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The system under consideration is an N-particle quantum-mechanical system enclosed in a volume U, in
which the particles interact via two-body hard-sphere potentials, with hard-sphere diameter a. The two-body
hard-sphere problem is first discussed by a generalization of Fermi s pseudopotential by means of which the
problem is formulated entirely in terms of the scattering phase shifts. It is then shown that a pseudopotential
for the N-body problem can be introduced, and leads to an expansion of the energy levels of the system in
powers of a. The first order energy levels of a Bose and a Fermi system are calculated. For the Bose system,
the 6rst order eriergy formula exhibits an "energy gap" above the ground state, leading to properties of the
system not dissimilar to that of a superQuid. The ground state energy for a Bose system is calculated to order
u' and that for the Fermi system, to order a'. The physical interpretation and validity of these results are
discussed.

1. INTRODUCTION
~ '

i &HE aim of the present investigation is to formulate
J . the quantum-mechanical many-body problem in

terms of the solution of the two-body problem. ' In
particular, at low energies, the purpose is to formulate
the problem in terms only of the low-energy parameters
of the phase shifts, e.g. , scattering length, effective
range, etc. The general program is to make expansions
in powers of these parameters and to determine the
region of validity of such expansions.

It is physically obvious that a complete knowledge of
the detailed interaction potential is often not necessary
for a satisfactory description of the system. For ex-
ample, when a state of the many-body system is such
that the particles are so far apart from one another that
their fields of force do not appreciably overlap, their
mutual inRuence is essentially determined by the
asymptotic wave functions, which are directly related to
the phase shifts. Furthermore, under certain conditions
only a few phase shifts are important. For example, at
low energies, all but the S-wave phase shift are g.egli-
gible. The proposed formulation would provide a natural
framework in which an approximation such as this could
be systematically carried out.

Our formulation will be made for the special case of S
particles with hard-sphere interactions. This will make
the discussion concrete and help to make the physical
picture more easily visualized. There is in fact little loss
of generality in considering this special case as it em-
bodies the main di%culty of the many-body problem. H
this particular example is understood, it would not be
difficult to extend the method to a more general case.

The general method we follow is to replace the
interaction between the particles by suitable boundary
conditions. Such methods have been discussed by vari-
ous people. ' In particular, Fermi, ' Breit, 4 and Blatt and

' Somewhat similar ideas have been discussed by Brueckner in
his work on the nuclear problem. See K. A. Brueckner and %.
Wada, Phys. Rev. 103, 1008 (1956) and papers referred thereto.

2 This idea appears to be 6rst discussed by E. P. Wigner, Phys.
Rev. 83, 253 (1933).' K. Fermi, Ricerca sci. 7, 13 (1936).

4 G. Breit, Phys. Rev. 71, 215 (1947).

Weisskopf' have introduced a "pseudopotential" as an
equivalent of the boundary condition. The use of this
pseudopotential has always been confined to the Born
approximation in scattering problems. We shall prove
that for the two-body system a suitably generalized
pseudopotential can be found that gives exact results. It
will be demonstrated further that for the many-body
problem the corresponding pseudopotential has a simple
physical meaning which suggests a systematic approxi-
mation procedure.

The application of this procedure to the X-body hard-
sphere problem results in expansions of the eigenvalues
and eigenfunctions of the system in powers of the hard-
sphere diameter a. The ground state energy for the Bose
system is carried out to order a', and that for the Fermi
system to order a'. For a finite number of particles,
these expansions become meaningful for sufftciently
large ~allies. To the orders specified they are exact.
The method can therefore be applied to obtain series
expansions of the equations of state for a Bose or a
Fermi imperfect gas with hard-sphere interactions. We
shall return to this in a subsequent paper.

2. TWO-BODY PROBLEM

(a) Formuiation of the Pseudopotentiai
in the Two-Body System

We shall first formulate the two-body problem in
terms of a pseudopotential. As stated in the introduc-
tion, we consider the special case of a system of two
particles with hard-sphere interaction. The wave func-
tion in the center-of-mass coordinate system then
satisfies the equations

(P+k'g (r) =0, (r&a)

y(r) =0, (r(a)
where a is the hard-sphere diameter, r=

~

r ~, with r the
relative position vector. The boundary condition at

5 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952), p. 74.
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FxG. 1.Boundary con-
ditions for two-body
hard-sphere prob1em:
P(r)=0 when r is on
some distant surface S,
and/(r)=0, when r=u.

