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It is argued that the wave function representing an excitation in liquid helium should be nearly of the form
Z,f(r,)p, where p is the ground-state wave function, f(r) is some function of position, and the sum is taken

over each atom i In . the variational principle this trial function minimizes the energy if f(r) =exp(ilt r),
the energy value being E(k) =Asks/2ntS(k), where S(k) is the structure factor of the liquid for neutron
scattering. For small k, E rises linearly (phonons). For larger k, S(k) has a maximum which makes a ring
in the diffraction pattern and a minimum in the E(k) vs k curve. Near the minimum, E(k) behaves as
n+jp(k —ke)s/2p, which form Landau found agrees with the data on specific heat Th.e theoretical value
of 6 is twice too high, however, indicating need of a better trial function.

Kxcitations near the minimum are shown to behave in all essential ways like the rotons postulated by
Landau. The thermodynamic and hydrodynamic equations of the two-fIuid model are discussed from this
view. The view is not adequate to deal with the details of the 'A transition and with problems of critical
Qow velocity.

In a dilute solution of He' atoms in He4, the He' should move essentially as free particles but of higher
effective mass. This mass is calculated, in an appendix, to be about six atomic mass units.

' 'N a previous paper, ' II, a physical argument was
~ ~ given to interpret the fact that the excitations which
constitute the normal Quid in the two-Quid theory of
liquid helium were of two kinds. Those of lowest energy
are longitudinal phonons. The main result of that paper
was to give the physical reason for the fact that there
can be no other excitations of low energy. It was shown
that any others must have at least a minimum energy
h. No quantitative argument was given to obtain this
6 nor to get an idea of the type of motion that such an
excitation represents. In this paper we expect to deter-
mine 6 and the character of the excitations.

The physical arguments of II are carried a step
further here to show that the wave function must be
of a certain form. The form contains a function whose
exact character is difhcult to establish by intuitive
arguments. However, the function can be determined,
instead, from the variational principle as that function
which minimizes the energy integral.

THE W'AVE FUNCTION FOR EXCITED STATES

In II the exact character of the lowest excitation was
not determined, but various possibilities were suggested.
One is the rotation of a small ring of atoms. A second
is the excitation of an atom in the local cage formed
around it by its neighbors. Still a third is analogous to
the motion of a single atom, with wave number k about
2sr/a, where a is the atomic spacing, the other atoms

Frr. . j.. Typical configuration
of the atoms. If an excitation
represents rotation of a ring of
atoms such as the six in heavy
outline the wave function must
be plus if they are in the 0, posi-
tions and minus if they are
moved to the intermediate P
positions.

' R. P. Feynman, Phys. Rev. 91, 1291, 1301 (1953), hereafter
called I, II, respectively.

moving about to get out of the way in front and to close
in behind. It is not clear that they are really distinct
possibilities, for they might be merely diGerent ways of
describing roughly the same thing.

We shall now try to 6nd the form of the wave func-
tion which we would expect under the assumption that
one or another of these possibilities is correct. It will
turn out that all of the alternatives suggest the same
wave function, at least to within a function f(r), of
position r, which is determined only vaguely.

First, suppose that the excitation is the rotation of a
small ring of atoms. The number of atoms in the ring
is determined, according to II, by the condition that it
is the smallest ring that can be considered to be able
to turn easily as an independent unit in view of the
interatomic forces. For illustrative purposes we suppose
this means that there are six atoms in the ring.

We can describe the wave function for this excitation
by giving the amplitude associated with every con6gura-
tion of the atoms. Suppose Fig. 1 represents a typical
configuration, the six atoms of the ring in question (say
ring 3) being indicated by heavy outline. We discuss
how the amplitude changes as we rotate this ring,
leaving the other atoms out of account for a moment.
Suppose the wave function is positive, say +1, if the
atoms are in the position shown by the full circles in
Fig. 1, which we arbitrarily call the n position. Suppose
all the six atoms move around together, and let the
ring turn about 60'. The atoms then appear again in n
position, although which is which has been changed,
so the wave function, by the Bose statistics, is still +1.
On the other hand, for a 30' rotation, if the atoms are
located as indicated in the figure by dotted circles

(P position), the wave function will change to —1 for
the 6rst excited state. We need only discuss the real
part of the wave function —the imaginary part, if any,
can be dealt with in a similar way. (Actually since we
deal with an eigenstate of the energy, the real part of
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the wave function is an eigenfunction also. ) For orienta-
tions intermediate between n, p the function is corre-
spondingly intermediate between +1 and —1, but to
simplify the remarks we describe it for just the con-
figurations n, P. The wave function for excitation of this
ring we call g~. It is +1 if the A ring is at n, and —1 if
at p, and does not depend on how other rings of atoms
are oriented. We can describe this wave function as
follows. Consider a function of position r in space,
f~(r) which is +1/6 if r is at one of the six positions of
the centers of the atoms for the a position of ring A, is
—1/6 if it is at a P position, and is zero if r is at any
other place in the liquid far from the A ring. Then
consider the quantity P,fz(r, ) where the sum is taken
over all the atoms, i, in the liquid. For a configuration
of the liquid for which there are atoms at the six o,

positions the quantity is +1, while if six atoms are at
p position, it is —1. This suggests that we can write
0~ = E~f~ (r').

Actually this is incomplete because it does not
correctly describe what happens if atoms in other parts
of the liquid move. If ring A is in the n position, we
wish the complete wave function to be +1 as far as this
is concerned, but to drop to zero if two atoms overlap
in other parts of the liquid, etc., just as for the ground
state. That is, we expect (disregarding normalization)

4'~=K'f~(r )4»

where g is the ground-state wave function, a function
of all the coordinates. This takes care of another matter
also. What happens if some atoms are on n and some
on P? This should be of very small amplitude because
we do not wish the atoms to overlap on account of the
repulsions. This is not correctly described by P,fz(r, ),
but the p factor does guarantee such a behavior. It is
small for such overlaps. Of course, if the ring contained
many atoms it could readjust just a little and the P
would not prevent, for example, all those near one side
of the ring being n, and those on the opposite side of the
ring being P. We are not guaranteed that (1) will de-
scribe well the amplitude for such a configuration. In
fact, it wouldn't be expected that a function of just one
variable could describe the motion of several atoms.
However, by the arguments of II the ring is supposed
to be small, in fact, so small that one part of the ring
cannot move independently of the rest. The ring is so
small that if one atom is at n, there cannot be a large
amplitude for finding atoms at p because of the inter-
atomic repulsions. This is represented in (1) by the
factor P which falls if two atoms approach (see II for a
full description of the properties of P).

Not knowing the exact size and shape of the ring e
cannot say what the exact function fz(r) should be.
But at least we conclude in this case the excited-state
wave function is of the form

where f(r) is some function of position.

We might try to improve (1) by noting that, of
course, the energy should be essentially the same if the
excited ring were somewhere else in the liquid, say at B.
The function

would describe this if fbi(r) is +1/6 for r at some one
of the six n positions of some other ring 8, and —1/6
for intermediate P positions, and zero elsewhere. Or we
could locate the ring at still another position, etc.
Any one atom might be thought of as belonging to more
than one ring. This produces a kind of interaction be-
tween adjacent rings. Because of this interaction, a
better wave function than (1) might be some linear
combination of these possibilities, say cAlf g+ cglPB+
But we can still conclude that the form of the wave
function is given by (2), but now, with the function
f(r) =c~f~(r)+cafe(r)+, for any linear combina-
tion of functions of the form (2) is still of this form.

If the lowest excited state which we seek were some-
thing like the excitation of a single atom in a cage
formed from its neighbors we would guess the wave
function to be of the form (2) also. Because there
would be a nodal plane across the cage, and we would
take f(r) to be positive if r is in the cage on one side of
the plane, and negative if on the other, and to fall oG
to zero if r goes outside the cage. We do not care which
atom is in the cage so the sum on i is taken over all
atoms. Those which are outside the cage contribute
nothing to the sum, because f(r) is zero there. Further,
there is no appreciable amplitude for there being more
than one atom in the cage, because of the action of the
factor P which is very small if the atoms penetrate each
other's mutual potential. The P also takes care of the
fact that the atoms in remote parts of the liquid behave
independently of what the excited atom is doing, and
act just as in the ground state. Further, linear combina-
tions, representing the alternatives that the excited cage
may be located at different places in the liquid, are
still of the form (2).

The third possibility was only crudely described in II.
It was noted that if the atoms were considered as
roughly confined to cells, then a wave function repre-
senting the motion of an atom A could be exp(ik rz),
where r~ is the position of A, and it is assumed that as
A moves about, the other atoms move around to make
way for it so that the density is maintained roughly
uniform. This would correspond in the liquid to a wave
function

exp(ik rg)y,

where g is the ground-state wave functions of all the
atoms including A. The factor @ does the equivalent of
keeping the atoms in cells so that the density is nearly
uniform no matter where r~ is. For small k this is a
possibility only if atom A is diferent from the others
and does not obey the Bose statistics. If the symmetry
is taken into account then we must replace this by
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FiG. 2. In general the lowest
excitation energy results if the
configuration of atoms (solid
circles) for which the wave
function is most positive is as
far as possible from that
(dotted circles, P) for which it
is most negative. All the P posi-
tions must be as far as possible
from a positions, therefore.

