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Lecture 1: INTRODUCTIONThe study of integrable models has a long and rich history in condensedmatter physics, beginning with Bethe's solution of the one dimensional Heisen-berg Model [1] and extending to our days when a variety of soluble modelsprovide the paradigms that form much of our physical intuition.Integrable models are typically de�ned on a line; they may thus de-scribe the physics of actually linear systems such as organic conductorsor the physics of higher dimensional systems where a particular rotationalmode has been isolated, as is the case with impurity models. Higher di-mensional models, though not integrable, often exhibit properties found inlower-dimensional relatives which can be studied non-perturbatively. Thisprovides guidance to strongly coupled, often inaccessible, hamiltonians re-quired to describe properties of the new materials such as heavy fermionssystems and High-Temperature Superconductors.Rather than o�er an overview of the theory of integrability and a list ofsolved models, we have chosen to present here the detailed solutions of twomodels (with an occasional side glance at others) which play an importantrole in modern condensed matter physics. The �rst is the Hubbard hamil-tonian, the prime example of a model incorporating strong correlations, andthus playing an important role in the e�orts to understand Cuperate Super-conductors. The second model is the Kondo hamiltonian, describing dilutemagnetic alloys, whose properties are basic to the understanding of heavyFermions. The models also provide examples of solutions on the lattice andin the continuum respectively.In the �rst two lectures we discuss the steps leading from a given (in-tegrable) hamiltonian to a set of algebraic equations that encapsulate thephysics they contain. In the third lecture we solve the equations governingthe Kondo model, and in the fourth those governing the Hubbard model. Wediscuss the structure and nature of the elementary excitation and their inter-actions, and derive the thermodynamic properties of the models by summingover all excitations.We intended originally to include a �fth lecture to situate the exact so-lution in the framework of the Renormalization Group (RG) approach [2].Time constraints, however, will not allow it. Instead, let me provide a briefsummary. The RG approach provides a systematic way to explore the lowenergy physics of a hamiltonian by successively integrating out high energy2



modes and incorporating their e�ects in the resulting theory. This way oneconstructs a series of hamiltonians all of which have the same physics in theinfra-red. This renormalization group \
ow" may tend to a �xed point hamil-tonian which by construction is scale invariant, and typically much simplerthan the starting hamiltonian. In many cases it is also conformally invariantand then can be completely speci�ed in terms of very few parameters [?].When an exact solution is available these parameters can be computed quiteeasily, without resorting to the much more arduous task of constructing theRG 
ow. Once the �xed point has been identi�ed, correlation functions canbe written down which describe the asymptotic behavior of the model. Thecalculation of the full correlation function from the exact solution, valid onall energy scales, is still a major open problem.The Hubbard Model.The solution of the model was obtained by Lieb and Wu [4] in the form ofa set of coupled integral equations applying a method due to Yang [5]. Theyalso analyzed the equations for the repulsive interaction at half �lling, andshowed that a charge gap opens no matter how weak the interaction.Investigating the spectrum of the model, one �nds it contains spinlesscharge excitations (in modern terminology refered to as holons ), as well asspin-12 excitations carrying no charge (spinons). In the repulsive case awayfrom half �lling both types of excitations are gapless, while at half �llinga charge gap opens, inducing a Mott transition at zero coupling. In theattractive case a spin gap is always present and the charge excitations aregapless.In the low energy limit the excitation spectrum becomes linear. Thisfact allows a simple description of the low energy properties of the model:the �xed point hamiltonian to which the system 
ows at long distances isexpected to be conformally invariant.An important property of the model with, perhaps, analogues in higherdimensions is the charge-spin decoupling. One �nds that charge and spindegrees of freedom propagate with di�erent velocities and are characterizedby di�erent couplings. Thus an electron added to the system will not surviveas a single particle and hence the fermion correlation function will not possesssingle particle poles (i.e. Z=0), signaling a breakdown of the Fermi-liquidassumptions.A related, but not identical, phenomenon of complete decoupling occurs3



in the low energy limit. What one observes is that the charge and spinexcitations do not interact at all and can be treated separately. (A simpleway to understand the complete decoupling is to consider a continuum versionof the model which would describe it at weak coupling and low energies.Away from half �lling one obtains the g-ology model [6], another integrablemodel, solved under the name of the Chiral Gross-Neveu model [7] [8]. In thecontinuum model the decoupling occurs on all scales, and is due to simplekinematical considerations.) This decoupling may be an important clue inunderstanding how a Fermi liquid is destroyed; Already in the free �eldtheory there is a complete charge-spin decoupling (however, both degrees offreedom are chracterized by the same velocities) in the Bethe-Ansatz basis ofthe Hilbert space, obtained by taking the U ! 0 limit in the equations below.The conventional Fermi liquid description, on the other hand, correspondsto the choice of the occupation number basis (Fock basis) in the Hilbertspace. Both descriptions are valid. When U is turned on, the charge andspin excitations still maintain their separate identities, but are modi�ed.They acquire di�erent velocities and couplings, they interact with each otherand among themselves, and the Fermi liquid picture breaks down. Even inthe low energy limit the spectrum can no longer be described in terms offermionic quasi particles. Put di�erently, the model 
ows (in the sense ofRenormalization Group) to a non Fermi liquid �xed point, the Luttingerliquid [9] (a particular c=1 conformal �eld theory.)The Hamiltonian is well knownH = �t LXi=1( �ia i+1a + h:c:) + U LXi=1 ni"ni#: (1)The fermionic �eld  ia annihilates a particle with spin component a atsite i on a chain with L sites. The �rst term in the Hamiltonian describeshopping from site i to site i+ 1 and back, while the second term is a crudeapproximation to a Coulomb repulsion.The model has an obvious U(1) � SU(2) symmetry, ia �! ei� ia ia �! Uab ibexpressing the charge consevation and invariance under spin rotation. The4



associated generators are given by the spin operators,Sz = 12 LXi=1(ni" � ni#); S+ = LXi=1  �i" i#; S� = (S+)� (2)and the number operator, N = LXi=1(ni" + ni#): (3)The conservation law associated with the U(1) symmetry N allows us tostudy the hamiltonian for a �xed number N of electrons. We shall label thestates with the quantum numbers M and M 0 = N �M of the down-and upspins, jF (N �M;M) >, and the corresponding energies E(N �M;M ;U).The z-component of the total spin is Sz = 12(M 0 �M) = 12(N � 2M). Byconstruction, this is also the value of the total spin S, S = Sz, since the B-operators we shall use in Lecture 2 to build the eigenstates commute amongthemselves and thus specify a Young-tableau with de�nite transformationproperties. The states we construct are therefore SU(2) highest weight statesand the rest of the multiplet is obtained by repeated action of the loweringoperators S�. Beyond N and M , each state is labeled by an in�nite set ofquantum numbers which we shall specify later.There is another, less obvious, charge SU(2) invariance (of which the U(1)is a subgroup) present in a slightly modi�ed version of the model [10],H 0 = H � U2 LXi=1(ni;# + ni;"): (4)We added a chemical potential term to the hamiltonian. In a grand canon-ical ensemble the model will be half �lled. Equivalently, the symmetry willshow up if we work in the canonical ensemble and choose the �lling appro-priately. The symmetry is realized by number density and pair creation andannihilation operators,Cz = 12 LXi=1(ni" + ni#)� L2 ; C+ = LXi=1(�1)i i" i#; C� = (C+)�: (5)As the number operator does not commute with C� and the symmetry mani-fests itself only upon comparing excitations in systems with di�erent number5