This last equation serves also to define il ~ inside the
sphere r= a. Near the origin r=0, we make use of the
well-known expansions for the spherical Bessel functions
j& and s&.'

j&(kr) (kr) '/(2l+1)!!,

rs ((kr) ~ (—2l 1—)!!/(kr) '+'

(2l+1)!!=1 3 5 (2l+1).
infinity is, for example, that f(r)=0 for r on some
arbitrary surface 5 (see Fig. 1).

For orientation, let us first discuss the S-wave part of We can now write
the solution. As is well known, the S-wave phase shift
for this case is

gp= —ku. (2) X (2ly1) tang(/(kr)"+'} (8)

We recognize that the hard-sphere diameter u can also
be looked upon as the scattering length. According to
Blatt and Weisskopf, ' one can extend the wave function
into the region r &u such that

8
(Vs+ks)g (r) =4wab(r) —(nl),

Br
(3)

P(r) = P A &„fj&(kr) —(tang))N ((kr)]I'( (0), (4)
L,m

where the operator operating on f on the right-hand side
of (3) is known as the pseudopotential.

We now proceed to give a derivation of a generalized
pseudopotential, which would exactly replace the hard-
sphere potential for all partial waves and at all energies.
Equation (3) is inexact for two reasons: First, it has not
taken into account the higher partial waves, and
secondly, even for S waves, it is valid only for very low
energies since it has not included the S-wave parameters
beyond the scattering length, such as the effective range.

We make an expansion of the wave function in
spherical harmonics immediately outside the sphere

where
Bg„Ag k'/——(2l+1)!!,

( d ) s&+&

(r'+V~-)
(dr)

(9)

Now, from the definition (7) of f~, we have

(v'+k)(F, P,.)
l(l+1)= F( V'+k' — il g

r2

l(l+1)= —I')„A („(tang() V'+k' — e)(kr)

t
L(»+1) j' ~(r)

Blm'( tang) I'),
k2 l+1 r l+2

(10)

which can be easily verified by integrating both sides of
(10) over a small volume about the origin r=0. From
(4) and (7),

l, m

so that by combining (9), (10), and (11)one obtains the
equation

4m 8
~(r)—(4)—k cotgp Br

(&) (v'+k')p(r) =tang (——j&(ka)/e &(ka),

as required by the boundary condition P(a) =0. We see
that qg is no other than the phase shift of the lth partial
wave. We would like to find the wave equation satisfied
by f(r) of (4), in such a way that the constants A& do
not explicitly occur. First define

+~ L(2l+1)"7
+ P P — tang&

l=l m l k"+'

8(r) ) 8 i "+'
x I

—
I

("+V )) (fl). (»)
r'+' & BrJ

(6)Pg„(r) = P(r) F(„*(Q)dQ.

where I'q (0) is a normalized spherical harmonic, and

j&, n&, are the usual spherical Bessel functions. A & are
constants which depend on the boundary condition on
S, and the constants tanp& are given by

We see that for r~&a,

P( (r) =A ) (j)(kr) —(tang))eg(kr)).

The solution to the above equation then coincides with
the actual wave function for r~&a. We have thus suc-
ceeded in formulating the two-body hard sphere entirely

(7) in terms of measurable phase shifts.
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It should be remembered that Eq. (11) may actually
be incorrect inside the sphere r=a, as the right-hand
side may fail to converge. However, if we neglect all
phase shifts )I i with l)L, say, Eq. (12) would have only
a 6nite number of terms on the right-hand side. The
solution of such an equation would satisfy the boundary
conditions at r=a for all partial waves up to /=L.
Equation (12) is therefore to be understood in the
following sense: it is to be solved by first taking a finite
number L of spherical harmonics and then approaching
the limit L~~.

The first term on the right-hand side of (12) repre-
sents the exact pseudopotential for S waves. H we
expand its strength in powers of k'.

the pseudopotential requires that some care be exercised
when one applies the usual perturbation formulas in an
actual calculation.

(b) Illustrative Example

To illustrate the method of pseudopotentials intro-
duced previously, we now apply it to a simple problem
in which the exact solution is trivially known. By
comparing the exact solution with an approximate
solution obtained by treating the pseudopotentials as
perturbations, we can hope to gain some familiarity
with the method.