2 We shall see later that (5), for small k, is actually a satis-
factory wave function because p does have the long wave density
variations of the zero point motion of the sound Geld. We are
trying to get excited states orthogonal to phonon states, and (5)
for small k is not orthogonal. It is, in fact, just the wave function
for such a phonon state. This is discussed later.

the symmetrical sum

P; exp(ik r;)it.

If @ had no large scale density Quctuations this would
be no wave function at all, because there would be
just as many atoms in the region where exp(ik. r) is
positive as where it is negative and the sum cancels out. '
This is in concert with the idea that the wave function
cannot depend on where atom 2 is on a large scale. For
if A moves a long distance and the others readjust to
keep the density uniform, on a large scale (the scale
I/O for small k), the result is just equivalent to the
interchange of atoms and the wave function cannot
change as a consequence of the Bose symmetry. On the
other hand, if while the atom moves from one position
to that of its neighbor the wave function changes sign
and returns, then (5) may be allowed. That is, some-

thing like (5) with k of order 2s./is may be a possibility.
This again is of the form (2), but with f(r) = exp(ik r)
The argument just given for this alternative is ad-

mittedly not as complete as for the others, mainly
because the original idea of what the state is, was
based on such a crude model of atoms in cells. Insofar
as the idea can be carried over to the case of the true
liquid perhaps we can say the form (5), or (2) will

represent it.
Since all the examples have led to the same form, we

might expect that a more general argument could be
made for the validity of (2). This is, in fact, possible
starting from the general argument given in II to show

why the excited states, other than phonons, can be
expected to have an excitation. It was pointed out
there that the excited-state function f must be orthog-
onal to the ground state. For some configuration, say
n, of the atoms it acquires its maximum positive value.
Then it will be negative for some other, say P, which

represents some stirring from the n configuration with-
out change of large scale density (to avoid phonon
states). But stirring reproduces a configuration nearly
like n although with some atoms interchanged. Thus it
is hard to get the configuration P to be very far (in con-
figuration 'space) from n to keep the gradient of lf small

in going from n to P.

The lowest state would have the P configuration as
far as possible from tx. This means that in P as many
atoms as possible are moved from sites (call them ct

positions) occupied by atoms in n. Hence P must be a
configuration in which the atoms occupy sites (P
positions) which are placed as well as possible between
the n positions. (See Fig. 2.) In all these configurations,
of course, the gross density must be kept uniform and
the atoms should be kept from overlapping, to avoid
high potential energy terms. If all atoms are on n

positions' is maximum positive, and if all on P, maxi-
mum negative. The transition is made as smoothly as
possible, and the kinetic energy thereby kept down, if
for other configurations the amplitude is taken to be
just the number of atoms on n positions minus the
number on p positions. The number is just g;f(r, )
where f(r) is a function which is +1 if r is at an ci

position, and —1 if at a P position (and varies smoothly
in between these limits as r moves about). It is of course
a modulation to be taken on @, because we wish to give
small amplitude to configurations in which atoms over-
lap, etc. , just as in the ground state. We are led, there-
fore, to (2). We can add the information that f(r) must
vary rapidly from plus to minus in distances of half an
atomic spacing. That is, we expect that f(r) will consist
predominently of Fourier components of wave number
k of absolute magnitude k=2~r/a.

In the above argument it is .not self-evident that
in going from the configuration of all atoms at o posi-
tions to that of all at P, the amplitude must be just
linear in the number on 0., X minus the number of
P, Xii. Perhaps some other smooth function of this
number, like sing~(X —1Vtt)/2/j might be better.
However, for the majority of possible configurations
Ã and Ep are nearly equal; in fact, for almost all,
(.V„—X~)/E is of order &X '*. For such a small range
of the variable, the function, whatever it is, ought to
behave nearly linearly. If the wave function (2) is
wrong for a very few special configurations it will not
be important as we shall determine the energies by the
variational method, and the special configurations will

contribute only a small amount to the integrals because
of their small share of the volume in configuration space.

THE EXCITATION ENERGY

We have concluded that a function of the form (2)
should be a good approximation to the wave function
of the excited state."The function f(r) is known only
imperfectly, however. We shall determine this function

f(r) by using the variational principle. The Hamil-
tonian of the system is

8= —()ss/2m)+~Vs;+ V—Ep (6)
2' Wave functions of this form have been proposed before, for

example by A. Bijl, Physica 7, 869 (1940).However, an argument
establishing their validity for large k has been lacking, and it
has not been clear that functions of other forms might not give
much lower states.
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where V is the potential energy of the system, and we
measure energies above the ground-state energy Eo,
so Es is subtracted in (6). Therefore the ground-state
wave function satisfies

If we write
=0. (7)

where p&(r~) =g' is the density function for the ground
state, that is, the probability of finding the configura-
tion r~ (we use r~ to denote the set of coordinates r;
of all the atoms, and J' d~r to represent the integral
over all of them).

The energy values come from minimizing the integral,
(note P is real)

/*Hite"r

where Il is a function of all the coordinates, then we
can verify, using (7), that

HP=H(Fy) = (h—s/2m)P;/Vs, F
+2VA V'F)=4 '(—&'/2')Z'V' (p V'F) (9)

For example, pt(r) is simply the chance of finding an
atom at r&', for the liquid in the ground state. This is in-
dependent of r and is the number density po in the
ground state. In the same way ps(ri, rs) can be written
as pep(rt —rs) where p is the probability of finding an
atom at r2 per unit volume if one is known to be at r~.
Except near the liquid surface it is a function of only
the distance from rr to rs, so (13) is

&=po f"(ri) j(rs)p(ri —rs)d'rid'rs.

The energy integral (10), with the substitution (12)
becomes

8= (Ii'/2m)g, V;f*(r~) V,f(r;)pivdNr.

8=ps (h'/2m, ) ~Vf*(r) Vf(r)d'r. (16)

The integral of p~ over all atomic coordinates except r;
gives a result involving only p&(r, ) = p&. Therefore we
have simply

The best choice of f is that which minimizes the ratio
= (hs/2m)P; (V;Fa) (V;F)p~d~r, (10) of (16) to (15). The variation with respect to f* gives

the equation

subject to the condition that the normalization integral,

/*ad'vr = FeFqNdNr,

is fixed. The energy is then E= 8/d.
In these expressions we must substitute

E t P(rt —rs) f(rs)d'rs ———(It'/2m)Vsf(rr),

where the energy E is 8/g. This has the solution

f(r) =expi(k r),

with the energy value

(17)

F=2'f (r'). (12) E(k) =5'k'/2mS(k), (18)
Consider the normalization integral first. It is

&=ZZ
J

f*(r )f(r')p d r'
where S(k) is the Fourier transform of the correlation
function,

S(k) = p(r) exp(ik r)d'r.

For a fixed i and j we can integrate first over all of the
other atomic coordinates. This integral on p~ gives the
probability for finding the ith atom at r; and the jth
at r, ; therefore

f*(rt)f(rs) ps(rt, rs)d'r&d'rs,

where p2 is the probability of finding an atom at r~ per
cm', and at r2 per cm'. These density functions can
be defined in general by

p~(rr'rs' . rs') =ZZ" 2- ~(r' —ri')

&&5(r;—rs') 8(r„rs')p~(r )d —r (14).

It is a function only of k, the magnitude of k.
It is readily verified that the solution is orthogonal

to the ground state if we exclude k=0. In fact, the
solutions for different values of k are orthogonal to each
other. This is because they all belong to diferent eigen-
values, hk, of the total momentum operator

P= (It/i)P;V;,

as is directly verified from (2) with (17), taking P&=0
since the ground state has zero total momentum. ' Since

' The argument is not rigorous because the momentum of the
entire liquid can be changed without appreciable energy change
by moving the center of gravity. This multiplies the wave function
by a factor like exp( r'Itkill' '—Z;r, ) This func. tion is so diGerent
from (2), however, that the orthogonality is probably not
destroyed.
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this operator commutes with the Hamiltonian, we have
in (18) an upper limit to the energy for each value of k.
(In fact, we could have obtained (17) from (2) by this
argument. ) Since we expect that (2) is a good wave
function for functions f which vary from plus to minus
in a distance of order a/2, we expect that (18) is not
only an upper limit, but also a good estimate of the
energy in a range of k's in the neighborhood of k = 2s-/a.
In fact, our arguments suggest that E(k) should have a
minimum as a function of k in that region. These ex-
pectations are verified in the next section.

qq —— p(r) exp(ik r)dsr=P, exp(ik. r,). (21)

Evidently, the 5(k) is the expected value of ~qi, ~' in
the ground state. For long wave sound q~ is just the
coordinate of the normal mode, so its mean square can

' J. Reekie and T. S.Hutchison, Phys Rev. 92, 827 (.1953),have
determined p(r) by x-ray scattering.