of electrons. Still we shall �nd some consequences of the symmetry eventhough we mostly work with a �xed number of particles.We shall discuss the repulsive as well as the attractive model. The fol-lowing particle-hole Z2 transformation �i#! (�1)i i#;  �i"! (�1)i �i" (6) i#! (�1)i �i#;  �i"! (�1)i �i" (7)leads to the relation [4],E(N �M;M ;U) = (N �M)U + E(N �M;L�M ;�U); (8)between the the energies of states in the two cases. The eigenstates, weshall see, are related in a more complicated way. The eigenvalues of thethe modi�ed hamiltonian are particle-hole symmetric at half �lling and inparticular one hasE 0(N �M;M ;U) = E0(N �M;N �M ;�U): (9)We turn now to study the hamiltonian in a Hilbert space HN of N par-ticles, de�ned with respect to the vacuum state j0 > containing none, iaj0 >= 0: (10)The states that span HN are of the formjF >= Xa1:::aN Xn1:::nN Fa1:::aN (n1:::nN) NYi=1 �aini j0 >; (11)and the Fock eigenvalue problemHjF >= EjF > (12)turns into its N -particle version hF = EF; (13)with the �rst quantized hamiltonian,h = �t NXj=1�j + UXj<l �njnl ; (14)6



acting on the wave function Fa1::aN (n1:::nN). The hopping operator � (thediscrete version of the Laplacian ) is given by:�jFa1::aN (n1:::nj:::nN) = Fa1::aN (n1:::nj + 1:::nN) + Fa1::aN (n1:::nj � 1:::nN)(15)Let us note that when a model is studied perturbatively the starting pointis the hamiltonian H0 = �tXi ( �i+1a ia + h:c:); (16)whose ground state is the Fermi-sphere. Subsequently, the interaction isturned on and the energy levels are corrected order by order. In some cases,when nothing dramatic (such as a phase transition) happens, this procedureleads to j
 >, the true ground state.Our approach here is di�erent. In the presence of a �nite volume (infra-red) cut-o� L, and in the presence of an ultraviolet cut-o� (the lattice spacing,in this case) the true ground state and the empty state are in the same Hilbertspace. Therefore one can use the representation of  and  � as creationand annihilation operators with respect to j0 > to construct a full set ofeigenvectors and, in particular, determine j
 > .We proceed, then, to diagonalize h within HN . We shall do it for �niteN , and eventually take the thermodynamic limit: L; N ! 1;with n =N=L �xed.Begin by considering the case N=1. Nowh = �t� (17)with the obvious solution:Fa(n) = Aaeikn; E = �2t cos kProceed to consider the case N = 2. Then,h = �t(�1 +�2) + U�n1n2 : (18)The particles interact only when n1 = n2 = n. Away from this boundarythe Hamiltonian is free, and the wave function is given as a product of singleparticle solutions:Fa1a2(n1; n2) = Aeik1n1+ik2n2[Aa1a2�(n1 � n2) +Ba1a2�(n2 � n1)]= eik1n1+ik2n2 [Aa1a2�(n1 � n2) +Ba1a2�(n2 � n1)]�eik1n2+ik2n1 [Aa2a1�(n2 � n1) +Ba2a1�(n1 � n2)]7



where A is the antisymmetrizer, and �(n) is a step function. The correspond-ing eigenvalue is E = �2t(cos k1 + cos k2): (19)We introduce now the S-matrix relating the amplitudes in the two regionsBa1a2 = Sb1b2a1a2Ab1b2 : (20)This is the bare S-matrix, later we shall also discuss the dressed or physicalS-matrix. To determine it we have to impose two conditions:(1)Uniqueness, to ensure that the value of F (n; n) is de�ned indepen-dently of the region. This leads toAn1n2 �Bn2n1 = Bn1n2 �An2n1 (21)in other words I � PS = S � P (22)where P is the spin exchange operator, and I is the spin identity operator(PA)a1a2 = P b1b2a1a2Ab1b2 = Aa2a1(IA)a1a2 = Ib1b2a1a2Ab1b2 = Aa1a2Clearly P b1b2a1a2 = �b2a1�b1a2 and Ib1b2a1a2 = �b1a1�b2a2. Expression (22) can be rearrangedto 12(1 + P ) S 12(1 + P ) = 12(1 + P ); (23)indicating that S = 1 in the symmetric channel. This is not surprising sincean on-site interaction operates only in the anti-symmetric spin channel. TheS-matrix therefore is of the formS = 12(1 + P ) + 12(1� P ) s (24)where s is a scalar in spin space.(2)The Schrodinger equation on the boundary n1 = n2. That is,�t[F (n+ 1; n) + F (n� 1; n) + F (n; n+ 1) + F (n; n� 1)] + UF (n; n) = EF (n; n):8



Explicitlyei(k1+k2)n[(�t)((eik1 + e�ik2)s� e�ik1 � eik2) + U 1 + s2 ](I � P )A= �2t(cos k1 + cos k2)ei(k1+k2)n1 + s2 (I � P )A:Solving for s we �nd s = i(sin k1 � sin k2) + u2i(sin k1 � sin k2)� u2 ; (25)where u = Ut ; (26)and the S-matrix Sbjblajal becomes (when particles j and l interact),Sjl � Sbjblajal = (sin kj � sin kl)Ibjblajal + iu2P bjblajal(sin kj � sin kl) + iu2 : (27)Let us generalize the construction to N particles. Begin by dividing thecon�guration space into N ! regions according to the ordering of the parti-cles on the line, and label them by elements of the permutation group. Forexample, the region (n3 < n1 < n5:::) will be labeled by the permutationQ = (Q1 = 3; Q2 = 1; Q3 = 5:::)�SN. As there is no interaction in theinterior of these regions the wave function will given as a sum over a prod-uct of single particle wave functions. In our case F = P plane waves.When a boundary is crossed, two particles interact (note that mutliparticleinteraction is forbidden by Fermi statistics ) and hence the amplitudes in theregions across the boundary will be related by the two particle S-matrix justdetermined. We thus consider wave functions of the Bethe-form (The BetheAnsatz): Fa1:::aN (n1:::nN) = AeiPj kjnj XQ Aa1:::aN (Q)�(nQ); (28)with the energy and momentum given byE = Xj �2t cos kj (29)P = Xj kj : (30)9