The example we shall discuss is the spherically
symmetric solution of the wave equation

=a+-', (ka)'(-', a)+—k cotgo
(13)

(V2+k2)/= 0,

with the boundary conditions

(17)

t (21+1)"7
$2l+1

tang ~

= (21+1)a"+'+power series in k' (14)

Thus E'-wave e&ects are of the order a', D-wave of the
order a', etc. The lowest order term in each multipole is
independent of O'. If higher order terms are considered
in a calculation, we may look upon k' as an operator
whose e8ect on the wave function is given by the
implicit equation

we see that the first term, the scattering length, was the
only one included in the approximate equation (3).The
next term involves the effective range -', a, and is of the
order a'. If we contemplate a perturbation calculation in
which a can be considered an expansion parameter, the
first term above describes correctly effects up to the
order a

The other terms on the right-hand side of (12) give
the contributions from higher partial waves. The
strength of the 3th multipole is

sink (r—a)
P„=L2~(R—a))-: (19)

with eigenvalues

k„=2r)2/(R —a), n=1, 2, 3, . (20)

This admits a power series expansion in a. In fact, by
direct expansion of (19) and (20), we can write the wave
functions as follows:

(0)+P (i)+It, (2)+. . . (21)

sine„r
p„(())=

g(22rR) r

1 )(„a ( r q sin)(„r
p„()—

(
1——

)( cos)(„r——', , (21a)
Q(22rR) r E R 2 )(„R

/=0 for r=R and r=a, (R)a). (18)

The normalized spherically symmetric solutions can be
written down immediately:

k2$= f —V2+pseudopotentials)P, (15) where )(„=2r22/R, and for the eigenvalues:

so that through an iterative procedure we may under-
stand, symbolically:

8 4x 8
k'= —V'+42rab(r) —r——a2() (r) V'—r+ (16)

3 ter

Equations (12), (15),and (16)define the pseudopotential
for the two-body system under consideration. It yields
the exact energy and the exact wave function for r&a.

It should be pointed out that the pseudopotential
derived here is not a Hermitian operator. This should
not cause any misgivings since the extended wave
function is not supposed to represent a wave function
for any physical system. It coincides, however, with the
actual wave function except for a limited region of space
which is of no physical interest. The non-Hermiticity of

2 2r2222/(R a) —
2 (0)+2 (1)+2 (2)+. . .

(21b)
2„&')= (1+1)(a/R) ')( '

For spherically symmetric solutions the S-wave
pseudopotential exactly replaces the boundary condition
at r= a, so that from (12), (13), and (16) the equation

(V2+k2)y=
4m 8

~(r)—(4)—k cotka Br

8
=42rab(r) [1+-'a2V2+ j—(rP) (22)

Br

is exactly equivalent to (17) and (18).We can be certain
that a perturbation calculation based on (22) with a as
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the expansion parameter gives, order by order, the cor-
rect solution to the problem, since we know that the
actual problem admits a power series expansion in a. We
want to demonstrate that such a perturbation calcula-
tion is also practicable by actually carrying it out.

To order u', we need only solve the equation

8
(V'+k')y= 4~ac(r)—(~),

Br (23)

P(R) =0.

U „=~IP (o) UP„(o)dr= (2am'/Rs)ml. (24)

Note that the factor (8/Br)r in U is equal to unity when
it acts on an unperturbed wave function.

The first-order energy correction is obtained at once:

s ("= U = 2a7r'rP/Rs = (2a/R)(( ' (23)

which agrees with (21b). The first-order wave function
1s

U „
$ (i) = p (&)

mgn Ii„ I(„'m

1 2Gfl m sinn'
(26)

r RQ(2m-R) ma~ r)s' —m'

where 0—=mr/R. Upon summing the series in (26), one
verifies the agreement between (26) and (21).

The second-order energy is then obtained by

We treat this equation by standard perturbation
methods, using P„(o) as our unperturbed wave functions,
and treating as perturbing potential U = 4m.aI) (r) (8/Br) r,
whose matrix elements are

3. MANY-BODY PROBLEM

(a) Formulation of the Pseudopotential
in the Many-Body System

We consider a system of Ã particles, each of mass m,
enclosed in a cubical volume V, with two-body hard-
sphere interactions. The Schrodinger equation for the
system is

L(IrP/2yg) (qi'+ass+ yq))rs)+g]g(1 g) =0
for r;;)a, all i', (28)

%(1 E)=0 for r;; ~&a, any i',
where r;,= ~r;—r;~. We have used the abbreviation
1 E to denote the set of coordinates r~ r~, plus
spin or isotopic spin coordinates, if any. The boundary
condition at large distances will be taken to be the usual
periodic boundary conditions in a cubical box of volume
V=L'.

