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Fifty years ago, Yang and I worked on the dilute hard-sphere Bose gas, which has been
experimentally realized only relatively recently. I recount the background of that work,
subsequent developments, and fresh understanding. In the original work, we had to re-
arrange the perturbation series, which was equivalent to the Bogoliubov transformation.
A deeper reason for the rearrangement has been a puzzle. I can now explain it as a
crossover from ideal gas to interacting gas behavior, a phenonmenon arising from Bose
statistics. The crossover region is infinitesimally small for a macroscopic system, and
thus unobservable. However, it is experimentally relevant in mesoscopic systems, such
as a Bose gas trapped in an external potential, or on an optical lattice.
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1. Introduction

On this occasion in celebrating Professor Chen Ning Yang’s eighty-fifth birthday, I

want to offer a bit of reminiscence of the time Professor Yang and I worked on the

dilute hard-sphere Bose gas, and a bit of fresh understanding on this old subject.

I met Professor Yang for the first time in 1956 at the Institute for Advanced

Study in Princeton, when I arrived as a post-doctorate from MIT. Long before that,

of course, I had known him by reputation. I was enthralled by his beautiful result

on the spontaneous magnetization of the Ising model,1 and his work with T. D. Lee

on phase transitions and the “circle theorem”.2,3

When I met T. D. Lee in 1954, the first thing he told me was that Yang had just

proposed a marvelous theory, in “which space was filled with gyroscopes at every

point”. He was, of course, referring to the Yang-Mills gauge theory of 1954, which

has become the foundation of the standard model of elementary particles.4

We started working on the quantum-mechanical hard-sphere interaction, and

published our first paper in 1957, exactly fifty years ago.5 That was a memorable

∗This paper will also appear in the proceedings of the Conference in Honour of C. N. Yang’s
85th Birthday, to be published by World Scientific and NTU.
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year, as Yang and Lee won the Nobel prize later that year for their work on parity

violation.6

The hard-sphere Bose gas has become relevant experimentally since 1995. On

the theoretical front, we have continued to gain new understanding up to now.

2. Hard Spheres

My Ph.D. thesis at MIT was on the saturation of nuclear forces.9 Victor Weisskopf

was my supervisor, but I worked on a daily basis with Sidney Drell, who was then

assistant professor. Meson theorya predicted that nucleons interact with many-body

forces,10 and we wanted to see whether they lead to nuclear saturation. Drell and

I did independent calculations, and bet a nickel whenever we disagreed. One of the

problems we struggled with was how to treat the hard core in the nuclear potential.

We used what was known as the “Jastrow wave function”11,12 to do variational

calculations, but it was not satisfactory from a basic point of view. I continued to

think about this problem when I arrived at Princeton.

As it turned out, Yang also worked on the hard-sphere problem the year before,

in collaboration with J. M. Luttinger; but abandoned the project because they got

divergent results.

Yang and Luttinger replaced the hard-sphere potential by a delta function,

and tried to calculate the energy in perturbation theory. For a quantum gas of N

identical particles, the ground-state energy per particle to first order is

E0

(~2/2m)N
= 4πan (1)

where a is the hard-sphere diameter, m the particle mass, and n the particle density.

This result was first obtained by W. Lenz in 1929, by estimating the quantum-

mechanical kinetic energy due to excluded volume.13 However, the second-order

result diverges.

3. Pseudopotential

After thinking a bit about Yang and Luttinger’s calculation, I thought I knew

where the divergence came from and how to fix it. As a graduate student at MIT,

I had worked with Weisskopf on the electron-neutron interaction. This was treated

earlier by Fermi,14 using a delta-function potential called a pseudopotential, with

the proviso that it be used only to first order in perturbation theory. And Weisskopf

knew how to improve it.15

The point can be illustrated in the two-body problem. As illustrated in Fig. 1,

the delta function potential δ(r) makes the wave function vanish at a, which is

what we wanted. But if we continued it to inside the hard sphere, the wave function

aThe prevailing meson theory was pseudoscalar theory with psudoscalar coupling, soon to be
superceded by pseudovector coupling in the Chew-Low theory of the “three-three resonance”.
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Fig. 1. The wave function of a particle in a delta-function potential vanishes at the scattering
length a, which is an effective hard-sphere diameter. When contnued inside the hard core, it
develops a 1/r singularity, which is spurious.