In eq(28) the Q-sum runs over all the N ! regions, �(xQ) is equal to 1 if theparticles are ordered according to Q and vanishes otherwise, and Aa1::aN (Q)is the spin amplitude in region Q. The amplitude in region Q is related toan adjacent amplitude Q', di�ering from it by the exchange of neighboringparticles i and j, via the S-matrix Sij,Aa1::ai::aj::aN (Q0) = (Sij)b1:::bNa1:::aNAb1:::bN (Q) = (Sij)bibjaiajAa1::bi::bj::aN ; (Q)where for convenience we regard the 2-particle S-matrix Sij as carrying Nindices operating in an N particle spin space but acting non trivially only onparticles i and j, (Sij)b1:::bNa1:::aN = (Sij)bibjaiaj Yk 6=i;j �bkak (31)We labeled the S-matrix by the particles it acts on. Let me be moreexplicit: We are considering a region Q = (Q1; Q2 � � �Ql;Q(l + 1) � � �QN)and an adjacent region Q0 = (Q1; Q2 � � �Q(l + 1); Ql � � �QN). In region Qthe particle i = Ql is to the left of particle j = Q(l + 1) while in region Q0the particle j is to the left of particle i. In other words, Q0 = P ijQ. Henceto move from region Q to region Q0 we apply Sij; A(Q0) = SijA(Q) andsimilarly A(Q) = SjiA(Q0). Note that Sij = (Sji)�1, and in the amplitudeon which Sij acts particle i is to the left of particle j.How are regions Q1 andQ2 related when they are not adjacent, that is, notrelated by a single transposition? There is always a path (and usually morethan one) in the permutation group, given as a product of transpositions,leading from Q1 to Q2. To relate the regions we take the correspondingproduct of the S-matrices. If, for exampleQ1 = P ijP jkP klQ2 (32)then A(Q1) = SijSjkSklA(Q2): (33)If the path is not unique, consistency requires that the result be path inde-pendent. Consider the N = 3 case. Con�guration space is divided into 3!=6regions, not all of which are adjacent. We label the regions by (ijk) for theordering (ni < nj < nk), and draw a line between adjacent regions. Thusone obtains the diagram, 10
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Figure 1: The regions in the Con�guration Space of 3 Par-ticles.Here region (123) is related to region (213) by exchanging particles 1and 2. Therefore A(213) = S12 A(123). Continuing this process one may,starting from the wave function in region (123), construct the wavefunctionin any other region. However, note that region (321) can be reached by twodi�erent paths and hence for the procedure to be consistent these paths mustyield the same result. Thus consistency in the three particle case leads tothe Yang-Baxter Equation (YBE) [5]S23S13S12 = S12S13S23 (34)in the notation of eq (31), or explicitly(S23)d2d3a2a3(S13)d1b3a1d3(S12)b1b2d1d2 = (S12)d1d2a1a2(S13)b1d3d1a3(S23)b2b3d2d3 ; (35)where both sides act on Ab1b2b3(123) to produce Aa1a2a3(321) .11



Similar considerations in the case of N=2 and N=4 require that thematrices also satisfy SijSji = I (36)SijSkl = SklSijFurthermore, it can be shown that these relations are su�cient to guaranteeconsistency, that is, path independence, for all N [11].We may therefore rewrite eq(28) asFa1:::aN (n1:::nN) = AeiPj kjnj XQ S(Q)Aa1:::aN�(nQ) (37)with Aa1:::aN being the amplitude in some reference region labeled I, Q isgiven as a product of successive transpositions, and S(Q) is the correspondingproduct of S-matrices.To Summarize: if the S-matrix derived from the Hamiltonian satis�esthe YBE, then the Bethe-form of the wave functions is consistent and themodel is integrable. A direct calculation shows that indeed the S-matrix wederived for the Hubbard model does satisfy the YBE.We may stop at this point to ask how a model can fail to have eigenstatesof the Bethe-form. The answer is that we insisted that the single particle so-lutions whose product forms the wavefunction in the interior of each regionbe labeled by the same set of momenta kj . This goes beyond energy andmomentum conservation which place the milder requirement that Pj cos kjand Pj kj be the same in each region. The fact that the eigenstates canbe built with momenta kj , individually preserved under the interaction, is aspecial feature of an integrable model and re
ects the fact that the modelpossesses additional dynamical symmetry, expressed by an in�nite number ofcommuting conserved charges. A familiar example in quantum mechanics isthe hydrogen atom where the conserved Lenz vector is responsible for its in-tegrability. The existence of these conservation laws restricts the dynamics ofthe model and has many consequences: There is no particle production in on-shell collisions, multi-particle (physical) S-matrices factorize into prodcuctsof two-particle matrices, the Thermodynamics can be consistently expressedin terms of these on-shell S-matrices. We shall not pursue this directionhere but concentrate on the o�-shell consequences of the conservation laws12



which are manifested by the YBE guaranteeing consistent wave function ofthe Bethe-form.Periodic Boundary Conditions: To properly quantize the model one needsto introduce a volume cut o� to regulate the infra-red behaviour. We shall-study the model on a �nite ring with length L :Fa1:::aN (:::nj = 0:::) = Fa1:::aN (:::nj = L:::): (38)This condition, which is imposed in di�erent regions in con�gurationspace, can be translated to conditions on the wave function in a single region,(Zj)b1:::bNa1:::aNAb1:::bN (Q) = e�ikjLAa1:::aN (Q); (39)where (Zj)b1:::bNa1:::aN = (Sjj�1:::Sj1SjN :::Sjj+1)b1:::bNa1:::aN (40)To derive this expression consider an amplitude Aa1:::aN (Q) and act on it�rst with Sjj+1 to exchange particle j with particle j + 1 to its right, thenact with Sjj+2 to exchange it with the particle j + 2 which is adjacent to itsright after the previous exchange with j + 1, and so on till it is brought tothe right end of the system. Now repeat the operation, moving it to the left;act on Aa1:::aN (Q) with Sj�1j, then with Sj�2j and so on, till the particle jreaches the left end of the system. From periodicityS1j::::Sj�2jSj�1jA(Q) = SjN ::::Sjj+2Sjj+1A(Q)eikjL (41)leading to eq(39).We need to diagonalize the spin operator Zj acting in the N spin space,V N (in other words, Zj acts on spin functions Ab1:::bN 2 V N = Qj Vj ; where Vj =C2 is the spin space of particle j). From the eigenvalues of the new spin hamil-tonian Zj we can �nd the energy and momentum of the Fock eigenstate jF >constructed from the spin eigenfunction Ab1:::bN . Note that the Zj commute,[Zj; Zl] = 0 as a result of YBE , and can be simultaneously diagonalized.The diagonalization of the (spin-Hamiltonian) Zj was achieved by Yang[5] by means of another Bethe Ansatz built out of single \particle" spinfunctions. The role of the vacuum now is played by the ferromagnetic state(all spins aligned), a single particle state corresponds to a single spin 
ip and13