Before going into any formal considerations, it would
be helpful to interpret the hard-sphere boundary condi-
tions in a geometrical way. Consider the 337-dimensional

configuration space of the system. The subspace de6ned
by the condition r;, = a, for example, is a "cylindrical '

surface which is easy to visualize. There are altogether
—,'X(cV—1) such cylinders in the configuration space.
Taken together, they represent a complicated but well-
defined tree-like surface, on which the wave function
must vanish.

To help visualization, we may try to draw a part of
this "tree," in a very schematic way, as in Fig. 2. The
cylinder labeled 12, for example, represents the region
for which r~2

——a, while coordinates other than r~, r2 are
free to vary. Similarly, the surface formed by the
intersection between the cylinders 12 and 13 represents
the configuration for which r~2=a, r~~

——a, while all
coordinates other than I'&, r&, r3 are free to vary.

A way of reformulating the problem immediately
suggests itself. It would probably be instructive at this

s (s) — it, „(o)Uit „(ndr
l

(27) l2

It is important that we evaluate the above integral by
putting in the closed form of f„("from (21a), instead of
letting U operate on its series representation (26) term
by term (leading to a divergent integral). The factor
(8/r)r)r in U is now essential. It just serves to "weed
out" the singular 1/r term in P„(",giving finally a finite
second-order energy

s~(') =3(a/R)'(( '

in agreement with (21).
The third-order perturbation calculation can also be

carried out. One must include now the contribution (of
order a') of the effective range to the pseudopotential. It
is easily shown that when this is done, one again obtains
the correct third-order energy.

[ r, - r, (
~ o on this

surface

I'zG. 2. Schematic
representation of the
"tree"-like surface in
3g-dimensional con-
Qguration space on
which 4'=0, as re-
quired by the hard-
sphere interactions
among the particles.
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@(1 N) =C'(I ~ ~ 1V)+ G(rx ry, rx' ry')

1 8
X ——+(I'. 1V') dT', (30)

4z Bn

where C satisfies everywhere the equation

((h'/2m) (VP+ +V~')+Z]C =0 (31)

and B/Be denotes the normal derivative with respect to
the "tree." The integral in (30) is extended over the
surface of the "tree" for which d T' is a surface element.
The boundary condition at infinity for 6 and C can be
arbitrary as long as they lead to the correct asymptotic
behavior of 4' as given with (28).

The expression [(1/4m)B%'/Bej can thus be inter-
preted as the surface charge density induced on the
"tree" as a consequence of the boundary condition. We
can. decompose the surface integral in (30) into a sum of
integrals over the various branches of the "tree." The
simplest branches are, of course, the "cylinders" r;;=a,
corresponding to eGects of binary collisions. The
multipole expansion for these branches reduces to the
two-body problem we had previously discussed, and the
pseudopotentials due to the "axial multipoles" for these
branches can be written down immediately. Thus, with
only binary collisions taken into account, the extended
wave function satisfies the equation

(Hp+H')@=~, (32)

point to recall the previous treatment of the two-
particle problem and visualize it in a similar geometrical
fashion. There the "tree" was in fact the sphere r= a.
The introduction of the pseudopotential amounts to
nothing more than considering the surface "charge"
induced on this sphere, and then making a multipole
expansion of the surface charge. As long as we stay
outside of the sphere, the wave function is correctly
given by that produced by a series of multipoles placed
at the origin, with multipole strength appropriately
chosen.

In the many-body case, the same physical idea may be
applied. We can regard the boundary condition that

4=0 on the surface of the "tree,"
as equivalent to the existence of induced "charges" on
the surface of the "tree." It would then be natural to
make a multipole expansion of this surface charge,
namely, to replace it by multipoles along the "axial
lines" of the "tree."