diverges like 1/r. We should ignore the wave function inside a, but there is no way

to do this in perturbation theory, for the formalism tells us to integrate over all

space, and the 1/r singularity leads to a spurious divergence. Weisskopf’s solution

is to modify the potential through the replacement

δ(r) → δ(r)
∂

∂r
r . (2)

The differential operator ∂/∂r expunges any term proportional to 1/r, but does

nothing if the wave function is regular at r = 0. The pseudopotential is really a

way to introduce a boundary condition just outside of the potential, to properly

describe scattering from the potential. The correct pseudopotential is in fact

V (r) =

(

4πa~
2

m

)

δ(r)
∂

∂r
r . (3)

Here a is the scattering length, the long-wavelength limit of

−
tan δ(k)

k
(4)

where k is the scattering wave number, and δ(k) the s-wave scattering phase shift.

For hard-sphere scattering, δ(k) = −ka, and the scattering length coincides with

the hard-sphere diameter. As a quantum-mechanical operator, the pseudopoten-

tial is non-hermitian; but it gives an effective Hamiltonian, and should yield real

eigenvalues.

I outlined the argument to Yang, and he was somewhat dubious at first, but

left a note on my desk that evening:

“I thought about it. What you said about tan δ was correct.”

We then calculated the energy levels of a Bose gas and a Fermi gas in perturbation

theory, with no divergences.5 We also calculated the virial expansion of the equation

of state of a hard-sphere Bose gas, and studied how the interaction modifies the

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
7.

21
:5

05
9-

50
73

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
V

E
R

M
O

N
T

 o
n 

01
/2

2/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



December 13, 2007 14:10 WSPC/140-IJMPB 03820

5062 K. Huang

Bose–Einstein condensation.16 This was a fulfillment of what Yang and Luttinger

had started to do.

4. An Encounter with Pauli

Yang was away when I gave a seminar at the Institute for Advanced Study on

our calculations. Besides local luminaries, including Oppenheimer, Wigner, and

Dyson, there was a very special guest in the audience, Wolfgang Pauli. When the

seminar began, he started to nod and fall sleep, until I mentioned that the effective

Hamiltonian was not hermitian.

“Not hermitian?” Pauli opened his eyes.

Oppenheimer, sitting next to Pauli, leaned over to him and said, “That’s really

OK, because . . .”

“It is not hermitian! I do not like this!” said Pauli.

In his more youthful days, I guess, Pauli would have chased me out of the

room, or left the room himself. But that day, he nodded back to sleep after some

grumbling, and I was able to finish the seminar.

At that time, I was renting a room in a gracious old house in Evelyn Place

owned by a European lady, Mrs. Loewy. Her late husband must have been a serious

scholar, for the living room was filled to the ceiling with old tomes, mostly in

German. When I went back to the house that evening, Mrs. Loewy was waiting for

me.

“Guess who came to visit today”, she beamed, “Pauli!”

“He said you gave a seminar, and it was ‘nicht dumm’b!”

5. Peritization

We calculated the ground state energy per particle to second order in perturbation

theory:

E0

(~2/2m)N
= 4πan

[

1 + A2

( a

L

)]

(5)

where L is the linear dimension of the box containing the system, and

A2 = 2.837297 · · · (6)

In Ref. 5, this constant was cited as 2.73, a poor estimate due to my clumsy nu-

merical work. It was calculated exactly by M. Lüscher17 years later, and Yang18

found an elementary derivation of his result. To the same order of approximation,

the excited states are separated from the ground state by an energy gap ε0:

ε0
~2/2m

= 8πan . (7)

b‘not dumb’
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The second-order correction to the ground state energy per particle vanishes in

the macroscopic limit, when the system becomes infinite with finite density. So, we

got zero instead of a divergence.

Upon closer examination, however, there is trouble. A graphical analysis shows

that the expansion has the general form19

E0

(~2/2m)N
− 4πan =

1

NL2

[

A2

(

aN

L

)2

+ A3

(

aN

L

)3

+ · · ·

]

+
1

N2L2

[

B2

(

aN

L

)2

+ B3

(

aN

L

)3

+ · · ·

]

+ · · · (8)

We see that the expansion parameter is aN/L, which diverges in the macroscopic

limit. Thus, beyond second order, the divergence comes back in a different form.