a general eigenstate is built out of products of single particle solutions. Thisapproach is reviewed in [12][13]. A related problem arose in the study of the6-vertex model where the spin operator Z plays the role of the transfer matrix[14]. Algebraic methods for its diagonalization were developed by Baxter [15],and further extended by the St Petersburg school under the name of InverseScattering Method [16]. We shall discuss the diagonalization of Z using thelatter approach. But before doing so let us turn to the Kondo model andconstruct its eigenstates. We shall �nd that similar spin problem Z arises.The Kondo Model.The Kondo model describes the interaction of a conduction band with alocalized spin impurity. The litterature on the subject is immense [17]; herewe concentrate on some of the theoretical aspects .The conduction band is described by the Hamiltonian,H0 =X~k �(k)c�~k;ac~k;a (42)with c~k;a annihilating an electron with momentum ~k and spin component a.The conduction band is coupled via spin exchange interaction to a spin�0 localized at ~r = 0,HI = J	�a(~r = 0)~�ab	b(~r = 0) � ~�0 (43)The �eld 	a(~r) is the Fourier transform of c~k;a.Since the model we consider is rotationally but not translationally in-variant, an appropriate basis for the electron annihilation operators is cklm;a,expanded in angular modes around the impurity, rather than c~k;a. Of thesemodes we assume now that only the s-wave modes have non-zero couplingto the impurity. Later we shall discuss the case where higher orbital modescouple to an impurity leading to the Multi-Channel Kondo model.We further restrict our attention to low energy phenomena, entitling usto retain only momenta k close to the Fermi surface: k = kF + q; jqj � D,where D is a cut-o�, of the order of kF , which will be considered largecompared to any other physical scale in the problem. Linearizing the energy,�(k) = �(kF ) + vF q, and Fourier transforming with respect to q we �nd thatthe s-component of H0 becomes in the limit D !1,H0 = �i Z  �a(x)@x a(x)dx: (44)14



We have chosen our units so that vF = 1. The �eld  a(x) is the Fouriertransform of ckF+q;00;a, where x is the variable conjugate to q, �1 < x <1.We obtain a 1-d �eld theory with only right moving electrons, a re
ectionof the fact that the Fermi surface is simply connected. One may also carryout an analogous derivation in real space, where the problem is de�ned onthe half line with incoming and outgoing waves, then mapping the outgoingto incoming waves but de�ned for x < 0, one obtains a full line problem withonly one kind of movers.Adding the interaction term to H0 we obtain the Kondo model which isthe starting point of our investigation:H = �i Z  �a(x)@x a(x)dx+ J �a(0)~�ab b(0) � ~�0 + J 0 �a(0) a(0): (45)We also included a term that couples to the electron charge density at x = 0with strength J 0. Since we have linearized the model charge and spin degreesof freedom completely decouple on all scales in H0. This is not modi�ed bythe interaction terms which couple separately to the spin and to the chargeof the conduction electrons.The linearization procedure is valid only when all energy scales (such astemperature T , magnetic �eld h, excitation energy �) are small comparedto the cuto�. Otherwise the linearization breaks down, and details of theband structure (re
ected in the cuto� procedure) become relevant. We shallconsider only quantities that characterize low-energy properties of the model,and are independent of the cuto� scheme. These quantities we shall calluniversal.As long as we consider only universal quantities we do not have to insiston a particular cuto� scheme. Di�erent schemes may be employed to givethe same universal quantities, though outside their domain of applicabilityuniversality may break down and results may vary; if we want to analyzeproperties at T � D, much more care must be taken in the construction ofthe model, and there may be only one physically acceptable cuto� scheme.The above observations allow us to apply the considerations and methodsof quantum �eld theory to the problem. Thus, as the coupling constantJ is dimensionless, the Hamiltonian is renormalizable, and divergences areexpected in the calculations. The divergences are absorbed within the cut-15



o� scheme chosen[18], and any particular numerical value assigned to J isde�ned only with respect to that scheme.One might think that no scale remains in the problem, as the couplingconstant is dimensionless and the cuto� is considered in�nite if we restrictourselves to the low energy regime.One of the fundamental properties of the model, however, is the appear-ance of dynamically generated scale To (to be de�ned later) which uniquelydetermines the low-energy physics. This scale depends on the cuto� D andthe coupling constant J in the following generic way: To = D exp[�a=�(J)],where �(J)! J as J ! 0. The explicit form of �(J) depends on the schemeused. In the conventional momentum cuto� scheme, p � DM , one �nds,To = DMe�(�=JM )+(1=2) ln JM+���: (46)This scheme, however, spoils intergrability which is restored only when DM istaken to in�nity. We impose therefore another cut-o� respecting integrabilitywhile still �nite [19]. In this scheme one �ndsTo = De��=J : (47)Still, both constructions are characterized by the choice of, say, To =0:0007 eV. This value is the only relevant scale in the scaling (universal)regime which de�nes the low-temperature and low magnetic �eld propertiesof the model. In this region the free energy F takes the formFT (T; h;D;J)! f� TTo ; hT �; h; T � D (48)where the function f is universal in the sense that it is independent of theparticular scheme used to de�ne the model. The cuto� and coupling constantenter only in the combination determining To. Also, any other scale must berelated to To by pure numbers that are directly calculable. These numbersare universal.The part of the scaling region where T � To will be called the high-temperature region (still T � D). As we shall see, this is the weak couplingregime, where the e�ective coupling constant is small and the physics can becaptured by perturbing around the weak coupling �xed point hamiltonian,H0. The low-temperature region (T � To), however, is a strong couplingregime governed another �xed point hamiltonian, H� describing a local Fermi16



liquid. The crossover in behavior from the strong coupling regime to the weakcoupling, can be described as a renormalization group 
ow in the space ofe�ective hamiltonians, and is the essence of the Kondo problem [20][21][22].The crossover can be driven by any physical parameter. Let us discussit as a function of the temperature. Consider the impurity susceptibility �i,which is the term in the susceptibility left over after subtracting from thetotal susceptibility � = @M=@H the contribution of the electrons. (We takeelectrons and impurity to have the same g factor.)As we shall see, the high-temperature region lies in the weak couplingregime allowing us to apply perturbation theory to �nd that the impuritysusceptibility attains its free value �i = �2=T (Curie law) up to correctionsthat vanish logarithmically at high temperatures:�i ! �2T 8><>:1� 1ln TTk � 12 ln ln TTkln2 TTk + 0@ 1ln TTk 1A39>=>; ; T � To (49)where a new scale Tk has been de�ned by requiring that the 1=[ln2(T=Tk)]term be absent. This is a normalization condition on Tk, the high-temperatureor perturbative scale, which is conventionally referred to as the Kondo tem-perature.While the high-temperature region is thus accessible by perturbation the-ory, the system enters a strong coupling regime at low temperatures and itsproperties change drastically. Due to the strong coupling to the electrons theimpurity spin will be screened, leading to a �nite susceptibility, �i0, at zerotemperature. Thus de�ne the scale T0,�io = �2�To ; (50)for the low-energy regime of the model. The ratioW = TkTo (51)is a universal number characterizing the temperature crossover. The crossoveroccurs, of course, as a function of other quantities, be it the excitation en-ergy, the magnetic �eld or any other energy scale, each crossover having itsown universal number. These numbers relate di�erent asymptotic regimes17