Mathematically, we can formulate the above idea as
follows: Define first a Green's function G(r~ r~,
r&' . rp') by

L(h,'/2m) (VP+ +Vq')+E]G(r~ rN, r~' rq')
= —4'�(rq—rq') 8(r~—r~'). (29)

Then, by Green's theorem,

where

Hp ——(hP/2m) (VP+. +Vg')

an.d H' is (—h'/m) times the operator on the right-hand
side of (12), summed over all pairs of relative distances

r;;, with k interpreted by an obvious generalization of
(15) and (16). We shall display H' only to the lowest
order in a:

4mak2 8
H'= Q 8(r,—r;) r, ,

Br,~

(33)

One notes that the pseudopotential H' is not Hermitian.
It is, of course, understood that while we have now
extended the wave function N into the region in the
interior of the "tree,"only the solution of 0 outside the
"tree" coincides with the actual wave function and has
physical meaning. The attitude we take here regarding
the convergence of the multipole expansion is the same
as that for the two-body case previously discussed,
namely, that we must first ignore all multipoles higher
than a given order I., solve the equations, and then let L

approach infinity.
The effects of collisions higher than binary can only be

estimated in a rough way. For example, the e8ect of the
three hard spheres 1, 2, and 3 simultaneously colliding
will be represented in our geometrical picture by the
multipole required at the intersection of cylinders 12
and 13. By a dimensional argument, one expects the
lowest pole order (monopole) required there to be of at
least order a'. Similarly, the effects of four hard spheres
simultaneously colliding will be at least of order a7.

Consequently, in a perturbation calculation in which

orders are classified by the powers of a, the expression
H' given in (33) correctly accounts for effects up to and

including a'.
Instead of going further into the question of the exact

pseudopotential to be used for the many-body system,
together with such questions as convergence and rigor,
we shall now assume that at least under certain circum-

stances it is meaningful to speak of a power series ex-

pansion of physically interesting quantities in powers of
a. We shall then treat the pseudopotential as a pertur-
bation, and examine the consequences of a perturbation
calculation which includes eGects up to order a' only.
Accordingly, H' as given by (33) will be the perturbation
Hamiltonian adopted for the remaining part of the
investigation.

(0) g~i(k1 r1+ ~ +kN r~) P'—N j2
7

&„"'=Q. n. (A'k. '/2m), ,

(34)

(b) First Order Energy for a Bose System

We consider as the unperturbed system a free Bose
gas consisting of E particles, of mass m each, in volume
V. The unperturbed wave functions and energy levels
are therefore, respectively,
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P(r) = V &g-. a.e'"-' (36)

where a, u *, respectively, denote the annihilation and
creation operator for the single particle state of mo-
mentum k, with commutation rules

(37)

as is appropriate for Bose statistics. The perturbation
Hamiltonian can then be written

(4s (iA''i 1
H'=

I I
—

~
dridrslf (ri)it*(rs)8(ri —rs)

X [r12$(rl)tf (rs) j. (3&)

Noting that the differential operator (8/rfr)r is equal
to unity when it acts on the unperturbed state, one gets,
for the first order energy:

(1) —(+ (0) +&+ (pl)

= (4s.ah'/m)-, 'P (e„('&,a *ac*a,age„"')
ePyX

where
X(~pl&(ri —rs) IV) ), (39)

(~Pl&(r, —r,) I~)()= V-'5(k.+k,—I,—l,), (40)

where the 8 function of the momenta above is a
Kronecker delta, expressing the conservation of total
momentum. One easily obtains'

E„("= (4vruh'/mV) (Ns —-', N ——', P n '). (41)

For the ground state of the total system, this correction
is

E,('& = (2prah'/m) (N/V) N. (42)

p Equation (41) was obtained by a different method in 1953 by
Luttinger and Yang (unpublished). Dr. P. Price subsequently
informed us that he had obtained the same expression inde-
pendently PP. Price, thesis, Cambridge University, Cambridge,
1951 (unpublished) g.

r W. Lens, Z. Physik 56, 778 (1929) has given a formula
equivalent to (42) for the ground state of a particle moving
through the fIeld of the other particles which are held 6xed.

where ki ks( are the momenta of the particles, I are
the occupation numbers for the momentum states, and 8
is the symmetrizing operator. The index e stands for the
set of occupation numbers. The periodic boundary con-
ditions in a cubical box requires that each momentum
vector be of the form

k = (2Ã/I. ) (m, fs,l), L= V&, (35)

where m, n, J, are & integers. The pseudopotential (33)
is treated as a perturbation on this system.

For the sake of calculations, it is often convenient to
go over to the equivalent description of a many-body
system in the language of quantized fields. As usual, one
introduces the field operator lt (r) which can be expanded
in a Fourier series:

The form of the first order energy, expression (41),can
be understood in physical terms. The first term, propor-
tional to aN(N/V), is that expected on the basis of an
"index of refraction approximation. "If we imagine each
particle to move through the system as if the latter were
a uniform optical medium, we can expect each particle
to have an increment in energy proportional to m' —1,
where n is the index of refraction. Now for a medium of
low density, a classical result of Lagrange states that

I'—1 cc N/V.

