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SOME EXACT RESULTS FOR THE MANY-BODY PROBLEM IN ONE DIMENSION
WITH REPULSIVE DELTA-FUNCTION INTERACTION~

C. N. Yang
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(Received 2 November 1967)

The repulsive 5 interaction problem in one dimension for N particles is reduced,
through the use of Bethe's hypothesis, to an eigenvalue problem of matrices of the
same sizes as the irreducible representations B of the permutation group S~. For
some R's this eigenvalue problem itself is solved by a second use of Bethe's hypothesis,
in a generalized form. In particular, the ground-state problem of spin-2 fermions is
reduced to a generalized Fredholm equation.

(1) Consider the one-dimensional N-body
problem

N
H = -p s'/sx. '+2c Q O(x.-x.), c & 0,

1 i &j

with no limitation on the symmetry of the wave
function g. For a given irreducible represen-
tation A~ of the permutation group SN of the
N coordinates xi, we want to determine the
wave function P. Assume Bethe's hypothesis'
to be valid: Let pl, ~ ~ ~, pN = a set of unequal
numbers. For 0&xQ1&xQ2& ~ ~ ~ &xQN&L,

i/) =p [Q, P]expi[p x + ~ ~ ~ +p x ], (2)

with the aid of the following identities:

ab ab
ij ji

ab bc ab bc ah bc
Y. Y. Y. . Y. . Y. Y.

which are easily verified. Thus given a set
of unequal p's, and $0 = $P for P =identity, all
$P's are determined.

(2) The imposition of the periodic boundary
conditions leads to equations which, upon ex-
pressing gP in terms of g„become

(8)

where

y M —(y
—1 1) +y

—1P —y' 43

ij ij ij 34 zj

y . . =1+x
zj ij'

x. =ic(p.-p )jk j k kj'

(4)

and P, =the permutation operator on ( so that
it interchanges Q3 and Q4. Altogether there
are N!(N —1) equations of the form (3). Are
they mutually consistent? The answer is yes
for any set of unequal p's. This can be seen

where P=[P1,P2, ~ ~ ~, PN] and Q=[Q1, Q2, ~ ~ ~,

QN] are two permutations of the integers 1,
2, ~ - ~, N. [Q, P] can be arranged as a N! xN!
matrix. Denote the columns of this matrix
by $P. To satisfy the continuity of p and the
proper discontinuity of its derivative as required
by (1) at xQ3 =xQ4, it is sufficient to have

y 34( (3)
~ ~ ozj ~ a ~ jz ~ ~ o jz ~ ~ ~

where the subscripts for $ on the two sides
represent any two permutation P and P' so that
P1 =P'1, P2 =P'2, P3 =i =P'4, P4 =j=P'3, etc.
The operator Y is defined by

=X
(j+ 1)~

xX(. )... X .X .X .~ ~ .X(. ).g, (9)

where

A, . = exp(ip L), . (10)

~ ~

X.. =P. .l'. . = (1-P .x . .)(1+x . .).ij ij ij ij ij ij
The N Eqs. (9) say that $, is simultaneously
an eigenvector of N operators. These N oper-
ators can be shown to commute with each oth-
er, using

X..X..=1, X. X. X..X .X .X.. =1]ij ji ' jk ik ij kj ki ji

X..X =X X. . ; i, j, k, and l all unequal. (12)
zj kl kl zj '

(3) The operators Pz& on $ form a N! xN! rep-
resentation of SN. To find the eigenfunctions
$0 in (9) we can first reduce this representa-
tion to irreducible ones. Choosing one specif-
ic irreducible representation A reduces the
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1-x.,

X.(P;;R)= II j X.(P;-c;R).
ij

(is)

eigenvalue problem (9) to one of smaller dimen-
sions. It can be shown that the resultant wave
function (2) would have a permutation symme-
try R~ which is the same as R. For example,
if R =identity representation= [N], then P&& =1,
and (9) becomes 1 &&1 matrix equations and the
result is precisely the well-known boson re-
sult. ' If R=antisymmetric representation=[1 ],
then Pi&=-1, and Xij=i, so that (9) and (10)
reduce to exp(ipj L) =1, showing there is no
interaction, a result to be expected for the
antisymmetrical wave function.