We left the issue unresolved over the summer of 1957, when I went to Bell Labs

and worked on the electron gas with David Bohm and David Pines.20 I think Yang

spent the summer working mainly on weak interactions with T. D. Lee. In their

spare time, they toyed with the idea that summing the series in (8) horizontally

might yield a finite result. That is, one should sum the most divergent terms.

The first horizontal line in (8) has the form [1/(NL2)]f(aN/L), which in the

macroscopic limit must tend to a function of the finite combination aN/L3 = an1/3.

Assuming f(x) to be a power, one finds that the power must be 5/2.21 Thus, instead

of a power series, the expansion would become one in fractional powers.

A few years earlier, Lev Landau22 summed the “leading logarithms” (most di-

vergent terms) in the perturbation series for the renormalized charge of the electron

in quantum electrodynamics (QED), and obtained the provocative result now re-

ferred to as “triviality”: the renormalized charge of the electron is zero in the limit of

infinite cutoff. Noticing a pattern, Abraham Pais proposed the name “peritization”

for the summing of the most divergent terms.

Back from summer vacation, T. D. Lee joined us to actually sum the series.

After some hard work we succeeded, and obtained the well-known result23

E0

(~2/2m)N
→ 4πan

[

1 +
128

15
√

π

√
na3 + O(na3)

]

, (9)

where the arrow denotes the macroscopic limit.

In the old power-series scheme, the excited states were separated from the

ground state by an energy gap. In the new scheme, the gap closes, and we have

phonon excitations with energy ωk, given by

ωk

~2/2m
= k

√

k2 + 16πan . (10)

This identifies the sound velocity to be (~/2m)
√

16πan, which agrees with that

calculated independently from the compressibility of the ground state.

After the work was done, we learned that N. N. Bogoliubov24 had derived the

same spectrum through a transformation of the Hamiltonian that now bears his
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name. The Bogoliubov transformation, which has become a standard tool, may be

looked upon as an easy and elegant way to “peritize” the perturbation series.c

Landau’s peritization in QED can also be done more elegantly – through the

renormalization group.25

6. Higher-Order Corrections

Wu35 calculated the ground-state energy per particle to the order beyond a5/2:

4πan

[

8

(

4π

3
−
√

3

)

na3 ln(12πna3)

]

.

The logarithmic dependence was interesting and unexpected. However, a variational

calculation36 disagrees strongly with this correction, while agreeing very well with

the lower-order terms. A more recent Monte Carlo calculation37 obtained a similar

result. In particular, agreement with the above correction took a dramatic turn for

the worse when na3 > 10−2. What this means remains a mystery.

7. Superfluidity

All particles have zero momentum in the ground state, in the ideal gas,. How-

ever, the occupation of the zero-momentum level is less than 100% in the inter-

acting gas. The deficit is known as the “depletion fraction”, and was calculated

to be 8/3
√

na/π. However, at zero temperature, the entire system is a superfluid,

i.e., ns = n, where ns is the superfluid density. We can find ns through the linear

response of the system to an infinitesimal hypothetical velocity field.36 A calcula-

tion at zero temperature, using the pseudopotential, was carried out by Huang and

Meng37 in the presence of a quenched random potential. As expected, ns = n in the

absence of randomness, but ns decreases as the strength of the random potential

increases, and there is a critical strength above which ns = 0. This indicates that

the random potential pins the condensate, preventing it from moving. The result

has been verified by an independent calculation.38 Thus, we can have condensate

without superfluidity.

8. Two-Dimensional Bose Gas

In spatial dimension D = 2, a Bose gas does not have a condensate, interacting

or not. This is due to the absence of long-range correlations, due to strong lo-

cal fluctuations of the quantum phase of the ground-state wave function. A local

condensate does exist, but it contains topological defects, which are vortices. In

a low-temperature phase, when vortices and antivortices form bound states, the

cThere is a technical difference, however. In the Bogoliubov transformation, one assumes that the
ground-state occupation is a number instead of an operator. We did not make that assumption in
our explicit summation.
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Fig. 2. Equation of state of dilute Bose gas with hard-sphere repulsion plus short-range attractive
interaction, as represented in a P-V diagram. the shaded region is the modification to the transition
line of the ideal gas, showing the formation of a liquid phase. The Bose–Einstein condensation
occurs in the liquid phase, just as in liquid helium. The whole shaded region shrinks about the
ideal gas line and slides off to the left, when interactions are turned off.