DISCUSSION OF THE ENERGY SPECTRUM

To find the consequences of (18) we shall have to
discuss the behavior of S(k) defined in (19).

The function p(ri —rs) gives the probability per unit
volume that a particle is at r2 if one is known to be at r&.

If r2 is close to r~ it is zero, for the atoms cannot overlap.
On the other hand, if r~ coincides with ri there is an
atom there, so p contains a delta function 5(ri—rs).
For large r2 it approaches po. Since the structure of the
liquid ought to be more or less like that in a classical
fluid, as r increases from zero, p(r) probably rises to a
maximum at the nearest neighbor spacing, falls, then
rises again to a lower and wider maximum for next
nearest, and with rapidly decreasing smaller oscillations
approaches unity. ' The integral J'(p(r) —1)d'r vanishes
since the integral of ps(r, ,r,) with respect to rs is exactly
p~ times the number of atoms E=poV.

The Fourier transform function 5(k) is just the liquid
structure factor which determines the scattering of
neutrons (or x-rays, after multiplication by the atomic
structure factor) by the liquid at absolute zero. It is
therefore a quantity which can be directly determined
experimentally. For large k it approaches j. because of
the delta function in p(r). It has a delta function at
k= 0, but this value of k is not of interest to us in (18),
because the wave function P must be orthogonal to the
ground state. The behavior at small k depends on the
variations of p(r) over long distances, that is, on long
wavelength density fluctuations. These are the zero
point fluctuations of the sound field in the ground state,
since for wavelengths longer than the atomic spacing
the approximation of a continuous sound field is good.
This may be analyzed as follows. The operator repre-
senting the density at a point r is

p(r) =2'~(r r')— (20)

Its Fourier transform is

be easily determined, for example, by noting that the
mean potential energy is half of the ground-state energy
srko~. In this way one finds 5(k) =hk/2risc for small k,
where c is the velocity of sound.

The behavior of 5(k) for intermediate k is familiar
to us from the x-ray studies of classical liquids. The
density distribution in the ground state is roughly
similar to such a liquid. There is some local structure
produced by the tendency of the atoms to stay apart.
This quasi-crystalline local order makes a maximum
in the 5(k) curve for k near 2s/u. There may be smaller
subsidiary maxima for near multiples of this k. For
helium, because of the large zero point motion, these
maxima may be broader and less marked than in other
liquids. The main maximum is responsible for the main
ring in the x-ray diffraction pattern. It is shown clearly
in the preliminary neutron diGraction data reported
by Henshaw and Hurst. '

To summarize: with rising k, 5(k) starts linearly as
kk/2rrsc, rises then to a maximum near k=2m/u, and
falls again to approach, with possible minor oscillations,
the limit unity. Consequently the quantity Z(k) =k'k'/
2mS(k) should start linearly as kkc, but should then
show a dip with a minimum at k=ks say, near 2s/c,
finally rising, eventually as kk'/2ris. These relations
are shown in Fig. 3.

We have argued that (2) should be a good approxima-
tion to the wave function for functions that contain
wave numbers in the vicinity of 27r/a. Therefore we can
expect the energy values (18) to be good in the neigh-
borhood of this wave number. It is gratifying to see
that there is a minimum in this region. The minimum
value we shall call d, . Ordinarily the variational method
only permits one to interpret the minimum value of E
as one varies a parameter such as k. On the other hand, in
our case each value of k has significance since these values
correspond to different eigenvalues of the momentum
operator, as has been remarked. Therefore we can
believe the behavior of the curve through a range of
k near ko, where it behaves parabolically, so we can
write E(k) in Landau's form 6+&'(k —ks)'/2p, where
p, is a constant determining the curvature.

It is at first disconcerting that values of the energy
lower than 6 can be obtained by going to very small
values of k. But the energy here varies as kkc, just that
expected for phonon excitation. In fact, a moment' s
reQection shows that, for small k, the wave function (2)
is just that which represents phonon excitation. Excita-
tion of a given phonon means that the harmonic oscilla-
tor representing the corresponding normal mode is in
the 6rst excited state. The wave function is therefore
qi,P, if qir is the normal coordinate of the mode excited.
This coordinate is the Fourier transform of the density,
so (21) shows that (2) with (17) represents a phonon
for small k. Since the wave function is correct the
energy must be exact, and is therefore kkc.

' D. G. Henshaw and D.G. Hurst, Phys. Rev. 91, 1222 (1953).
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so a few remarks might be appropriate here. It looks
at 6rst, on inspection of the 6rst factor, that this repre-
sents the excitation of a single particle. This is correct
at very high k(ka))2s. ) and it is also correct for the
ideal gas case for which the atoms do not interact
(@ is constant then). But our arguments for inter-
mediate k show that this is not the case. Because of the
correlations in position implied by the factor p, the
motion of one atom implies the motion of others. Thus
the factor in front of p selects from that function certain
correlated motions, in spite of the fact that each term
in the factor depends on just one variable.

We can get a better idea of how this works by taking
the extreme case of very low k. Here (22) represents a
sound wave but at first sight there is no sign of the
density variations that such a wave usually brings to
mind. Let us take the real part and consider

P; cos(k r~)p (23)

for small k. Now, for most configurations, allowed by @,
the atoms are fairly uniformly distributed, so that
there are just as many in the regions where the cosine
is positive, as where it is negative. Therefore the sum
over all the atoms of cos(k r;) is zero. The wave func-
tion is zero for nearly all con6gurations. It is only for
the rare configurations in which the number in positive
regions exceeds that in regions where the cosine is
negative that the wave function does not vanish. In this
way (23) selects configurations for which the mean
density varies as cos(k r). Since such density fluctua-
tions are, according to the behavior of P, most likely
produced by small cooperative motions of large numbers

Although we have made an argument only to show
that (2) should be valid for high k, we see now that it
is also valid. for small k, that is for f(r) which vary
slowly. Since the energy curve is valid for the smaller k

and for a range about 2w/a, we can accept it as reason-
able for all k from zero up to and slightly beyond the
minimum.

On the other hand, for still larger k, another state of
lower energy exists with the same total momentum.
It is the state of double excitation, one of kr, the other
of ks, such that kr+ks ——k and still E(kr)+E(ks) (E(k).
This becomes possible for k so high that the slope dE/dk
of the energy curve exceeds Ac, the initial slope. The
curve for very large k, therefore, does not have the same
validity as that for lower k, but we need not enter into
this matter, because at temperatures of a few degrees
such high-energy states would not be appreciably
excited. Such questions may be of importance in dis-
cussing nonequilibrium phenomena. One process by
which the number of excitations can change is for an
excitation to pick up enough momentum that it can
divide spontaneously into two.

It is easy to misinterpret the meaning of the wave
function
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+IG. 3. The upper curve gives the liquid structure factor deter-
mined from neutron diIIraction (reference 5) and extrapolated to
zero k. The lower curve gives the energy spectrum nf excitations as
a function of wave number (momentum k ') which results from
the formula 8= k'ks/2rsS(k) derived in the text. The initial linear
portion represents excitation of phonons while excitations near
the minimum of the curve, where it behaves as 6+5'(k —ko)'/2p,
correspond to Landau's rotons. However, data on the speci6c heat
indicate that the theoretical curve should lie lower, closer to the
dashed curve.

of atoms, the state described is very far from the one
particle state it would be if the cosine factor appeared
alone, not multiplied by P.

In the region of the energy minimum at ko the wave
function represents a situation intermediate between
the cooperative motion of phonons, and the excitation
of a single particle. Several atoms move together be-
cause of the correlations implied by P. It is hard to make
a clear picture out of this vague idea. There is nothing
to indicate that the state carries an intrinsic angular
momentum. One must be careful because the state is
degenerate, as all directions of k with the same magni-
tude ko give the same energy A. Perhaps, if more com-
plicated wave functions were tried, some special linear
combination representing a kind of microscopic vortex
ring or one with intrinsic angular momentum has in fact
a lower energy. States of low k will be called phonons,
and states of momentum near ko will be called rotons in
this paper, in accordance with the terminology of
Landau, ' although we do not necessarily mean to imply
that rotons carry intrinsic angular momentum or repre-
sent vortex motion.

