tl o _10 0 M=%1 o oo0f
-1 00 0 0-1 00
T 01 007
-10 00
3 = Al0
Jw= g9 o1 (A1)
L 00 -10]
(e.g., fin=a). Equation (A10) can also be written as
£ =/ =al (I=unit matrix). (A107)

Lemma 13: Consider a gauge field which is self-
antidual and orthogonal at a point P, Consider any co-
ordinate system so that at P, g,,=0,,. The field at P
can be gauge transformed to a standard form for such
fields,
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0 00 -1] 00-1 0 THR=/, TER=£. (A18)
1 _ (0 01 0 2 _ (00 0 -1
fuv"a 0-10 ol’ -fuv‘_a 10 0 ol Thus o N
i 00 o0 01 0 O THHT =HH. (A1T)
010 o0 Hence
] e (a11) HH =H, (A18)
001 O0J Similarly we find that &£, E and 5}? are proportional to the
unit 3 X3 matrix I, Thus £ and // are proportional to
Equation (All) can also be written as each other,
- &=//=al (I=unit matrix), (A117) (b) Now make a transformation at P that mixes the

Lenima 2: A field which is orthogonal and self-dual
or self-antidual at P satisfies, at P,

f:wf!uv —_ 1262’
P = oty = 10,

where the + sign is for the case of self-dual fields and
the - sign is for the case of self-antidual fields, and a
is the amplitude of 1,

(A12)
(A13)

The proof is trivial,

Consider a four-dimensional space that has geometri-
cally SO; symmetry at a point P, Examples are the flat
space, a S; sphere, or the more general space M,

ds = dp? + pfe(py =286 (A14)

1+£2, ..ao<£<:=o,

where ¢(p) is any function of p. [If pe =sinp, we get the
sphere S;, of Eq. (23).] M, has SO; symmetry at the
point p=10,

For a gauge field y defined on a space that has
geometrically SO, symmetry at a point P, we can gen-
erate another field ¥ by rotating the whole potential
{(and field around P by an SOy rotation, Is y gauge equiv-
alent to 3" as far as the field strength at P is concerned?
If it is, we say that the field is pointwise SOy symmetri-
eal at P.

We shall call a field self-dual orthogonal or self-
antidual orthogonal at a point P, regular at P, We now
have a geometrical meaning of regularity (we shall show
later that orthogonality is equivalent to regularity).

Lemma 3: Consider a space that has geometrical SO,
symmetry at a point P, Then for a 8U; field,

pointwise SO; symmetry at P~— regularity at P,
(A15)
Pyroof:

(a) That the right-hand side implies the left-hand side
follows from Lemmas 1a and 18, To prove the converse,
we start with the field f:, of Eq, (A6), An SO; rotation
around P means, for the field strengths at P,

H=TH, £=T¢,

where I' is an orthogonal matrix with determinant unity.
Pointwise SO; symmetry at P implies that there exists a
compensating gauge transformation which causes a mul-
tiplication from the right by the 3 X3 representation R
of the compensating SU, gauge rotation at the point,
i,e., for every I there exists an R so that

indices 1 and 4. It is easy to see that £ +4 and £ -//
are independently rotated:

EFH =T E+H),
E=H = TolE = H).

For £ and /4 to remain proportional we must have either
F+H=0 or F-4=0, (A19)

Equations (A18) and (Al9) show that we can gauge trans-
form the field at P to the standard form Egqs, (A10) or
(A11), This completes the proof of the lemma,

Lemma 4+ Choose coordinates so that g,,=6,, at P.
An orthogonal field at P satisfies at P

firi=rt=rifi=-at, (A20)
FYi=—f%'=_af®, and cyclic permutation, (A21)
1 =d, (A22)

where f! is a 4 x4 antisymmetrical matrix with elements

(ulft v =ri.