(4) The Xj's are functions of the p's, c, and
R. It is easily seen (that R and R being conju-
gate representations)

generalized Bethe's hypothesis:

C =Qg P(A, y )

ip iA .--c' -iA +iA +c
, = rr

. ip. -iA +c' -iA +iA -c'
P P

(20)

where y1 &y2 & ~ ~ ~ &yM are the "coordinates, "
along the chain, of the M down spins, and A»
A„~ ~ ~, A.M are a set of unequal numbers. With
this hypothesis, one finds

y -1 iP .-iA-c '

F(A, y) = g . .A, (c'= —,'c);
j=i j+1

(5) Define pj(p;c,'R) by

iP.-iA -c'
q.(p; c, [N-M, M]) = II . ~ (21)

(j +1)j (j +20 (8) Thus for the R =[2M1 M] symmetry,
we need to solve

xX .'X .'X .' ~ ~ X, 'C, (14)
exp(ip L) = right-h. and side of (21), (22)

where

Clearly

X.. =(I+P. .x..)(I+x..)-'.
iJ i2 i2 i2

p, .(p;c;R) =x.(p;c;R). (i6)

We consider the Pi&'s of (15) as operating on
these spin wave functions 4. The eigenvalue
equations (14) for pj are then to be solved for
a C that belongs to the symmetry [N-M, M].

(7) Consider the N spins as forming a cyclic
chain. The wave function 4 has CM& compo-
nents [N-M spins up, M spins down]. The ei-
genvalue problem (14) can be solved with a

(6) We now evaluate Aj for R =R= [2 1N M].
By (16) we need to find pj(p;c', [N-M, M]). To
do this we first define a convenient represen-
tation for Pi& of (15):

Consider N spin- —,
' particles, and consider

the spin wave functions 4 for total z spin= —,'(N
-2M). These spin wave functions transform
under SN according to a sum of irreducible
representations,

[N]+ [N 1, 1]+[N--2, 2]+ ~ ~ ~ + [N M, M]. (17-)

together with (20). In taking the logarithm of
(20) and (22) care must be taken to add terms
2wi(integer). The value of the integer can be
determined by going to the limit c -+~. One

obtains, for the ground state with the symme-
try Ry=[2M1N 2M], for the case N=even,
M =odd,

-g e(2A-2p) =2~v -p, e(A-A'),

LP =27TI +Q 8(2P-2A),

(2Sa)

(2sb)

where the p's are a set of N ascending real
numbers, the A's a set of M ascending real
numbers,

e(p) =-2tan '(p/c) (-~-e&~),

and

(24)

= successive integers from

--,'(M-i) to +-,'(M-i),
—'+I = successive integers from2

p

1--,'N to —,'N.

(24s,)

(24b)

Equation (2Sa) differs from that given in a re-
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cent paper, ' in the definition of 8 and our intro-
duction of JA. The present equation allows
for a natural discussion of the limit c -+~
(not c -0!)and hence the values of JA.

(9) We can now approach the limit N —~, M
= ~, L —~ proportionally, obtaining

—f 8(2A-2p) p(P)dP

=2~g f-9(A A-)o(A')dA', (25a)

p =2'+ f 6(2p-2A)o(A)dA,
B

(25b)

dg/dA = a', df/dP = p.

Or, after differentiation,

(25c)

B 2cv(A')dA' @ 4cpdp

Bc'+ (A-A')'
@

c'+ 4(p-A)", ,+,, (26a)

4codA

Bc'+ 4(P-A)" (26b)

N/L f pdp, M/L crdA,
B

(27a)

&/I. t u'~(/)&p. (27b)

(10) Equations (26) are generalized Fredholm
equations with a symmetrical kernel. It is
easy to show that the equations are nonsingu-
lar by first studying the eigenvalues of the ker-
nel in the limit B =@=~.