MULTIPLE EXCITATION

We have obtained the energy spectrum E(k) of what
we may call single excitations. They have the form of

' L. Landau, J. Phys. U.S.S.R. S, 71 (1941); 8, 1 (1941). See
also R. B.Dingle, Supplement to Phil. Mag. I, 112 (1952).
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THERMODYNAMIC PROPERTIES OF HELIUM II

From this we may determine the thermodynamic
behavior of liquid helium at low temperature. At su%-
ciently low temperatures the number of excitations will
be small, so the interactions between them can be
neglected. The approximation of independence leads
in the usual way to the formula for the Gibbs free energy
(taking the ground-state energy as zero),

F=kTVJ'in[1 —exp( —PE[kj)fd'k(2') ', (25)

with P= 1/kT. The number of excitations of momentum
k is

(26)mg ——[expPE(k) —1j—'.

plane waves through the liquid, By taking linear com-
binations we can make wave packets that are more or
less confined to a local region. Unless the region is very
small there would be only a negligible energy addition
required to do this. The remainder of the liquid is quiet
as in the ground state. It is conceivable that another
packet could be located somewhere far away and the
energy would be close to E(ki)+E(k&) if ki and k& are
the momenta of the majority of the waves in each
packet. Thus we should expect states with several
excitations, the energy being the sum of the energies
of each packet separately. This neglects a kind of in-
teraction energy between them. It will be valid if the
density of excitations is very small, but one cannot
expect to apply it to situations in which the number of
excitations is any appreciable fraction of the number
of atoms in the liquid.

Mathematically, if the function

F=P; expiki r;

gives E(ki) for the energy, we might expect the wave
function for two excitations to correspond to P=Fg,
with

F= [P;exp(iki r;)j[P;exp(iks r;)j. (24)

It is readily verified, by substitution into the variation
integral, that the energy is E(ki)+E(k&) within correc-
tion terms of order 1/V, where V is the volume of the
entire Quid. This is just what one would expect if
the excitations behaved like interacting particles, for
the relative probability of their being within their range
of interaction varies inversely as the volume. The ex-
pression (24) is unaltered on reversing the order of the
factors, so the state in which the first excitation has
momentum ki and the second has k2 is the same as that
in which the momenta are reversed. Thus the excitations
obey Bose statistics. The expression (24) is not orthog-
onal to (17) with k=k, +k&, so there undoubtedly are
matrix elements between states of different numbers of
excitations, and collisions must be possible which change
this number. In summary, the excitations behave much
like interacting Bose particles which may be created
and destroyed, and whose energy as a function of mo-
mentum is given by E(k) =k'k'/2mS(k).

We need not enter into further details as this has been
thoroughly analyzed by Landau, ' who first proposed
the form of energy spectrum we have deduced here. At
low temperatures only the lowest energy excitations
can become excited. That is, only the phonons are
excited and the specific heat varies as T'. At higher
temperatures some of the states near the minimum of
the curve, at ko become excited. The specific heat then
rises rapidly, controlled predominantly by the exp (—PD)
factor, governing the number of rotons excited. For
temperatures of a few degrees few rotons are excited and
only the phonon part, and the part of the curve near the
minimum, are important. Landau' has shown that one
obtains good agreement with the specific heat (and with
the measured values of the velocity of second sound)
if one chooses the parameters 6=9.6'K, k0=1.95 A ',
and @=0.77. This means the energy curve near the
minimum behaves as 2mE/k'=1. 6+1.3(k—1.95)', with
k in reciprocal angstroms (one A ' corresponds to a
temperature of 6'K). In the phonon region the curve is

2mE/k'= 2.6k,

in the same units, if the speed of sound is 240 meters/sec'
Henshaw and Hurst' have published some preliminary
data on the neutron scattering by liquid helium at
4.2'K. From it 5(k) may be directly determined (see
Fig. 3). The curve for E(k) calculated in this way
behaves as

2mE/k'= 3.0+1.0(k —2.0)'

near the minimum (and is consistent with 2.6k for
small k). This corresponds to a value of 6 of 18' which
is impossibly large. Such a discrepancy may be due
to the inaccuracy of the trial function (2), the true
energy being lower than that calculated with this trial
function. Such a large discrepancy in energy is dis-
couraging, because the physical arguments did seem to
indicate that (2) should be a reasonably good first
approximation.

The expression (25) should not hold at high tem-
perature because it neglects the interactions among the
large number of excitations which (26) demands at
such a temperature. Without an estimate of these inter-
actions it is hard to judge the region in which deviations
are to be expected. We shall make a very rough pre-
liminary argument here.

To the approximation that the energy in a mode is
proportional to an integer n, this mode behaves like a
harmonic oscillator. The coordinate of this oscillator
qq has a mean square value 2@+1 times its value in the
ground state. For what size qi, is the harmonic oscillator
approximation poor? If we knew this we could put a
limit on the ranges of q~ and hence of is~, for which (25)
might be expected to be valid. .In our case the various
q~ from (21) are not independent, because they can
all be defined in terms of the same 3X variables r;.

' L. Landau, J. Phys. U.S.S.R. 11, 91 (1947); Phys. Rev. 75,
884 (1949).
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Thus, for example, if q& is known for 31V values of k, it is
known in principle for all others. It is very difficult to see
what this interdependence means to (25).

But one can notice that one restriction is

corresponding to this point. They must contribute a
phase mvi P,r; where the sum is taken only over those
near I'. Corresponding contributions would come from
sums near other points so the total factor ought to be
exp/irwin, v(r;). r~'j. The wave function is, therefore, of
the form

P= exp/i+;s(r;)]y, (29)

where the integral is taken over all k. Hence we may
guess that we should restrict (25) by the condition that
the excess

~
q~

~

' over that for the ground state, summed
on all states, cannot exceed 37. This excess for a given
mode is 2e~ times the ground-state mean value of

~ q& ~'. This latter is 5(k) =k'k'/2m'(k), so we obtain
the restriction

k'm —' I (k'/E(k))nod'k(2n-) '= 1.

The thermodynamics which would result (by adding
a chemical potential p to E(k) in (25), (26) to allow for
(28)) will show a second-order transition. ' But without
a deeper analysis we are in no position to take Eq. (28)
literally. We can only use it as a rough criterion for
validity of (25). If the integral on the left is much less
than 1, then (25) should hold. At 2'K the integral
amounts to roughly 0.2, so perhaps we are entitled to
trust (25) even to within a few tenths of a degree of the
transition temperature.

where s(r) is some function of position. We have sug-
gested that it is mv(r) r. However, as is usual when one
has waves whose wavelength varies from point to point,
the wave number is not the phase divided by r, but
more accurately it is the gradient of the phase. There-
fore (29) represents the fluid in motion, the velocity at
any point being given by

v(r) =m
—'Vs. (30)

As a consequence of (31),V&&v= 0. Velocity fields for
which this is not true cannot be represented in such a
simple manner, and represent, as we have seen in II,
states involving large numbers of excitations. The prob-
lem they present is being studied. For regions which are
not simply connected, such as a torus, s need not be
single-valued. For example, in the torus we could take
s=p, the cylindrical angle. This would represent a
permanent circulation" even though V&v=0 locally.

Substitution of (29) into the variational principle to
obtain a steady-state solution leads t see (10), (11)with
8=exp(iP;s(r;))7 to the energy expression

MOTION OF THE FLUID AS A WHOLE

The existence of such excitations moving as nearly
free particles in a background Quid is the central con-

cept of the two-Quid model of Tisza' and Landau. The
consequences of these ideas for excitations with a
spectrum such as (18) have been carefully analyzed in
a general manner by Landau and Dingle. ' There is
nothing to add that is new in this direction. However,
we shall review brieQy how the equations of this model
arise, emphasizing the behavior of the wave function.

Beside the states which represent local internal excita-
tion of part of the Quid, there are, of course, states in
which the entire body of Quid moves. In general, in
these cases the boundaries of the Quid move also. For
example, at absolute zero, the entire Quid may move as
a body with velocity v. This center-of-gravity motion
is described by

/=exp(tv P;r,)Q,

if we assume @ corresponds to the ground state at rest
in the laboratory system.

Suppose we wish to represent a situation in which
the velocity v(r) varies from point to point, but only
very gradually on an atomic scale. We might try some-

thing like this. The atoms in a region about some point
I' have their center of gravity moving at velocity v&

This conclusion is modified if the interaction of the rotons and
the hydrodynamic modes is taken into account.' L. Tisza, Phys. Rev. 72, 838 (1947).

Po
Vs(r) Vs(r)d'r,

2m
(31)

which is the kinetic energy psnzv'/2 per unit volume. It
is minimum for variations in s if V' (Vs)=0, that is,
7'.v=0. The Qow must be incompressible. We have not
allowed, in (29), for variations in density. For a singly
connected region this has but one solution v= 0, unless
the boundaries move. In a multiply connected region,
like a ring, circulation of angular momentum in mul-
tiples of Sk is possible. There are so few of these special
states that the statistical mechanics is not affected. The
variables, v(r), representing such motions can be

specified as external known variables like pressure and
volume.