system is a superfluid. Thus, we can have superfluidity without condensate. At a

higher temperature, the Kosterlitz–Thouless phase transition occurs, whereby the

bound vortex pairs become ionized, and supefluidity ceases.39

9. Liquid Helium and Atomic Trap

The physical motivation to study the hard-sphere Bose gas was the understanding

of the superfluid transition in liquid helium. However, that transition in liquid

helium happens not in the gas phase, but in the liquid phase. To reproduce the

phase diagram, at least qualitatively, one must produce a first-order gas-liquid phase

transition, and that requires the addition of an attractive potential. I was able to

do that, and show how the phase diagram emerges from that of the ideal Bose gas,

as one turns on the hard-sphere and attractive interactions.26,27 This is shown in

Fig. 2.

There, the matter lay for almost forty years until 1995, when a dilute Bose gas

was experimentally realized in an atomic trap, and Bose–Einstein condensation was

observed.7,8 This inspired a fury of theoretical activity,28 all based on an interaction

described by an effective hard-sphere diameter, the s-wave scattering length.

Yang29 returned to the subject to treat the trapped atomic gas, whose density

is not uniform in space, through a local density approximation. I participated in

formulating a generalized Thomas-Fermi approximation.30

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
7.

21
:5

05
9-

50
73

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
V

E
R

M
O

N
T

 o
n 

01
/2

2/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



December 13, 2007 14:10 WSPC/140-IJMPB 03820

5066 K. Huang

10. Crossover between Ideal and Interacting Gas

It has been a puzzle why the expansion parameter changes from aN/L to a1/3n. I

recently realize that this is an expression of a crossover from ideal gas to interacting

gas.31

The idea of crossover originates in the study of the renormalization group pio-

neered by Kenneth Wilson and Michael Fisher.32 Generally, a system is governed by

different effective Hamiltonians at different scales, each corresponding to a “fixed

point” in the space of Hamiltonians. When the scale changes, the system “crosses

over” from one fixed point to the other. For example, a system confined between

two plates may look like a 2D system, but when the plate separation increases, it

will eventually cross over to 3D behavior.

The expansion parameter in an extremely dilute Bose gas is

aN

L
∼

√

System size

Mean-free-path in condensate
. (11)

The mean-free-path in the condensate is of order (nσ)−1, with scattering cross

section σ ∼ Na2, where the factor N comes from Bose enhancement. For small

aN/L, the system is a Knudsen gas, in which collisions are infrequent. In another

region with small mean-free-path, one goes over to the hydrodynamic regime. This

is illustrated in Fig. 3 for a gas coming out of a hole in the wall.

The crossover happens because of the factor N in aN/L, which makes the pa-

rameter diverge in the macroscopic limit. It is thus a property of Bose statistics,

and there is no corresponding phenomenon in the Fermi gas.

Can we observe the crossover experimentally? To answer this question, let me

retrace the origin of the idea.

In the ideal Bose gas, Bose–Einstein condensation occurs in 3D because the

state of nonzero momentum cannot accommodate more than a certain number of

particles. This number depends on temperature, and when the temperature falls

below a critical value, these states can no longer accommodate all the particles

present, and the excess is forced into the state of zero momentum, forming the

Fig. 3. In the Knudsen (or collisionless) regime, the mean-free-path is much greater than relevant
lengths in the system. The opposite is true in the hydrodynamic regime. There is a crossover
between these regimes in an interacting Bose gas as a consequence of Bose statistics, as explained
in the text.
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Bose–Einstein condensate. The critical temperature T
(0)
c for an ideal Bose gas in

3D, of density n, is

kBT (0)
c = Cn−2/3 (12)

where C = 2π~
2/m[ζ(3/2)]−2/3.

I calculated the critical number for the hard-sphere gas, using the virial series

we calculated forty years ago, and obtained a shift in transition temperature Tc due

to the interaction33

∆0 ≡
Tc − T

(0)
c

T
(0)
c

= c0

√

an1/3 (13)

where c0 = 8
√

2π/3[ζ(3/2)]2/3 ≈ 3.527. This disagrees strongly with numerical

computations based on a scheme due to Gordon Baym,34 which give a linear de-

pendence on a:

∆1 = c1an1/3 . (14)

The constant c1 is of order unity, and varies according to the computation scheme.

The two results differ because they were calculated in different regions. My

calculation was done in the gas phase, approaching the transition from the high-

temperature side, whereas the other calculations approach it from within the con-

densed phase. These give different answers because of the crossover.