(11) Equations (26) and (27) yield the ground-
state energy per particle for spatial wave func-
tions with the symmetry [2 1 ], at a giv-
en density N/L. For N fermions with spin 2

interacting through the Hamiltonian (1), this
spatial wave function is coupled to a spin wave
function of conjugate symmetry [N M, M], i.c., —
the total spin of the system is —,

' Ã-M.
(12) For B =~, integration of (26a) over all A

yields N =2M. Thus for the fermion problem
with spin —,', B = ~ gives the ground state for
states with total spin =0. This state is also
the absolute ground state for the problem, by
a theorem due to Lieb and Mattis. 4

(13) For the case B =0, M/L is proportional
to B. One can readily expand all quantities in

powers of B, obtaining, for fixed r=N/L,

—= const.
L

+—cr -—+ 2nr' tan ' + ~ ~ ~ . (28)L 2n c

This result is in agreement with results already
obtained by McGuire' for the case M=1 and
by Flicker and Lieb' for the case M =2.

(14) For each symmetry R~ of spatial wave
function g, the excited states near the ground
state can be obtained in a similar way as in
the boson case.' More quantum numbers are,
however, necessary to designate the excitations
than in the boson case, because of the existence
of the integers JA (which are in fact quantum
numbers). Details will be published elsewhere.

(15) For the boson problem the thermodynam-
ics and excitations for finite T were treated by
Yang and Yang. ' Extension to the present prob-
lem presents no difficulty. Details will be
published elsewhere.

(16) Using (13) one could generalize all the
considerations above to the case of R~ = [N M, -
M]. Details will be published elsewhere. The
main change is that while all Eqs. (26) and (27)
remain the same, (26b) is replaced by

4codA 2cp(p')dp'
Bc'+4(P-A)' q e'+(P-P')'
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&= (P '+P ')/2m+ 2m~ '(x-x )'-eE(t)x, (l)x g c 0

where &uc =eH/mc and x0= Py/m& e is the —or-
bit center. We wish to calculate the evolution
operator U for the Hamiltonian (1), where

It) = UIi); dU/dt = —PKU; P =i/K (2)

It) is the state at the time t ~0, given that the
initial state (t =0) is li). Since Pz and P& com-
mute with X, they are constants of motion and
will be taken equal to zero for convenience.
This makes x = 0, and we then have the simple
one-dimensional harmonic-oscillator Hamil-

The availability of intense monochromatic
radiation sources has stimulated both exper-
imental and theoretical studies of strong-field
effects in solids. The theoretical problem is
that of calculating the dynamics of charge car-
riers in strong electric fields, for which sim-
ple perturbation theory is inadequate.

We treat exactly the dynamics of electrons
in crossed electric and magnetic fields, the
electric field being spatially uniform but oth-
erwise arbitrary. We consider only the case
of spherical constant-energy surfaces and ne-
glect interband effects, thus limiting our anal-
ysis to intraband dynamics.

A recent paper by Hanamura, Lax, and Shin'

has dealt with this problem for the special case
of a sinusoidal electric field; however, their
results are unfortunately incorrect. The ex-
act solutions given here are readily understand-
able and are essentially identical to the results
one would obtain classically.

We take the magnetic field along the s direc-
tion, the electric field along the x direction,
and we work in the Landau gauge A = [0, +Hx, 0].
The Hamiltonian in the presence of a spatial-
ly uniform electric field E(t) is simply

tonian with a driving force,

X=P '/2m+ 2m+ 'x' eE(t)x-.x c

There are various methods available for ob-
taining the exact evolution operator correspond-
ing to this Hamiltonian. Louisell' has presented
a solution using normal ordering techniques,
and similar results are obtainable from the
generalized Baker-Hausdorffs formula. We

present here a simple and physical method
for obtaining U. We take U in the following
form'.

-PD Pnx PyPx -PH-'0t
U=e e e e

where e, y, and D are c numbers depending
on time and H, is the Hamiltonian of Eq. (3)
with E(t) =0. Evaluating dU/dt and requiring
that Eq. (2) be satisfied, we obtain

d'y, eE (t) dy
dt' c m ' dt'+(d P= ~

Q =m )

dD o. m(
C

dt 2m 2

Here y(t) satisfies the classical driven-harmon-
ic-oscillator equation and plays the role of the
classical particle displacement, while n(t) plays
the role of the classical momentum. It is im-
mediately obvious that a sinusoidal driving field
can only result in a time dependence of o. and

y which has frequency components at the driv-
ing frequency and at the resonant frequency.
There are no sum and difference frequencies
as has been reported in Ref. 1.

The requirement that U(0) =1 is readily met

by choosing n(0) =y(0) =D(0) =0. The correspond-
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