The proof is easy, starting from definition (A5),

Lemma 5: A field orthogonal at P is either self-dual
or self-antidual at P, Therefore, it is regular at P,

Proof:  a=0, fl=f*=f*=0, and the lemma is
proved, If a#0, f3/a is an antisymmetrical real matrix
whose square is — 1, according to (A20). By a well-
known theorem one can, by an SO, rotation of co-
ordinates at P, bring f? into the form displayed in {A10)
or (All), Thus f° is either self-dual or self-antidual.
(i) I f? is seli-dual, f°=aio, where 0y, 05,05, Ty, Toy T3,
are the standard 4 x4 Pauli matrices, #(f') is imaginary
Hermitian, and anticommutes with o,, Thus i(f!) is a
sum of 0;7, and 037, with real coefficients, By another
S0y rotation of coordinates we can make f!=ao,(i7y),
leaving f®=aio,, i(f? is imaginary Hermitian and anti-
commutes with both f! and 3, Thus £?= £(@®!/¥(~ ioyTy),
g=+1, Thus f!, 7%, f® are all self-dual, (ii) If /3 is
self-antidual, we can similarly prove that /! and f? are
also self-antidual,

Lemma 6:
(3™ + 11, F1™ = 206783 |~ (AS5). (A23)

Proof: That (A5) implies the left-hand side is obvious,
If the left-hand side holds, the sign of a is for us to
choose, We choose coordinates at P so that g,,=6,,.
Then (A20) holds, In fact

Fi + 1t =~ 2a%4, (A24)
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Now the proof of Lemma § depends only on this equa-
tion, Following that proof we conclude that there are
only two possibilities,

(i) We can by an SO, rotatlon at P bring the f’s into
the following form,

fl=laloin), fi=tle|(-ioyn), f = |alio,

Thus f1, f2,/° satisty (A20) and (A21) with a=£|a|,
(A20) and (A21) together imply (AS5).

(ti) % is antiselfdual. The proof is similar.

APPENDIX B: FIELLD STRENGTHS FOR FIELD &«
Using Eq. (31) we find how to obtain (f},), from
¥

uv}ﬂ:

[fe‘g'(& gﬂuz_[fali(" 5.9}15 (i=1,2,3),
[fl‘.i(E! e”a:[fil!{_ E! 6)]5 (f,j-= 1: 2: 3)'

(B1)
(B2)

APPENDIX C: PROOF THAT FIELD 3 ISORTHOGONAL
SELF-ANTIDUAL

One proof consists in evaluating the left-hand side of
Eq. {(A5) using Eq. (373). The calculation is long but
straightforward,

Another proof follows the steps in Appendix A by
starting with a scale change from variable £y, £,, £3, &4
T¥uV¥nVnle

=6, +37t, Ey= (5ot vl + £ (27, sind),

Then in the y variables, at y, =0 the metric is unity,
fL, in the y variables are easily obtained from Eq, (378).
We arrange it in the form of Eqs, (A6) and (AT),
obtaining

(c1)

H ==& == 1+ ) Btr?), (C28)

where we have dropped the subscript 0 in all variables,
Using Bq, (33) we find

HH =7*1 (I=unit matrix), (C3)

To determine the value of dety/ we put =0, Then B
=- 4/, Thus

det// >0 everywhere. {C4)

We can then make a gauge transformation to make
——f:#";’-{R:‘}"zL

Thus we have arrived at the standard form Eq, {All)
showing that field 8 is orthogonal self-antidual with @
= in agreement with Eq, (41),

The same calculations can be made for field a. Using
Eqgs. (Bl) and (B2), we see that all formulas are un-
changed, except Eq. (C2p) becomes in this case

H=§E == +EYBlarh?, (C2a)
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Commentary

I was fascinated in the mid-1970s by BPST’s sourceless SU, gauge field on

a S4. It has beautiful SO5; symmetry as well as interesting E-*H relations. It is in a sense
a direct generalization of the U; Dirac monopole, as I explained in [78a]. I tried to further
generalize it to gauge fields belonging to higher Lie groups, but failed. Thus I did not

include [78a] in my earlier Selected Papers.

Such a generalization was recently found by Van-Hoang Le and Thanh-Son Nguyen
in J. Math. Phys. 52, 032105 (2011). It is an SO(8) monopole with SOg symmetry. [Compare
also B. A. Bernevig, J. Hu, N. Toumbas and S.-C. Zhang, Phys. Rev. Lett. 91, 236803

(2003).]