11. Observation of Crossover

The Knudsen regime is relevant for kinetic processes, such as effusion through a

hole, when the mean-free-path is much larger than the dimension L of the hole, as

illustrated earlier in Fig. 3. For a macroscopic system in thermal equilibrium, L is

the size of the whole system, and the Knudsen region consists of an infinitesimally

small neighborhood of zero density, and is of little experimental interest.

For a Bose gas condensed in a potential or on an optical lattice, however, the

Knudsen regime spans a region accessible to experimentation. In this case, one

can vary the system size, particle number, and even the scattering length through

Feshbach resonances. The relevant dimension L in a harmonic trap of frequency ω0

is the harmonic length

L =

√

~

mω0
. (15)

The trapped gas behaves like an ideal gas when aN/L � 1, and crosses over to

the Thomas-Fermi regime when aN/L � 1. During the crossover, the size of the

condensate increases from the ideal-gas radius

R0 ∼ L (16)
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Fig. 4. Fractional shift of the Bose–Einstein transition temperature for the Knudsen and hydro-
dynamic regimes are shown as dotted curves. The solid line is a visual interpolation between the
two.

to the Thomas–Fermi radius30

RTF ∼
(

aN

L

)1/5

L . (17)

The excitations change from ideal-gas states in the trap to collective oscillations,

the lowest ones being the “breathing” (monopole) and quadrupole modes.28

As illustration, take a = 1 nm, L = 100 µm. The critical particle number is

Nc =
L

a
= 105 . (18)

The transition temperature depends on N , and interpolates between two fractional

shifts:

∆(N) =

{

∆0 (N � Nc)

∆1 (N � Nc)
. (19)

The values given in Eqs. (13) and (14) are for the uniform gas, but may be used

for order-of-magnitude estimates. The two curves corresponding to ∆0 and ∆1 are

plotted in Fig. 4. By interpolating between them, we get an estimate of how the

actual shift might behave. The fractional shift is more than ten times greater in

the Knudsen gas, indicating that the condensate is more stable against excitation

owing to the energy gap.

Currently, experiments involve millions of atoms, and are well in the hydrody-

namic regime. It would be interesting to explore the Knudsen regime on an optical

lattice, not so much for measuring the temperature shift, but for kinetic properties

of adding atom to and extracting from the lattice.

12. Conclusion

After fifty years, the dilute hard-sphere Bose gas still enjoys a vigorous life, and we

wish the same for Professor Yang.
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13. Questions and Answers

C. N. Yang:

I want to make several remarks. The first one was: actually around 1956 to 1957,

I wrote more than 10 papers more or less about the subject. But later on since

there were no experimental verification and, theory-wise we hit the stone wall. So

I tend to forget it. In the 1990’s there was a Prof. B. A. Li of Kentucky who wrote

an article about my contributions to physics and he asked me to name something

like 10-areas. I recently checked, I did not mention these 10 papers. Of course,

I’m very happy now that with this beautiful and the unbelievably exciting new

developments about Bose–Einstein condensation, and the cold atom physics that

Prof. Cohen-Tannoudji had told us about, the subject is revived and the people

are now measuring sound velocities in both Fermi and Bose gases. And I checked

the science citation — my papers of 1956, 1957 and around that time — netted

something like 600 references. It is a bit like a revival of an old friend who has been

dead for many years!

My second remark is that the subject is extremely subtle and reading some of

the new papers, I’m afraid a number of theorists working on it did not completely

appreciate the subtlety. I would advise them to read the paper of Lee, Huang and

me, . . . which by the way was discussed at the same time, in a different area, by

Bardeen, Cooper and Schrieffer, in particular, its pairing, the elimination of the

singularity that Kerson just mentioned and the excitation spectrum, etc. are very

non-trivial and very subtle things.

The third remark I want to make is that if you read the paper, the three of us

calculated the number of particles in the momentum zero state. We made a series

expansion of that and clearly demonstrated that it is less than 100%, when you

have any interaction. And yet because of this beautiful experiment by a scientist

with long Russian name which I can’t pronounce . . . (some name) the percentage

is 100%. So did we make a mistake? I don’t think so. In fact also Onsager and

Penrose had in another way made an estimate, and they said the momentum zero

state for zero temperature in liquid helium is only 8%. And not 100%. And yet

this beautiful Russian experiment showed that the condensate had to be 100%.