From this picture, therefore, one expects the energy
increment of the total system to be proportional to
N(N/V). In a more detailed interpretation of the
present case, we may say that at very low energies, the
interaction between particles is shape-independent, and
is characterized by only a single parameter, the scat-
tering length a. We may therefore replace the actual
interparticle potential by a square well of such radius
and depth that it gives rise to the same scattering length.
To a single particle which moves through the system,
the square wells presented by the remaining E—1
particles may overlap to form a constant potential,
whence the medium-like behavior of the system. The
depth of this effective constant potential is of course
proportional to the scattering length a.

The last term in. (41), of the form —g fs ', is purely
quantum mechanical in origin. By virtue of this term,
the energy increment of the system due to the hard-
sphere repulsions is smallest when all particles are in the
same momentum state. In other words, the particles
tend to condense into the same momentum state in
order to minimize the spatial repulsion; i.e., sPufial
rept(lsioN leads to momefstlm space c-ondensation 'This is.
a consequence of the Heisenberg uncertainty principle
applied to the canonically conjugate pair: relative
momentum and relative distance of two particles.

One further notes an interesting property of the first
order energy. For the low-lying states of the system, the
only important term in the sum p fs„' is the single-
particle ground state contribution, namely eo'. One can
write the erst order energy levels of the system, to a
good approximation, as

E„=Q~ n~(h'k~'/2m)+ (4s.ah'/mV) (N' ——,'fsp'). (43)

To change the number eo of particles in the ground
state by one unit would require a finite amount of energy

6= (4rr(sh'/m) (fsp/V). (44)

The energy level spectrum of the entire system therefore
consists of a series of continua, each separated from the
others by finite energy gaps, as indicated in Fig. 3. If a
very small amount of energy is applied externally to
excite the system, all one can do is to induce transitions

This is a well-known point. See, for example, I'. London,
SNPer1frlids (John Wiley and Sons, Inc. , New York, 1954), Vol. 2,
p. 39.
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in which only particles not in the ground state are
affected. In this sense, the system exhibits some prop-
erties of a super6uid, in that a part of the system, i.e.,
the particles in the ground state, will not exhibit such
properties as viscosity until energies higher than a
critical amount 6 is transferred to the system. Note that
the energy gap is a function of eo. Note further that the
6rst order energy here, on account of the quantum
mechanical term, cannot in any sense be imagined to be
a simple sum over E single-particle contributions. It
involves the cooperative contribution of all the particles. '

The above discussion, based on the first order energy
alone, is to be taken as suggestive rather than con-
clusive. It serves to point out that as a result of the
hard-sphere interactions, the energy level density of a
Bose gas near the ground state may experience violent
changes.

(c) Second and Third Order Energies

The ground state energy of a Bose gas with hard-

sphere interactions can be calculated to third order with

the pseudopotential H' given by (33). The contribution
to the pseudopotential from the effective range parame-
ter, normally or order a' Lsee (13)], vanishes for the

ground state, where all particles have zero momentum

where the unperturbed ground state wave function is
just a constant:

(0) 'V—Jt'It 2 g, (0) —O

The only nonvanishing matrix elements of H' appearing
in (45) connects the ground state to states 4„&si in which
two particles, say n and P, are excited with equal and
opposite momenta:

k = —kp
——k,

while all other S—2 particles remain in the single-
particle ground state. We may use the vector k to label
the excited wave functions, and find

where

(4 k H 4g ) (4% CPS/mV)$1V(1V —1)7&, (47)

in the unperturbed system. For the Bose gas considered
here, E-wave scattering is evidently absent.

We shall need the 6rst-order correction +,&" to the
ground state wave function of the system:

(+„(&)11'@ (si)
@ (&) = Q @ (&i

ri~ g g (0)

@s(0)—P7(g —1)7 vV iv/2 Q sic ~ (ri ri)—

Therefore,

4 &"=—(4wa/V) P F(r;;)4,&'&

(48)

(49)

Continuo

no-I no-P Ao-$

FrG. 3. Energy levels of the system of Bose particles with hard-
sphere interactions according to the erst-order formula (43). The
levels may be grouped into continua, each labeled by no, the
number of particles in the single-particle ground state. Successive
continua are separated by an energy gap &, given by (44).