EXCITATIONS IN A MOVING FLUID

Next we study the motion and energy of an excitation
in a moving Quid. The wave function is

4=+,f(r,) expt iQ, s(r, )g@.
"It was suggested in II, reference 9, that to observe this experi-

mentally one might have to avoid letting the liquid have a free
surface. But R. Peirels has pointed out (private discussion) that
although the atoms evaporating from the moving liquid to the
gas carry angular momentum out, only those of the gas which are
moving along with the liquid can condense, bringing back angular
momentum —so in equilibrium there would be no damping of
the motion from this effect. There are other effects, however,
such as those which cause resistance to capillary 6ow at high
velocities, which might be expected to damp the motion.
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When this is put into the variational principle, one
6nds directly

t

8/S=E(k)+m
'

j(r) v, (r)d'r
~l

Since r2 must be near r& for a large contribution, we may
replace g(r2) by g(ri), integrate r2 directly and obtain.

I=py(u) "lg(r)lpdpr .

+,'m -p (r)v, (r) .v, (r)d'r, (32)

where E(k) is given in (18), v, (r) =m 'V's, and we have
defined

If we assume g(r) is normalized, J'lg(r) l'd'r=1, so
that lg(a) l'=d(a) is the density in the packet at a, or
roughly the probability of finding the excitation at a,
the current is

j (a) = (12k/m) d(a), (36)

p(a) = pp(a, ri, r2) f*(ri)f(r2)d fid r2/I, (33) that is, a total current kk/m distributed at density d(a).
The particle density at a is

j(a) =h~ P2(a, r)Lf*(r)V'f(a) p(a) = pp(a ri, r2)g*(ri)g(r2)

with
f(r) '—7f*(a)jd'r/Imi, (34) Xexpl i—k (ri r)2)d—rpdirp/2I (37).

P2(rl r2)f (rl)f(r2)d rid r2. (35)
The points r~ and r2 must be close. If point a is not close
to these points we can use the asymptotic form,

These p, j, are the expected values of density and
current density that belong to the state representing a
single excitation.

We shall analyze this for the case of a single excita-
tion of nearly definite momentum in the form of a large
wave packet, large compared with the central wave-
length. That is, we take f(r) =exp(ik r)g(r) where g (r)
is a smooth amplitude function, such as a Gaussian,
with width very large compared to 1/k, but small
compared to the size of the vessel. Such a packet will
drift and spread slowly in a way completely determined
by E(k) and the principle of superposition. We wish to
determine the additional effects of the possibility of
general liquid Qow.

The current density associated with this excitation
is found from (34). We make the approximation that
V'f=ikf since g varies so slowly, obtaining,

j(a) =12km '
~ p2(a, r) (g*(r)g(a) expl —ik (r—a)g

+g(r)g*(a) expL+ik (r—)a$) drpI/.

Now, because of the variation of the exponentials, con-
tributions to this integral come only from r within a
limited distance from a. Within such a distance g(r) is
nearly the same as g(a), so all the g factors can be
evaluated at a and taken outside the integral. The
integral on r is then easy by (19) and one finds

j(a) =&kpo~(&) lg(a) I'/mI.

The normalization integral may be done in a similar
manner. It is

P3(a rl r2) POP2(rl r2) (38)

to show directly that p(a) is the density pp of the fluid,
far from the packet. It is nearly so, even in the region of
the packet, for since its dimensions are large, a is nearly
always far from r&,r&, and further, the integral over all
a of pp(a, r~r2) ppp2(—ri, r2) is exactly zero.

It is true that the distance of inQuence in p may not
be very small, because of the correlations in the sound
6eld. That is, the excitation produces a small strain in
the Quid which makes a field of stress in the vicinity.
Such fields provide a mechanism of interaction between
excitations (as well as a correction to the energy of one).
In a more detailed analysis such effects should be
taken into account. Here we proceed to a first approxi-
mation and neglect them. To the approximation of
neglecting compressibility, then, we find p (a) =pp, the
presence of an excitation does not change the Quid
density.

Thus we picture an excitation in the form of a
drifting wave packet as carrying a total current Iik/m,
and drifting (if v=0) at the group velocity v, = BE/Bk,
but as not appreciably altering the density.

This clearly violates the conservation of matter. For
a moment we overlook this difhculty. It is discussed in
the section following the next.

If this packet is in a general velocity 6eld v, (r) we
may determine its energy from (32) . In integral
J'j(r) v, (r)d'r we shall assume that v, does not vary
appreciably over a region as small as the packet, and
may be taken outside the integral sign. The integral
of j is then kk/m= p/m, giving the following results:

The energy of an excitation in a moving Quid is

~g (ri)g(r2)p2(rl r2)

Xexp)—zk (ri —r2)fd rid r2.

E=E(p)+y v„ (39)

where v, is the velocity of the Quid where the excitation
(considered as a Dacket) is located. The total momentum
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associated with the packet is p, and it contributes a
current p/m to the total in the fluid. The energy con-
tributed by the moving fluid has density pomv, '/2, and
it contributes to the current density pov, .

The group velocity of the excitation is BE/Bp so that
v, =v,0+v, where v, o is the group velocity in liquid at
rest, BE(p)/BP. Thus the excitation just drifts along
with the background Quid motion, of velocity v, . Equa-
tion (39) can be obtained much more simply by a
Galilean transformation of coordinates. Indeed, it is in
this way that it was obtained by Landau and Dingle. '

e=(exp'(E —p u)]—I}-', (40)

where u is a constant.
In our liquid, the density of excitations per unit

volume at a point r in this case would be, substituting
(39) into (40),

=(exp'(E(p)+p v (r) —p u)3 —I} ' (4I)

In order to interpret u, we study the total current
density. Since each excitation contributes a current
p/nz the total current density contributed by the
excitations is

P(exKP(E(P)+P (v.—«))j—I}d'P(2 ) '

At this stage we shall only consider the case of low
macroscopic velocities. Expanding to the 6rst order in
in v, —u this may be written in the usual way as

p„(u—v, ),

where p„ is defined as

"P'{ pt.PE(P)l —I} 'd' ( ) ' ( )
3m~

RELATION TO THE TWO-FLUID MODEL

The two paragraphs at the end of the previous section
contain the main relations by which the hydrodynamics
and thermodynamics of the two-Quid model is derived.
We review here a few of the steps, very brieRy, in order
to make clear the relation of the excitations to what
is called the normal Quid. For further details see
reference 6.

Thermodynamic equilibrium results, for a system
with Bose statistics, if the excitations are distributed so
that the number of those with energy E is

e = [exp (PE)—1]—'.

This may be obtained, for example, by maximizing the
entropy, keeping the total energy constant. Another
distribution which is also in equilibrium can be got by
maximizing the entropy, keeping both total energy and
total momentum constant. It is

To this we must add the current of the background
pov„so that the total macroscopic current density can
be written

I =p»u+pev»& (43)

if we put p, =po —p„.
In view of these separations we can say, arti6cially,

that the liquid behaves as though there were two parts,
superQuid at density p, moving at velocity v„and
normal at density p„and velocity u (which we write
hereafter as v„). The current is the sum of these two
partial currents. In a similar manner the change of the
internal energy, at constant entropy, produced by the
velocities can be shown to second order to be the sum of
the kinetic energies -',p,v 2+2'p v„'.

In a vessel with 6xed walls in thermal equilibrium, if
the liquid background is Rowing, its velocity v, must
have no component normal to the wall. Further, the
total current normal to the wall must vanish, so that
the normal component of v„must also vanish at the
walls. But in equilibrium v„ is constant everywhere and
must therefore vanish everywhere. We say the normal
Quid is stationary in equilibrium with 6xed walls, even
though the superAuid moves with the velocity v, .
Incidentally, the superAuid velocity is irrotational,
~Xv, =o.

If the walls move together at constant velocity, then
equilibrium results if v„ is this velocity; the normal
Quid moves at the same velocity as the walls.

We extend Eq. (40) to situations slightly out of
thermal equilibrium by assuming v„ is not constant but
varies from place to place. The failure of equilibrium
will bring in various irreversible processes associated
with the normal Quid, such as viscosity. If we leave
these out of account, the remainder of the hydrodynamic
equations which result can be derived in exactly the
manner already given by Dingle. ' We need enter no
further in this direction, as nothing new is gained.
The resultant hydrodynamical equations can most
easily be interpreted from the model of helium as con-
sisting of two interpenetrating Auids.

Nevertheless, it is difFicult to understand these partial
Auids from a detailed kinematic point of view. Kine-
matically we have a general, or background Quid in
which excitations move. The velocity of the superAuid,
v„ is the general velocity of this background, but the
density of superRuid is not po. The velocity of the normal
Quid, v„, appears as a parameter in the distribution
function. It can be shown to be the average group
velocity of the excitations. But the difFiculties arise if
one tries to interpret the formula (42) for p„ from a
direct kinematical point of view. It is not the average
value of any quantity that can reasonably be ascribed
to an individual excitation. It appears to have meaning
only for the entire group of excitations in, or near,
thermal equilibrium.