and as such cannot be calculated from an e�ective hamilonian probing onlythe neighborhood of one �xed point. Instead, a complete construction is re-quired, valid over all scales. This was �rst carried out numerically by Wilson[21].We mentioned already that the physics of the strong coupling regimeof the model is Fermi liquid like; it is characterized by a local potentialcenter (the remnant of the impurity that was screened), and by inducedweak interactions among the electrons. We shall discuss now a genralization,the multichannel Kondo model, where other, non-Fermi liquid �xed pointsmay be reached in the infra-red.The model was introduced by Nozieres and Blandin to describe \realmetals"[23]. Taking account of the the orbital structure of the impuritythey derived the most general exchange hamiltonian to describe the Kondoe�ect. When the atomic shell (with orbital quantum number l) is half �lled,Hund's rule indicates that the ground state is an orbital singlet with totalspin S = (2l+1)=2. The electrons scattering o� the impurity then also carrythe orbital quantum number m; �l � m � l, and one ends up with amultichannel version of the Kondo model,H = �i Z  �a;m(x)@x a;m(x)dx+ J �a;m(0)~�ab b;m(0) � ~S (52)Herem = 1; :::; f = 2l+1 is the orbital channel (or 
avor) index and the spinoperator ~S is in spin-S representation of SU(2). In the hamiltonian the valuesof f and S are unrestricted, though in a magnetic impurity hamiltonianf = 2S. Other non-magnetic applications of the model exist with othervalues of spin and 
avor [24].The nature of the infra-red �xed point depends on those values [23]: forf � 2S the coupling J 
ows to in�nity leading to a screened impurity in thecase f = 2S, and to a partially screened impurity S0 = S � 12 in the casef < 2S. The strong coupling �xed point becomes unstable when f > 2S andthe infra-red physics is controled by a new, �nite coupling �xed point. Thisnew �xed point is expected to describe non Fermi-liquid behavior.We shall show next that the Kondo hamiltonian is integrable [25] [26],and construct a complete set of eigenstates. We shall �nd that the spec-trum consists of spin-1/2 uncharged excitations, spinons, as well as spinlessparticles carrying the charge degrees of freedom, holons [25]. The spectrum18



bears similarities to the spectrum of the Hubbard model we discussed ear-lier. In fact, in all integrable models belonging to this class, in a sense tobe discussed, the fundamental excitations carry the same quantum numbers.They may di�er in their dynamics, though; unlike the spinons and holonsin the Hubbard model, these excitations decouple on all scales as result ofour choice of a linear spectrum. The spinons however interact with eachother and we shall calculate the physical S-matrix. We shall also derive anexpression for the phase shift a spinon undergoes as it passes the impurity.Then we shall proceed to calculate the free energy, and explore the crossoveras a function of thermodynamic parameters such as temperature and mag-netic �eld, or dynamic parameters as excitation energy and momentum. Inparticular, we shall �nd an analytic expression for W , as well as for othercrossover numbers.We turn now to the diagonalization of the model. In the Hilbert spaceHNe of N e electrons the hamiltonian takes the formh = �i NeXj=1 @xj + JXj �(xj)~�j � ~�0 + J 0Xj �(xj) (53)A single electron interacting with the impurity will be described by awave function Faja0(xj) = eikxj [Aaja0�(�xj) +Baja0�(xj)] (54)here aj and a0 are the spin indices of the elecrton and the impurity respec-tively. This function obviously satis�es the Hamiltonian for xj 6= 0 and hasthe eigenvalue: E = k (55)Applying the Hamiltonian and evaluating it at xj = 0 we have(h� E)F (0) = �i(B �A)�(0) + (J ~�j � ~�0 + J 0)(1=2)(A +B)�(0) = 0 (56)where we chose the convention (or rather the renormalization prescription)�(x)�(x) = (1=2)�(x) = �(�x)�(x). Hence the S-matrix that relates theamplitude Baja0 to the amplitude Aaja0 is,Sj0 = i+ (1=2)J�j � �0 + (1=2)J 0i� (1=2)J�j � �0 � (1=2)J 0 = i+ JP j0 + J 00i� JP j0 � J 00 (57)19



where we used P j0 = (1=2)(I + �j � �0), and set J 00 = (1=2)(J 0 � J): TheS-matrix can be brought to the explicit form,Sj0 = e�i�[ajoIj0 + bj0P j0] = e�i� Ij0 � icP j01 � ic (58)with c = 2J1 + J 002 � J2ei� = 1 + J 002 � J2 + 2iJ1� J 002 + J2 � 2iJ 00When we wish to proceed and construct the N -electron wave functiona problem arises: the hamiltonian does not contain any interaction termsamong electrons. That might induce us to adopt Sij = I as the scatteringmatrix of electron i and j, but this choice would not satisfy the YBESijSi0Sj0 = Sj0Si0Sij: (59)In fact the non commutativity of Sj0 and Si0 captures some important aspectsof the model: after electron i crossed the impurity the latter is left ia adi�erent state then before. Hence the state in which electron j �nds theimpurity depends on whether it crosses the impurity before or after electron i.Herein lies the di�ernce between a system of electrons interacting with a �xedpotential (a one-body problem since all electron see the same potential) anda Kondo system, where the impurity correlates the motion of all electrons.This non-commutativity, however, does not ruin the integrability of themodel. Considering more carefully the model for two electrons away fromthe impurity h = �i(@i + @j) (60)we note that an arbitrary electron-electron S-matrix may be introduced, andone is allowed to consider a basis of free eigenstates of the formFaiaj(xixj) = Aei(kixi+kjxj)[Aaiaj�(xi � xj) + (SA)aiaj�(xj � xi)]: (61)This function obviously satis�es the free hamiltonian with eigenvalue E =ki+ kj for any choice of S, but is not an eigenstate of the individual momen-tum operators unless S = I . Let me elaborate this simple point. One wouldtend to write a solution for h, in the formFaiaj(xixj) = Aei(kixi+kjxj)Aaiaj (62)20