' It must be pointed out, however, that the formula (41) is not
exact, even to 6rst order, This is because the unperturbed energy
levels are degenerate. Instead of describing the splitting of the
levels under the perturbation, (41), gives only the "center of
gravity" of the split levels. This fact in itself is of no great conse-
quence, since in dealing with a system of a large number of
particles, for example in the evaluation of the partition function,
it is only the behavior of the system averaged over levels that is
important. However, the fact that the degeneracy is not removed
in 6rst order means that one must exercise caution in going to
higher order approximations. Second and higher order approxima-
tions, therefore, can only be carried out for the lowest state, which
is not degenerate.

It should further be pointed out that formula (41), when taken
literally, would lead to the crossings of the levels as the diameter a
becomes of the order of V&/N, which in turn means that the per-
turbation calculation breaks down for larger values of a. This
shows the intrinsic limitation in the applicability of the formula to
the case of finite densities. However, it may be emphasized that
(41) does not iead to a crossing of the ground state with any other
state. Perturbation calculations, therefore, can be expected to be
better for the ground state.

where
PF(r) = —4s.p(r), (51)

p(r) = (V/4n) $h(r)+ P B(r+nL) 1/V7, (52)—
n&0

with n a vector whose components are ~ integers.
Hence F(r) is (V/kr) times the electrostatic potential at
the point r, due to a cubic lattice of unit positive point
charges immersed in a uniform negative charge of
density 1/V (see Fig. 4). The lattice constant being I.,
the total charge in a unit cell is zero.

The behavior of F(r) near r=0 can be readily ob-
tained. Since the charge distribution in each cell has
cubic symmetry, the electrostatic poteritial due to each
cell drops oG outside of the cell at least as fast as that
due an electric 24 pole. Therefore, near r=0, i.e., near
the center of a particular cell, the contribution to F(r)
comes almost entirely from the point positive charge of
that cell and the cubical block of its own negative

F(r)=—Q e'~'/k'.
hy-'0

The k sum above extends over all momentum vectors of
the form (35), except zero.

It is easy to show that F(r) satisfies the equation
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positive unit point charge

uniform negative charge,
density I/L

The prime in the summation above means the omission
of the term with l=m=e=0. The third order energy
E,(3& is small compared to the first order energy only if
»(a/L)s«1. The question of the meaning of this
perturbation expansion of the energy levels will be
discussed in Sec. 4.

F&G. 4. The charge distribution whose electrostatic potentia
is equal to the function F(r) appearina in the iirst-order wave
function (49).

charge, which can be easily calculated. One finds

V)1 Cq
F(r) ~' '4~ Er L) (53)

»(» 1) t. dr —c)

X —()(r)—I rF(r)7
2 ~ V c)r

=2.37(a/L)E '". (55)

Therefore, for any reasonably large volume, E,|."~ is
essentially zero.

The third order energy correction for the ground
state may be calculated by means of the general per-
turbation formula

!3) (+ (1) + (1))g (1)

(e (') EI'e ")
+I @„«),yP P e„«) I. (56)

~„(N g„(s) j
The calculation is straightforward, and we shall merely
quote the result:

where C is a constant reminiscent of Madelung's con-
stant in the theory of ionic crystals, and is found to be

C= 2.37.

The second order energy for the ground state is then
given by

(4~aA') (4vra)
E (') = (e (') H'e ")= —

I
E ~)(V)

(d) Fermi Statistics

One can also treat a system of fermions with hard-
sphere interactions by the method of pseudopotentials.
The pseudopotential H', correct to order e', is also given
by (33).In the quantized field language, H' can also be
written in the form (38), with the field operator g (r)
defined by (36), except that the commutators (37)
should be replaced by anticommutators. The result of a
perturbation calculation will now be summarized.

%e consider a system of E fermions with spin and
isotopic spin variables. It is possible for the wave
function to be symmetric under the spatial exchange of
some pairs of particles, so that binary S-wave collisions
exist. The unperturbed wave function is as usual a
Slater determinant of the following single-particle wave
functions with periodic boundary conditions:

I (r,o,r)=V '*e' ~'r()(s o)g(],r), (58)

9~ p16 ) & A' )»~ &

I
—

I
—I»,

40( 3 & m&V)
(59)

as is well known.
The first-order energy is given by

E„")= (e„(",a'e„(")= s (47ruA'/n$)