The division into a normal Quid and superAuid,
although yielding a simple model ~or understanding
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{a) V,=O, V„=O (b) V=O, V„

i ~/
(d) v,—,v„=O

F&G. 4. At intermediate temperatures the main excitations are
rotons which carry an intrinsic momentum, indicated by the
arrows. If they drift relative to the background Quid, they tend
to polarize upstream, This is illustrated for various values of
e, the background Quid velocity, and v the absolute drift velocity
of the rotons. The total current is p0v, plus the polarization current
of the rotons. Although mathematically correct, the separation of
this current into the two parts, p,e, and p„v„, characteristic of the
two Quid model seems somewhat arti6cial from the microscopic
viewpoint.

the final equations, appears artificial from a micro-
scopic point of view. This opinion is shared by Landau
and by Dingle. '

It is interesting to look at what is happening on a
microscopic scale for various conditions of the velocities
v„v„.Consider a temperature not too low so that the
predominant excitations are rotons. If the Quid is at rest
a roton created with exactly the minimum energy 6 has
no group velocity, but it has a momentum, of magnitude

Po pointing in some direction. We will call it the direc-
tion of polarization and represent our roton by an
arrow in this direction in Fig. 4. Not all rotons have
exactly this energy 6, but may differ by order kT from
it, and have therefore nonzero group velocity. (Inci-
dentally, the group velocity is parallel to or opposite
to the polarization. ) The rotons therefore may move
about in a random manner like the molecules of a gas.
Like gas molecules they can also have an average drift
velocity relative to the fluid. Now we will assume Las
required by (39), (41)] that if the rotons are drifting
relative to the Quid in a certain direction, they tend
(as a result of collisions among themselves) in equilib-
rium to polarize themselves in the direction in which
they drift (that is, opposite to the velocity of the liquid
moving past them). The general drift velocity of the
rotons in space we call the normal Quid velocity, v„.
The motion of the Quid as a whole we call the super-
Quid velocity, v, . Let us consider some examples.

First, with the Quid at zero velocity (v.=0), and no
drift of the rotons (v„=0), they remain unpolarized

(Fig. 4 (a)). If they are drifting to the right (v„)0)
they will tend to polarize in this direction, lining up to

oppose the liquid passing them (Fig. 4 (b)). Now if the
liquid is in motion (v, =n), and all the rotons drift with
the liquid in the same direction (v„=e), there is no
relative motion and no tendency to polarize (Fig. 4 (c)).
This situation is not in equilibrium with stationary walls.
Collisions of the rotons with the walls will stop their
drifting motion and they will remain at rest relative to
the walls. However, they will become polarized opposite
to the Quid passing them (Fig. 4 (d)).

This interpretation of the velocities of the partial
Ruids of the two-Ruid model is fairly simple and direct.
It is otherwise with the current. The natural way to dis-
cuss the current (or momentum) from the microscopic
view is to split it into two parts. First the current
produced by the Row of the moving Quid, pov„and
second the current produced by the polarization. It is
then easy to see what the current is in each case. In the
first two cases, 4a, 4b, we have no general Quid motion
so that the current is all due to polarization, zero in
case a, to the right in case b. If the Quid moves, but the
rotons remain unpolarized, as in 4c, the current is pov„
purely due to liquid motion. %hen the rotons polarize,
as in 4d, to oppose this background motion the total
current is reduced. But this natural separation is not
the same as that utilized in the two Quid view. It is
dificult to identify, for example, what is called the
current of the normal Quid. It is not current carried by
the rotons as they drift from one place to another
(which they do with the velocity v„) because the roton
as such carries no mass but is only a disturbance in the
liquid. Certainly the value of p„would be hard to obtain
this way because the rotons contribute to the current
mainly by their polarization, and not by their drift
motion. (Of course in a case such as 4b the polarization
is in the direction of the drift so we could say the drift
acts asi f it carries current, because it induces polariza-
tion. p„ is then the ratio of the polarization current to
the drift velocity which produces it.)

On the other hand, it is evident that the entropy
flow is produced entirely by the drift motion (and not
the polarization) of the rotons. Hence it is easy to see

why all the entropy Qows with the velocity v„.

THE CONSERVATION OF CURRENT

In the last section we considered a packet of solutions

(2) and found that we could picture an excitation in the
form of a packet carrying a total current hk/m, and

drifting at a group velocity BE/8 p, but as not appreci-

ably altering the density. But such a picture is incon-

sistent with the conservation of matter. To take an
extreme example, for a roton of the minimum energy 5
the group velocity BE/Bk is zero, but the current
hko/m is large. If such a current is distributed over a
finite region in such a way that the direction is every-
where the same, we evidently cannot conserve material.

On the other hand, it is well known that one can
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demonstrate the conservation of matter,

Bp(a)/Bt= V.j(a),

from the Schrodinger equation. The reason that our
wave function does not satisfy (44) is that it is not an
exact solution of the wave equation. This shows an
inaccuracy in our approximate wave function (17).

One way that suggests itself to resolve it, in the case
of rotons with k = ko, is to propose a superposition of two
waves with opposite momenta k and —k, like g(r)
cos(k r). In this case the current density is zero, and
everything is all right. Furthermore, if the same small
momentum 1 is given to each, so the momenta become
k+1 and —k+1 with k=ko, the drift velocity BE/Bk
is the same for each partial wave, so that the packet
stays together.

On the other hand, with stronger collisions with walls
and phonons perhaps the two momentum components
would become separated. Further g(r) sin(k r) is just
as good a solution, and it must have almost exactly the
same energy even if interactions are taken into account,
because the exact position of the nodes in a large packet
cannot be important. Therefore, a linear combination
must again be a possibility and we are led back to the
exponential, and to the diQiculty of current conserva-
tion. This lack of conservation is a symptom that all is
not too well with our wave function. It is true that in
the cosine case the symptom is hidden, but the con-
clusion should stand that the wave function could be
improved.

The problem can be resolved by considering more
complicated functions representing interaction of the
excitation with the Qow of Quid in its surroundings. One
way the current could be conserved would be to have a
general return Qow of Quid in the region outside the
packet. We therefore try the solution

II'=g,g(r, ) exp(ik r;) expLop;s(r;) jQ, (45)

with the hope of finding an s which produces a velocity
distribution v=m 'Vs which shows such a reverse Qow.
I.et us Grst consider such a packet in otherwise sta-
tionary liquid. Then as a boundary condition s should

go to zero as we go far from the packet. Substitution into
the variation integral gives (32). For the current and
density we use our approximations, that j(a) is given
by (36), and p(a)=po. There results

po
8/S=E(k)+ j(r) V's(r)d'r+

~

V's Vsdor, (46)
2m~

where we have put, for the packet energy, E(k), which
is nearly correct. Variation of s to Gnd a minimum gives
the equation

(47)

This equation determines s if we impose the boundary
conditions s~0 far from the packet. Call this solution so

and. the velocity distribution vo= Vso/m. It is like the
Beld produced by the charge density V j, that is, at
large distances the field of a dipole. It represents the
back Qow expected. Furthermore the total current
operator has for our function the value

Jo =j+poVso (48)

so that (47) says that now the total current is conserved.
There is a small shift in energy. Substitution of (47)

into (46) gives the extra energy (reduction)

porn
v(r) v (r)tPr.2J

If the order of the dimensions of the packet are I., the
current N/m is distributed over a volume L', so the
velocities are of order hk/mLo and the kinetic energy
(poA'k'/mLo)Lo varies as 1/L'. But to confine the packet
to such a dimension wave numbers of order 1/L in g(r)
must be used, so we find from (18) (for the case 0=ko)
excess energies of order I/L' needed to confine the
packet. Thus, for large packets, spreading the packet
over even larger dimensions will decrease the energy, in
spite of the energy of the currents we have just cal-
culated. For extremely small packets our analysis does
not hold because of the approximations made.

Here we have just gone far enough to save the
theorem of conservation of current. We have only dealt
with the background current in a semiclassical way.
More complex states consisting of superpositions of
expressions like (45) should be considered if a correct
calculation of the quantum-mechanical "self-energy"
of a roton due to coupling with the general velocity
field is to be carried out. Since the "self-energy" is
negative, the corrected value of 5 will be nearer the
experimental result. This problem is being studied.

A more correct picture of a packet excitation, then,
is that of a kind of region of polarization (that is, j)
which induces a distribution of velocity Beld around-it,
poVso. The Geld is analogous to that produced by elec-
trical polarization, the electric field E corresponding to
the velocity field Vs/m, and the electric displacement
vector D being analogous to the total current density,
since its divergence vanishes. We can use this analogy
to determine the behavior of the system directly, as it
is easily veriBed that all the equations correspond.
There is, however, one important difference. The signs
of interaction are reversed. Thus (39) shows that rotons
tend to line up opposed to the external field v, while
electric dipoles line up with the Geld. The analogy must
therefore be completed with the . remark that the
rotons are dipoles of a gravitational type; that is, like
poles attract, unlike repel.