which is indeed an eigenstate of individual momentum operators. As thisstate is degenerate withF paiaj(xixj) = Aei((ki+p)xi+(kj�p)xj)Aaiaj (63)for any p, one may sum over p with appropriate coe�cients to form eq (61).What one is doing, in fact, is to �nd the zero order approximation in a degen-erate perturbation theory. Physically, the eigenfunction can be constructedwith arbitrary S-matrix because the particles move with the same velocityand never cross.We conclude, then, that we are at liberty to choose as a basis of statesone which is determined by an Sij satisfying the YBE. It is clear that thechoice Sij = P ij (64)does so, and thus leads to a consistent solution, withFa1:::aNe;a0(x1:::xNe) = AeiPNej=1 kjxj XQ AQa1:::aNe;a0�(xQ) (65)corresponding to the eigenvalue E = NeXj=1 kj : (66)In eq (65) Q 2 SNe+1 describes the ordering of the N e electrons and ofthe impurity, localized at x = 0. The antisymmetrizer acts on the electronvariables only.We have thus constructed a consistent Bethe-Ansatz for the model, withthe S-matrix given bySj;� = 8><>: e�i� Ij0�icP j01�ic electron-impurityP jl electron-electron (67)indicating that it is integrable.Again, imposing periodic boundary conditions one is led to to the problemof diagonalizing the operator Z de�ned in eq(40) but now constructed withthe (bare) S-matrices corresponding to the Kondo-model. It takes the form(Zj)b1:::bNa1:::aN =  P jj�1:::P j1P jN :::ei�Ij0 � icP j01 � ic :::P jj+1!b1:::bNa1:::aN (68)21



We denoted N = N e + 1, the number of spins in the problem.Unlike the case of the Hubbard model, there is only one Z Hamiltonianto diagonalize, so that in a given state all electron momenta will be shiftedby the same amount. In other words, the phase shift of the electrons due totheir interactions is independent of their motion. This circumstance is dueto the fact that the coupling constant J is dimensionless, hence the S-matrixcannot depend on the momenta. In the Hubbard model, U is dimensionfuland the S-matrix is of the form S = S(U=(kj � kl)) leading to a coupling ofall the modes. In the next lecture we turn to the problem of diagonalizationof the Z-hamiltonian.References[1] H. Bethe, Z. Physik 71, 205 (1931).[2] K. G. Wilson and J. Kogut, Phys. Rep. C 12, 75 (1974)[3] see e.g. P. Ginsparg, in Fields, Strings, and Critical Phenomena,Eds. E Brezin and J. Zinn-Justin, North Holland, Amsterdam,1990.[4] E.L. Lieb and F.Y. Wu, Phys. Rev. Lett 20, 1445 (1968).[5] C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967).[6] V. J. Emery, in Highly Conducting One-Dimensional Solids, J.T. Devreese et al. eds, Plenum, N. Y. 1979. J. Solyom, Adv. inPhys. 28, 201 (1979).[7] N. Andrei and J.H. Lowenstein, Phys. Rev. Lett. bf 43, 1693(1979).[8] A. A. Belavin, Phys. Lett. B 87, 117 (1979).[9] F. D. M. Haldane, J. Phys. C 14, 2585 (1981).[10] C. N. Yang, Phys. Rev. Lett.63, 2144 (1989). I. A�eck, talkgiven at Nato Advanced Study Institute on Physics, Geometryand Topology, Ban�, (1989)22



[11] J. Zinn-Justin and E. Brezin, C.R. Acad. Sci. 263, 670 (1966).[12] B. Sutherland, in Exactly Solvable Problems in Condensed Matterand Relativistic Field Theory, Eds. B. S. Shastry and V. Singh,Lecture Notes in Physics, vol. 42, Springer (1985).[13] D. Baeriswyl, in Le Model de Hubbard, Troisieme Cycle de laPhysique en Suisse Romande (1991).[14] E. Lieb and F. Y. Wu, in Phase Transitions and Critical Phe-nomena, Vol. 1, eds. C. Domb and M. S. Green.[15] R. Baxter, Ann. Phys. 70, 193 (1972); 70, 323 (1972); 76, 1(1972).[16] L. Faddeev and L. Takhtajan, Usp. Mat. Nauk 34, 15 (1979).[17] See e.g. G. Gruner and A. Zawadowski, Rep. Prog. Phys. 37, 1497(1974). A.C. Hewson, The Kondo Problem to Heavy Fermions,Cambridge University Press.[18] See any book on Quantum Field Theory.[19] N. Andrei, K. Furuya and J.H. Lowenstein, Rev. Mod. Phys. 55,331 (1983).[20] P. W. Anderson, J. Phys. C 3, 2346 (1970).[21] K. G. Wilson, Rev. Mod. Phy. 47, 773 (1975).[22] P. Nozieres, in Proceedings of LT 14, edited by M. Krusius andM. Vuorio, p.339 (1975).[23] P. Nozieres and A. Blandin, J. Phys. (Paris) 41, 193 (1980).[24] A. Zawadowski and N. Vladar, Sol. Stat. Com. 35. D. L. Cox,Phys. Rev. Lett. 59, 1240 (1987).[25] N. Andrei, Phys. Rev. Lett. 45, 379 (1979).[26] P. B. Wiegmann, JETP Lett. 31, 392 (1980).23



Lecture 2: The Quantum Inverse MethodWe wish to �nd the eigenvalues (and eigenunctions) of the operator(Zj)b1:::bNa1:::aN = (Sjj�1:::Sj1SjN :::Sjj+1)b1:::bNa1:::aN (1)where Sij = (�i � �j)I ij + icP ij�i � �j + ic (2)This operator occurs in the solution of the Hubbard model where �j =sin kj and of the Kondo model where �j = 1 or 0 depending on whether jrefers to an electron or to the impurity, respectively. The solution of otherintegrable models possessing SU(2) symmetry leads again to the same oper-ator, di�ering only as to the values taken by the variables �j . For examplein the Heisenberg model �j = 0 [1], and in the Backscattering model Model�j = �1 depending whether j refers to a left mover or a right mover [2].The natural question to ask is whether the Hamiltonians Zj are integrable.That this is the case was shown by Yang [4] who solved it by means ofanother Bethe Ansatz. Let us follow a di�erent path, and ask whether thehamiltonians Zj possess an in�nite set of conserved charges, whose presencewould guarantee integrability.We have already seen that [Zi; Zj]=0. It will prove very useful to obtaina continuous version of this statement, since then we may expand in the con-tinuous parameter (the one continuing the discrete index j) and obtain a setof charges commuting with Zi. One is led thus, following Baxter [5], to intro-duce a continuous parameter, usually refered to as the spectral parameter,into the de�nition of the S-matrixS(�) = �I + icP� + ic � a(�)I + b(�)P; (3)in a way that a continuous version of YBE is also satis�edSkj(� � �)Ski(�)Sji(�) = Sji(�)Ski(�)Skj(�� �): (4)We proceed now to introduce the monodromy matrix [6]. Its constructionis natural when starting from the 6-vertex model, although its introductionhere may seem ad-hoc. To begin with, introduce an auxiliary spin space VA24