= (2maks/r)sV)/»' pen Ne8(s, se)o—(t,tr))5, (60)

which gives for the ground state of the system

where 0-, r are, respectively, the spin and isotopic coordi-
nates, which may assume values +1, —1.The quantum
number labeling the spin state is s and that for the
isotopic spin state, t . They also assume values +1 or—1. The spin and isotopic spin eigenfunctions are the
Kronecker deltas ()(s,o), l)(i,r) in (58). The two single-
particle eigenstates of isotopic spin will be called
"proton" and "neutron" states. The unperturbed energy
is still given by (34); but the occupation numbers e are
now either 0 or 1. For the ground state of the system
with equal numbers of "protons" and "neutrons" in a
large volume:

Z, (s) =
I (2.37)s+(P/~') (»—5)5(~/L)'&, '", (57)

where

wak' ~»q~,()=;'~ &V)
(61)

~,m, ~=~ (P+nP+e')'
which is of the same form as that for the Bose case
except for a numerical factor of ~. The origin of this
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factor is clear. It represents the fraction of the particles
that can interact in the S state with a given particle.

The calculation of the second order energy for the
ground state is considerably more involved than the
Bose case, because the Fermi ground state has a more
complicated structure than that for the Bose system.
We shall not go into the details here, but shall merely
indicate a few steps in the calculation. In a manner
analogous to (55), we now have

6A' (4s.a) ' 0«. 8
E,&"=

] ) P —Prf(k~kq~ r)]„s, =(62)
m & V ) &, , ~& r)r

where
occ. g»ap'~

f(k, kgi r) = P, k.p=——', (k —kp), (63)
&a.kp kq), —k p

with the restrictions

k.WkpWk, Wkg,

k.+kp ——k„+kg.

The sums in (62), (63) are to be extended over occupied
momenta in the ground state of the system. The explicit
calculation of the second energy is extremely tedious.
For a very large volume of the system, the result is

E lsl = 1.30a(cV/V) IEgi". (64)

Comparing this to the corresponding formula (55) for
the Bose case, we see that there is an extra factor S',
which comes from the extra parameter absent in the
Bose case, namely, the momentum of the Fermi level.

4. DISCUSSION

We shall attempt to give in this section a critical
discussion of the range of applicability of the method
developed above.

(A) For the two-body problem with arbitrary given
boundary condition at large relative distance, i.e. the
problem discussed in Sec. 2(a), the method enables one

to calculate, in principle, the exact energy levels and the
exact wave functions outside the range of interaction.
The information needed for the calculation are the
phase shifts g~ as functions of the relative momentum k.
It is clear that the method is applicable in this case for
any interaction V(r) between the two bodies, provided
that if V(r) is continuously distorted so that t) &

—+0, the
wave functions approach the free-particle wave func-
tions. This last condition is evidently true for the hard-
sphere interaction. It is in fact true for any V(r) that
does not give rise to a bound state. This exclusion of

interactions that give rise to bound states is physically
important. A given set of phase shifts correspond to a
whole series of potentials, each di6ering from the others
by the number of bound states it allows. "The method
developed in this paper depends only on the phase
shifts, and is applicable only to the potential with no
bound states.

(8) For the many-body problem the method contains
an intrinsic difficulty concerning the effect of three-body
collisions discussed in Sec. 3(a). It can therefore only
give approximate results insofar as such eGects can be
neglected. It is believed, however, that such eGects are
of order a4 or higher.

In addition, the following condition, similar to the
one discussed above, must be satis6ed by the interaction
V(r): that if V(r) is continuously distorted so that the
two-body phase shifts p~0, the many-body wave
functions must approach the free-particle wave func-
tions. In other words, there must be no many-body
bound states.

An important question that arises in the many-body
problem is: what is the dimensionless parameter of
expansion in the perturbation calculation? One espe-
cially wants to know the X dependence of the diferent
terms in the perturbation series, and whether the series
is meaningful for finite values of a and (X/V) in the
limit that X—+~. We do not know the answer to these
questions.

However, the perturbation series is meaningful if we
consider X to be fixed while V assumes suKciently large
values. Xt is therefore entirely possible that a better
treatment would result if we divide the total system
into smaller subsystems and apply these methods only
to the subsystems, while the long-range correlation be-
tween subsystems would be treated by a method
analogous to the method of classical hydrodynamics.

Another possibility which suggests itself is that since
the perturbation series is certainly valid for 6xed S and
in6nitely large V, these methods are particularly adapted
to a calculation of virial coefFicients. Such a calculation
is indeed practicable, and will be the subject of a
separate paper. "
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