The energy of a dipole in an external field is still the
moment times the external Beld, even though the dipole
itself creates some Geld of its own. None of the con-
clusions of the previous section are changed, therefore.
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J=ppv, +P. (49)

The actual field at any point is not v, because of the
local variations produced by the individual dipoles.
Call the w velocity that an average dipole feels both
from the average eGect v, and from its neighbors. The
latter contribution is proportional to the polarization.
In fact, as Lorentz showed for dipoles in random posi-
tions, it is pts/ mhence

w=v, +nPps ', (50)

where"n= 3. The case n= 0 is the case previously studied
which neglects direct effects between the dipoles.

The energy of a roton in this field is E(p)+ p w. The
statistical mechanics will then be governed by the
function,

f= kT~ ln(1 —expL —P(E(p)

+p. w —p u) 3)d'p/(2~)' (51)

Here u is zero for equilibrium with fixed walls, and is
the normal Quid velocity, u= v„. The average polariza-
tion then is given by

P=m 'r)f/aw-
The internal energy of the system is

U= smppv + Pm'w (trm/2ps)P'+(E(p)), (53)

where the average value of E(p) is

&E(P)&= E(P)( pr &(E(P)

+p (w —u))l —1) 'd'p/(2~)'

= f+TS (w —u) mP. —

The entropy is S=—r)f/BT.
Expanding up to second order in the velocities one

finds that the current can still be written as p,v, +p„u,
and the excess internal energy (at constant entropy and
total current) as —,'p, v s+-', p„u', provided that one writes

"Onsager has shown that if one deals with permanent dipoles,
mutually impenetrable and roughly spherical, this value of o, is in
error. Ef his analysis applies to 'our case, the value a=p&(po+2p, ) '
results LL. Onsager, J. Am. Chem. Soc. 58, 1486 (1936)g.

ROTON INTERACTION VIA THE VELOCITY FIELD

The fact that one roton creates a velocity field in
which another may interact produces a kind of inter-
action between rotons. This is possibly. one of the major
sources of interaction, especially for not too high roton
density. It is interesting to try to see what effect it
has. Suppose we consider rotons as small packets all
separated from one another and acting as dipoles of
strength p/m. Let us suppose there is an average
polarization P per unit volume, and an average back-
ground velocity v, . The mean current density is then

p8 =po p~ and

p.=p.'(1+ttp. '/ps) ',

where p„' is the old expression (42) valid for the case
+=0. Therefore the expression for the velocity of
second sound,

t'p„TS') *

Ep, C„)'
is unaltered when expressed in terms of p„, etc. Only
the theoretical formula for p„ is slightly modified. How-
ever, the modification is appreciable only when p„'/ps
is not small, that is, near the transition. At the transi-
tion where c2 goes to zero, p„must equal po so that p„'
given in (42) must equal 1/(1 —n) or 1.5. Actually p„'
varies very rapidly in this region so this makes no
appreciable change in evaluating 6 and Ps from the
data. Furthermore in this region there may be other
interactions which should alter our statistical me-
chanical analysis anyway. (Actually we cannot even
be sure that rotons act as small individual dipoles until
we have improved the wave function to include the
interaction with the velocity field, as a quantum field. )

With interacting dipoles we would expect the ana-
logue of a transition corresponding to the Curie point
for electric dipoles. The analog of the condition for the
Curie point comes out to be exactly the criterion that
the expression (54) for p„(with p„' substituted from
(42)) becomes equal to ps. There are a few surprises
here, though. Firstly, ordinarily the Curie transition
occurs as we lower the temperature, but here it appears
on raising the temperature. That is because the Curie
point depends markedly on the density. Dipoles
polarize if they are cold and dense. In our case at low
temperatures they are cold, but not dense enough.
As the temperature rises, the density does also, very
rapidly, until a point is reached where spontaneous
polarization appears even though the temperature has
been raised. Another surprise is the fact that there is
a transition even if the local held eGect is neglected
(tr=0). This difference is a result of the change of sign
of the forces. Our dipoles polarize most easily if arranged
in a Qat region, while for electrical dipoles a needle-like
region is preferred. With all the dipoles polarized
parallel in the sheet the outside field is zero if the
internal held opposed the polarization. But this oppo-
sition of polarization and field is just the stable condi-
tion for the rotons. In fact, the mutual local held n
tends to depolarize them and raises the transition
temperature. (For Onsager's value of n, (54) shows no
transition for any temperature. )

One might be tempted to speculate that we could
carry the statistical mechanical analysis right up to the
transition point and beyond, by simply assuming that
the only interaction of importance among rotons is the
coupling with the general velocity field. One would just
hope that other interactions or limitations to the
number of degrees of freedom are not as important as
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one would otherwise guess. Aside from the amusing
twist that helium I would then be the polarized,
organized state, serious difhculties arise. One can
analyze these things from the statistical formulas, if
the velocities are not considered small and are not
expanded. One can, without loss of generality, take
states of total current zero, and for simplicity take n= 0.
What happens is this. For any temperature below the
transition there are two equilibrium states possible, one
unpolarized with v, =0, and the other polarized at
finite v, . Since the latter has higher free energy it is an
unstable equilibrium, but the v, =0 is stable (actually
only metastable"). As we approach the transition point
the polarization of the unstable state approaches zero.
Above the transition point (more correctly, the point
when p„=ps) only the v, =0 state is in equilibrium and
that is unstable. The instability arises this way. There
is a high density of rotons. If a little -polarization
develops, their energy is reduced. This increases the
number of rotons in equilibrium at a 6xed temperature
as well as the polarization, so that if there is no limit
to the number of rotons there is no stable state.

On the other hand, if a limitation of roton number
such as (28) is imposed, stable polarized states exist at
the higher temperature. But the transition to that state
occurs as a first-order transition, and there is another
transition at still higher temperatures when the polar-
ization disappears again.

It is therefore evident that we do not correctly
describe the region very close to the transition by the
usual energy expression (53) (with or without n=0).
The interactions between rotons is playing a more
complicated role than (53) can describe.

In a previous paper an expression was given for the
partition function which was presumably reasonably
satisfactory right across the transition. However, the
analysis was too difFicult to carry out. Now that a more
detailed picture of the behavior below the transition is
available it may be easier to see how that expression
can be treated. We still lack a clear picture of what
happens in the few tenths of a degree on either side of
the X point.

INTERACTIONS BETWEEN EXCITATIONS

Interactions between the excitations will lead to
various irreversible processes, such as viscosity, attenua-
tion of second sound, etc. These questions have been
studied by Landau and Khalatnikov. " The most
important factor in the various mean free paths which
are involved is the change in density of the phonons and
rotons with temperature. The absolute cross sections
depend on the details of the interactions. Interactions

'~ That is, the conventional free-energy expressions for arbitrary
v, are, strictly speaking, not self-consistent. For any temperature
there is always some value of v, for which the free energy is less
than its value for e,=0.

'3L. Landau and I. Khalatnikov, J. Exptl. Theoret. Phys.
(U.S.S.R.) 19, 637, 709 (1949).

between phonons can be thought of as arising from a
nonlinear equation of state. An interaction between a
phonon and a roton would result if rotons have a
diferent energy for different pressures. According to
the theory presented here their energy is h'k'/2mS (k).
If the liquid is compressed k' increases. On the other
hand S(k) probably increases even more rapidly from
the increase in local order produced by squeezing the
nearly impenetrable atoms into a smaller space. There-
fore we expect d to decrease with pressure. This pro-
vides a mechanism for roton-phonon interaction. It also
has other effects. The presence of a roton would cause
a small increase in density in its neighborhood with
the eGect falling oG inversely as the distance from the
roton. This provides a mechanism of long-range inter-
action between rotons in addition to that due to
coupling with the general velocity fmld. The roton-
roton interaction at short distances is a more difficult
problem, which probably cannot be adequately solved
until a more accurate wave function is available for
the roton state.

If the roton energy 6 decreases when the liquid
density increases then we would expect that in equilib-
rium the liquid would shrink if the number of rotons is
increased. The volume decrease as the ) point is ap-
proached is probably a consequence of this eGect. The
fall of the X temperature with rising pressure is thermo-
dynamically related. It may also be seen directly from
(42) (supposing the X point to be p„=ps) considering
that 6 decreases as the density rises.