OK, I know the secret. I believe I know the secret. It’s because of the shape of

the excitation spectrum near the ground state. What happens is that although you

have less than 100% condensed from a mathematical calculation, the part which is

not condensed does not form new states. There is a gap. Now I think that is a very

deep subject and I wish I have the energy that Kerson Huang wished me to have

to explore this. I think this is the most important subject. Thank you.

David Thouless:

I think I would like to take the chair’s privilege to answer at least part of Prof.

Yang’s question. Yes, we’ve known for a very long time that there’s a difference be-

tween the proportional particles in the condensate and the superfluid density. We’ve
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known what it is. And part of our understanding comes from work in the 1960’s by

Brian Josephson who discussed the fact that the critical experiment relating to the

superfluid fraction appeared to be thermal coefficients and were not related to the

magnetization in the magnetic analogy, so that’s something which is water under

the bridge a very long time ago. I want to make another comment which is of course

at the same time as the beautiful work on the Bose system came out, there were a

lot of papers on the Fermi system where in the sense the experimental challenge is

much greater because people knew an awful lot about plasma frequency and such

things and they had to get it right. And there was a lot, I won’t mention the names,

Bowman, Pines’s work two of the pioneers on this resumming things was a major

part of getting that straight, if less elegant than work on the Bose–Einstein. Sorry

for taking your time.

Michael Fisher:

I just want to add to the history because one of the things in our chat was to

show what was wrong with the BCS theory. And it was such a successful theory

you couldn’t see where the fluctuations were buried, and that’s one of the things

David Thouless did which for me removed the eye shade entirely. I’m glad that

he said because otherwise I would have to interrupt on the understanding of the

ρs. And again this is an oversight really of the simple mean field theory of the

Landau approach. You have to understand the difference between the condensate

and essentially ρs and that’s again crucial in what David would be too modest

to mention the cause of Thouless’ transition of two dimensions where the n0 is

rigorously zero but the ρs is not and so again it is a bit like the question I was

asked about Dµ = −α. You have to understand the correlation in quite a lot of

detail and in a simple situation, all put together, you’ll first think, you have to look

much more carefully what the experiment measures.

Kerson Huang:

I believe the difference is that the condensate fraction is an equilibrium property

where ρs is a transport coefficient.

Michael Fisher:

No, that’s quite wrong again. Because again this is where finite size effect comes in.

The issue again goes back to Onsager because you can ask: What’s the interfacial

tension? You can say: Well I have to have two faces, I have to work out the free

energy difference between them. But what Onsager did in the way I said in a

paper: “Well let me just change the boundary conditions. So he considered anti-

ferromagnet and he had an odd number of systems, so when you go around that you

find +, −, +, −, +, −, . . . If the whole system is an even number, it fits together

as one phase. But Onsager said: Well, let’s take it as odd number, +, −, +, −, . . . ,

then you come to +, +, and so the free energy is not going to be as low. So there’s
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a difference between odd and even on the full well, and Onsager identified that as

simply the interfacial tension. Now if you go to a x–y system here, all you really

have to do is to take the ground state of Bose system and you say I’m going to have

twisted boundary conditions and that adds to the free energy that essentially is the

ρs and of course it goes out as r2 because you can think the phase is changing. So

it comes out of the boundary and there’s completely an equilibrium situation . . .

Kerson Huang:

. . . that’s one way to calculate as the transport coefficient.

Michael Fisher:

. . . ah, no, but again the question is if you think it is a dynamic effect, again this

is the same thing . . .

Kerson Huang:

. . . the chance of . . . it is just near equilibrium.

Michael Fisher:

Well in this case it is just a question of the boundary conditions and remember that

if you took periodic boundary conditions and set up a flow then it would decay by

nuclear Abrikosov vortices. So just as what Prof. Yang said the more you look into

the detail at each level, it gets more subtle and it is difficult to keep abreast, but

I’m glad that you (Thouless, Yang) brought this up. Because I think it is fairly well

understood. And in particular, I insist that ρs is a fully equilibrium property.

David Thouless:

I think we better cut this.

Michael Fisher:

I think we have.

David Thouless:

We have one more question.

Anonymous audience:

You told that there’s no Bose condensate in 2D system but can we conclude that

there’s no superfluidity for 2D system?

Kerson Huang:

Well Michael just said that in spite of the fact that there’s no Bose condensate

there is superfluidity. There is. The Thouless’ transition.
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