which will help us keep track of the proliferating spin indices, and de�ne anS-matrix acting in Vj � VA, where Vj is the spin space of particle j.(SjA(�))b;va;u = �(IjA)b;va;u + ic(P jA)b;va;u�+ ic (5)the variables u; v live in the auxiliary spin space, and a; b live in the physicalspin space. Now, the monodromy matrix �(�) is de�ned by:�(�) = S1A(�� �1)S2A(�� �2)::::::SNA(�� �N ) (6)Where the �j are the physical values appropriate to the model, and theproduct is carried out only in the auxiliary space. Explicitly(�)b1:::bN ;va1:::aN ;u = Xs1:::sN�1(S1A)b1;s1a1;u (S2A)b2;s2a2;s1::::::(SNA)bN ;vaN ;sN�1 (7)where we suppressed the spectral parameters. It is convenient to representthe monodromy matrix graphically as:
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{S}Figure 2: The Monodromy Matrix.where the jth vertex represents the jth S-matrix with the horizontal linescarrying the auxiliary variables and the vertical lines at the j-site carring thevariables of V j.De�ne also the transfer matrix Z(�) = trA�(�), by taking a trace overthe auxiliary variables. Then using: SjA(o) = P jA, it follows [3],Z(� = �j) = Zj : (8)25



We can now reformulate our question about the integrability of the spinproblem. If we can show that for � 6= �; [Z(�); Z(�)] = 0, then expandingin powers of � we produce an in�nite set of charges commuting with thehamiltonian Z(�) guaranteeing integrability.A su�cient condition to assure the commutativity of the operators Z(�)and Z(�) is the existence of a matrix R acting in VA � VA satisfyingR (�(�)� �(�)) = (�(�)� �(�)) R (9)namely, Rs;tu;w �(�)vs �(�)zt = �(�)s0u �(�)t0w Rv;zs0 ;t0 (10)since taking the trace over the auxiliary variables leads to the desired ex-pression. In eq (10) the physical indices are contracted in the usual quantummechanical way. Thus rewriting it in its full index glory we haveRs;tu;w �(�)d1:::dN ;va1:::aN ;s �(�)b1:::bN ;zd1:::dN ;t = �(�)c1:::cN ;s0a1:::aN ;u �(�)c1:::cN ;t0c1:::cN ;w Rv;zs0;t0 (11)To show that eq(11) holds it is su�cient to examine it locally since themonodromy-matrix is given as an ordered product of the S-matrices. In otherwords, consider the problem where � is built of one vertex only,R S � S = S � S R (12)namely Rs;tu;w S(�)d;va;s S(�)b;zd;t = S(�)c;s0a;u S(�)b;t0c;w Rv;zs0;t0 (13)from which eq(9) can be deduced by applying eq(12) repeatedly. Comparingeq(13) with eq(4) we see that it is again the ubiquitous YBE if we identifyRs;tu;w = S(� � �)t;su;w: (14)In other words, we have shown that a martix R, implementing eq(9), doesexist and is given by (all action is in the auxiliary spaces VA � VA)R = S(� � �) P = (�� �)P + icI(�� �) + ic (15)As a consequence, we have shown the commutativity of the Z-matrices andthe integrability of the spin problem.26



Let us consider the construction more explicitly in the auxiliary space.The 4x4 matrix R takes the formR(�) = 0BBB@ a+ b 0 0 00 b a 00 a b 00 0 0 a+ b1CCCA = 0BBB@ 1 0 0 00 ic�+ic ��+ic 00 ��+ic ic�+ic 00 0 0 11CCCA ; (16)and the monodromy matrix,�(�)b1:::bNa1:::aN = 0B@Ab1:::bNa1:::aN (�) Bb1:::bNa1:::aN (�)Cb1:::bNa1:::aN (�) Db1:::bNa1 :::aN (�)1CA (17)with the operators A;B;Cand D acting in the physical space V N . Carryingout the products as indicated the fundamental relation eq(10), and equatingterm by term left and right hand sides we obtain the following algebraicrelations (we display only those necessary to our purposes):A(�)B(�) = u(� � �)B(�)A(�) + v(� � �)B(�)A(�) (18)D(�)B(�) = u(� � �)B(�)D(�) + v(�� �)B(�)D(�) (19)(20)where u(�) = 1a(�) = � + ic�v(�) = � b(�)a(�) = �ic�Furthermore, B(�)B(�) = B(�)B(�) (21)A(�)A(�) = A(�)A(�) (22)D(�)D(�) = D(�)D(�) (23)We shall use these relations to diagonalize the transfer matrix Z(�), explicitlygiven by 27



Zb1:::bNa1:::aN (�) = Ab1:::bNa1:::aN (�) +Db1 :::bNa1:::aN (�): (24)The key point in the diagonalization procedure is the observation thatthe operator B(�) plays a role of a creation operator with respect to theHamiltonian A(�)+D(�), up to \unwanted terms"(generated by the secondterm on the right hand side of eqs(18,19) , when acting on a ferromagnetic\up" vacuum j! >, j! >= NYj=1� 10�j : (25)We may show that this ferromagnetic vacuum is an eigenstate of theZ hamiltonian using the fact that the latter is given as a product of localvertices SjA which, when written out in auxiliary space, take the formSjA(�) = (a+ b=2)(�)1j1A + b=2(�)�j � �A= � (a+ b=2)(�)1j + (b=2)(�)�zj b(�)��jb(�)�+j (a+ b=2)(�)1j � (b=2)(�)�zj � (26)We used the identity (P jA)b;va;u = (1=2)(�ba�vu + (�j)ba � (�A)vu) to separate thephysical and auxiliary spaces. 1j denotes the two dimensional unit matrixacting in Vj . Acting on � 10�j the vertex SjA becomes triangularSjA(�� �j)� 10�j = 0BBB@ 1� 10�j b(�� �j)� 01�j0 ���j���j+ic � 10�j 1CCCA ; (27)so thatZ(�)j! >= trA(S1A:::::SNA)j! >= trA  S1A � 10�1 :::::SNA� 10�N! (28)and we see that j! > is an eigenstate of of A(�) and of D(�)A(�)j! > = j! > (29)D(�)j! > = �(�)j! > (30)28