SUPERCONDUCTIVITY

It has been suggested that superconductivity is
analogous to superQuidity. What can we learn of the
former from our study of the latter) It is interesting
that if the He atoms were charged (and their net charge
canceled by a uniform fixed background charge of
opposite sign) the liquid would imitate many of the
features of a superconductor. In a magnetic field at
absolute zero the London'4 equation, j=@A/roc, would
hold. This is because stirring of atoms is equivalent to
interchange so that in the lowest state the wave func-
tion cannot vary if atoms are stirred, and the part of the
current depending on the wave function gradient
vanishes. Other states would take a finite energy to
create, there would be states of permanent circulation
in multiply connected rings, there would be a second-
order transition, etc. How this close analogy is to be
interpreted is not clear. The things which, it has been
argued here, apply physically to helium cannot be
justifiably taken over to the case of Fermi particles,
or such particles in interaction with lattice waves,
without a complete investigation of their validity in the
new environment. For example, at present there is
not, in the author's opinion, justification for assuming

~4 F. London, Superflmsds Qohn Wiley and Sons, Inc. , New
York, 1950), Vol. I.
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that the form (2) is a reasonable wave function for an
assembly of Fermi particles, with p the ground-state
function for such particles. In fact, there are definite
arguments against it. Possibly the close analogy should
only be used to tell us what the problem of supercon-
ductivity is. It is, from this point of view, the problem
of showing that, in the metal, aside from phonons there
are no (or only very few) states of very low energy just
above the ground state.

DISCUSSION

Ke still have left unsolved at least three basic ques-
tions. One is to find a clear description of the neighbor-
hood of the transition. A second is to obtain a more
perfect roton wave function. The third is to describe
states for which the superQuid velocity is not vortex-
free. So far we have V'&(v, =0. At high velocities when
more energy is available, more complicated motions
might be excited. The evidence of high resistance to
capillary Row at the higher velocities indicates this. A
new element must presumably be added to our picture.
We hope to publish some views on this third problem
at a later time.

We have limited ourselves to a qualitative analysis
of the more curious features of the behavior of liquid
helium. The problem of obtaining 5(k) or the correla-
tion function for the ground state quantitatively from
first principles is beyond the scope of this work.

It has been argued' that He' atoms in low concentra-
tion, in He' would act as a gas of free particles, but
with an eBective mass m" higher than that of one atom.
This mass m" is calculated in the appendix, where it is
found to be about six atomic mass units.

The author has profited from conversations with
R. F. Christy and with Michael Cohen.

APPENDIX

According to II an impurity atom of He' (at inGnite
dilution) should behave as an essentially free particle
except that its effective mass m" should exceed the
true mass of He' due to the inertia of the He4 atoms
which must make way for it as it moves. Ke shall
calculate this excess mass here. First we suppose the
impurity atom had the same mass m as the other He4

atoms (i.e., we neglect the diGerence in mass of He'
and He4).

The wave function for such an atom (coordinates rg)
moving with momentum hk might be conjectured to be
exp(ik. rz)p, where g is the ground state of the system
(which is the same as if all the atoms were identical).
This, as a trial function, gives the variational energy as
5'k'/2m and shows no mass correction. It does not
represent with sufhcient accuracy the other atoms
moving back when atom A moves forward. This
suggests the trial function

P= exp(ik r~) exp[os;s(r; —r~)]p,

where the velocity Geld V's(r; —r~) represents a backflow
which depends only on the distance from the impurity.
To omit the term i=A in the sum we take s(0) =0.
Substitution into the variational principle gives

8= (1'i'/2m) [k'—2k Q,Vs(r, —r~)

+P;P;Vs(r, —r~) V's(r; —r~)

+p;Vs(r, —r~) V's(r; —x~)]p~d r, (2-a)

with 8=1, as f is normalized. We write po(r, ,r~)
=pop(r, —r~), and po(r, ,r;,r~) =popo(r, r~—,r, r~—), and
measure all distances from the point r~, so that (2-a)
becomes

2mb '8= k' —2k V's(r) p(r)d'r

+ "Vs(r) Vs(r')Po(r, r')d'rdor'
J

+ Vs(r) Vs(r) p(r)d'r. (3-a)

Then s is to be chosen to minimize this expression.
The function po(r, r ) is the probability of finding one

atom at r and another at r' if there is an atom at the
origin (P(r) is just the probability of finding one at
r if one is at the origin). We do not know what this
function po is, but in this problem we can approximate
it by p(r)p(r') (except at the origin). A given atom is
surrounded by many (eight or ten?) nearest neighbors,
and the distribution along one radius r and another r'
must be nearly independent except for the relatively
small solid angle where the atoms at r and r' are close
together. Even here, if the functions s(r), s(r') are
smooth enough the average of po over such angles may
still give nearly the same result as p(r)p(r'). With this
substitution our problem is that of minimizing

-2

2m' '8= k —tVs(r)P(r)dor

+ "V's(r) V's(r)p(r)d'r. (4-a)

The error made by this approximation is

f68= (5'/2m) ~ Vs(r) Vs(r')[po(r, r')
J J

—p(r) p(x')]dord'r'. (5-a)

The s(r) which minimizes (4-a) behaves as a dipole
field (as k r/ro) at large distances and this produces
some convergence diKculties in the first integral in
(4-a). They may be easily straightened out as follows.
The minimum energy is only very slightly altered if the
function s(r) is altered at very large distances in such
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a way that it falls off eventually more rapidly than
1/rs F. or such a function the integral may be done by
parts, the integrated part vanishing, so we may write

r'
2mIl '8=

~
k+ s(r)VP(r)d'r ~'

expression for (9-a) can be written

hm/m= 47rppB 1,—

where we have used the fact that

(pe p(r—))4xr'dr = 1
J~

(12-a)

(13-a)

+ Vs(r) Vs(r) p(r)d'r. (6-a)

V I:p()((1—tl)k —V ())]=0,
where we have set

(7-a)

"s(r)Vp(r)d'r= pk

Multiplication of (7-a) by s(r) and integration, using
(8-a), tells us further that

Vs(r) Vs(r)p(r)d'r=p(1 —p)k'

Hut in this form all the integrals have a de6nite limit
even if s(r) has no convergence factor (and therefore
varies as 1/r'). We may therefore use (6-a) and avoid
ambiguities from conditionally convergent integrals.

The variational principle shows that s must be a
solution of

s(r) =As/r', (14-a)

directly into (6-a) and determine the parameter A to
minimize 8. This gives

(4~
hm/m= s (

—ps
~

' r ps(r)4 ri'rdr, (15-a)
E3 )

r the origin, where p(r) has a 5 function being excluded
in this integral). Actually it is difficult to obtain
accuracy with this method because the asymptotic
form of v is sensitive to the values of p(r) used. Those
of Reekie and Hutchinson4 extended only up to r=6A
and had to be taken from a graph, so that (13-a) was
not accurately satisfied without some small arbitrary
readjustments of the values.

On the other hand, the solution showed that s(r) was
nearly proportional to s/r . Since (6-a) is a variational
principle we can therefore obtain a good value of the
energy much more simply. Ke substitute the trial
function,

so (6-a) says

A'k'

L(1—0)'+0(1—P)j=- (1—0)
2m 2'

and the effective mass is m/(I —P), an increase over m of

~m= Pm/(1 —P). (9- )

If the direction of k is taken as the s axis, the solution
of (7-a) may be written in the form,

s(r) = (1—P)k(s —sv(r)/r), (10-a)

where n(r) is a function of radius r=(r r)& only,
satisfying

d ( dnq—
I "p(r)—1=2pn,

dr 4 dr)
(11-a)

and such that v approaches r at large distances. This
is easily solved numerically. Vfe used the values of
p(r) determined by Reekie and Hutchison. 4 Starting
for small r where p(r) =0, so that dn/dr=0, we chose
~ at some convenient value and integrated out to radii
so large that p(r) was eEectively its asymptotic value
ps. Asymptotically v has the form c(r+8/r') where
8, c are constants. Since the equation is homogeneous
we may divide the entire solution by c to obtain one
with the correct asymptotic form. By substitution of
(10-a) into (8-a) one can show, using (11-a), that the

or, with the data of reference 4, 6m=0. 70m, or 2.8
atomic mass units. (The numerical solution of the
diGerential equation gave the same result within its
accuracy of about 10 percent. )

It is dificult to evaluate the small correction arising
from the term 68 of (5-a), for ps is unknown. If the
atoms locally are nearly on a lattice, say face-centered,
or body-centered, of cubic symmetry, 68 vanishes
with the trial function (14-a).

If the mass of the impurity atom is not four atomic
units it is readily shown that Am is unchanged, pro-
vided that the distribution p(r) of atoms around the
impurity is assumed to be unchanged. This is also
expected physically for the extra mass is due to the
motion of the He4 atoms in the environment of the
impurity. Therefore for a He' atom the eGective mass
should be 5.8 atomic mass units. The higher zero-point
motion of a lighter atom changes p(r) by pushing the
neighbors farther away, thereby raising dm a little
(but this effect must be a fraction of a mass unit because
the effective mass is almost certainly less than the 6.8
which it would be if the He' had the larger mass of
4 units).

This result is not in good agreement with the deter-
minations which have been made from experiment, as
summarized by Daunt. "These give values nearer 8 or
9 atomic mass units.

i' J. G. Daunt, Advance in Physics (Phil. Mag. Supplenmnt}
6, 209 (1952), particularly p. 258.