where �(�) = NYj=1 � � �j�� �j + ic : (31)To proceed and �nd all eigenstates of Z(�) we consider states formed byrepeated application of the 
ipping operator B on the ferromagnetic eigensatejA(�1:::�M) >= B(�1):::B(�M)j! >= Xj1:::jM Aj1:::jM��j1:::��jM j! > (32)where the usual spin amplitude notation Aa1:::aN is written as Aj1:::jM byspecifying the position of the M down spins. Acting on the state with theHamiltonian, and applying the algebraic relations eqs(18-23) we �nd that inaddition to terms of the form of the original state, we also obtain unwantedterms preventing the state from being an eigenstate. However these unwantedterms can be removed by a proper choice ot the parameters �1::::�M. Toillustrate the procedure consider M=2. Then, moving A(�) past B(�1) andB(�2) we have(A(�) +D(�))B(�1)B(�2)j! >=u(�1 � �)u(�2 � �)B(�1)B(�2)A(�)j! >+u(�� �1)u(�� �2)B(�1)B(�2)D(�)j! >+[u(�1� �)v(�2 � �) + v(�1 � �)v(�2 � �1)]B(�)B(�1)A(�2)j! >+[u(�� �1)v(�� �2) + v(�� �1)v(�1 � �2)]B(�)B(�1)D(�2)j! >+v(�1� �)u(�2 � �1)B(�)B(�2)A(�1)j! >+v(�� �1)u(�1 � �2)B(�)B(�2)D(�1)j! >= �(�; �1�2)B(�1)B(�2)j! > +�1(�; �1�2)B(�)B(�2)j! > +�2(�; �1�2)B(�)B(�1)j! >where �(�; �1�2) = u(�1 � �)u(�2 � �) + �(�)u(�� �1)u(�� �2) (33)�1(�; �1�2) = v(�1 � �)[u(�2 � �1)� u(�1 � �2)�(�1)] (34)�2(�; �1�2) = v(�2 � �)[u(�1 � �2)� u(�2 � �1)�(�2)] (35)The condition for B(�1)B(�2)j! > to be an eigenstate is that �1 and �2 bechosen so that �
(�; �1�2) = 0 
 = 1; 2 : (36)29



The generalization to arbitraryM is straightforward [6]: B(�1)::::B(�M)j! >is an eigenstate of Z(�) = A(�) +D(�), with eigenvalue�(�; �1:::�M) = MY
=1u(�
 � �) + �(�) MY
=1 u(�� �
) (37)if the paramaters �1::::�M are chosen so as to eliminate the "unwanted terms",namely: �
(�; �1::::�M) = 0 
 = 1::::M; (38)where,�
(�; �1:::�M) = v(�
 � �)� MY�=1;� 6=
 u(�� � �
)��(�
) MY�=1;� 6=
 u(�
 � ��)�(39)Recall now that our original goal was to �nd the eigenalues of the oeratorZj = Z(� = �j). Denoting these by zj, we have (see eq(37))zj = �(�j ; �1::::�M) = MY
=1 �
 � �j + ic�
 � �j (40)with the parameters �1:::�M satisfyingMY�=1;� 6=
 �� � �
 + ic�� � �
 � ic = NYi=1 �
 � �i�
 � �i + ic : (41)We may cast these equations in a more appealing form by changing variables:�
 = �
 � ic=2, and recalling that periodic boundary conditiond imposezj = e�ikjL, we �nally obtain:eikjL = MY
=1 �
 � �j � ic=2�
 � �j + ic=2 (42)and MY�=1;� 6=
 �� � �
 + ic�� ��
 � ic = NYi=1 �
 � �i � ic=2�
 � �i + ic=2 : (43)30



We have now completed the diagonalization of the Z-operator, and havesolved at the same time the underlying spin problem for the whole class ofintegrable SU(2)-invariant models built with the R-matrix in eq(16).For the Hubbard model �j = sin kj and the Bethe-Ansatz equations takethe form [7]: eikjL = MY
=1 �
 � sin kj � ic=2�
 � sin kj + ic=2 (44)and MY�=1;� 6=
 �� ��
 + ic�� � �
 � ic = NYi=1 �
 � sin ki � ic=2�
 � sin ki + ic=2 (45)with c = u2 = U2t.For the Kondo model �j = 1; 0 and the equations become [8] [9]:eikjL = MY
=1 �
 � 1 + ic=2�
 � 1 � ic=2 (46)and MY�=1;� 6=
 �� � �
 + ic�� � �
 � ic =  �
 � 1� ic=2�
 � 1 + ic=2!Ne  �
 � ic=2�
 + ic=2! (47)with the coupling c given by c = 2J1 + J 002� J2 : (48)We note that the equations have decoupled; the spin variables �
 are deter-mined independently of the momenta kj, re
ecting the charge-spin decou-pling discussed earlier.We proceed now to solve the equations, and discuss the physics of eachmodel.References[1] H. Bethe, Z. Physik 71, 205 (1931).[2] N. Andrei and J.H. Lowenstein, Phys. Rev. Lett. 43, 1693 (1979).31
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Lecture 3: The Kondo ModelWe now turn to derive the physics of the Kondo model from the BetheAnsatz equations. We shall mainly discuss the excitation spectrum and thethermodynamics, with only a casual discussion of transport properties.We show here that the fundamental spin excitations are interacting spin-1/2 particles, spinons, carrying no charge; while the charge excitations, theholons, carry no spin, and are non-interacting [1]. More complex excitationsare superpositions of the fundamental ones. The spin and charge sectors inthe model decouple completely. A physical electron, however, is a coherentsuperposition of states in both sectors. Hence the electron-electron correla-tion function has no single particle poles.We then proceed to obtain the free energy of the model in terms of coupledintegral equations [2],[3]. The equations are studied in the utraviolet (hightemperature, or large magnetic �elds) as well as in the infra-red regime, anda remarkable change in the impurity properties is observed. In the ultravioletlimit the impurity behaves as an almost free-spin, given by an e�ective weaklycoupled theory, while in the infra-red it is completely screened, becominga non-magnetic scattering center. The properties of the impurity in thisregime are given by another e�ective theory, strongly coupled, describing alocal Fermi liquid. This crossover from one regime to another, the KondoE�ect, can be driven by any energy parameter - be it the temperature, themagnetic �eld or an excitation energy. It represents, in the language ofRenormalization Group, a 
ow from from one �xed �xed point to another.Understanding the crossover requires the construction of the model over allenergy scales, which is not feasible by methods valid only in the vicinityof one �xed point, such as perturbation theory, strong coupling expansionor conformal �eld theory. The crossover was �rst carried out numericallyby explicitly constructing the 
ow in the space of e�ective hamiltonians [5].Here we study it in the framework of the Bethe ansatz [6],[7].We shall end this lecture with a brief discussion of the MultichannelKondo model. Again a crossover takes place from a weak coupling regimein the ulraviolet to a new regime in the infrared. The latter is typically nonFermi liquid.Let us now determine the energy eigenvalues. Consider a system of N eelectrons on a ring of length L interacting with an impurity localized at33



x = 0. There are therefore N = N e + 1 spins in the problem, with N tobe taken even. An eigenstate will be also labeled by the quantum numberM , the conserved number of down spins, as well as by an in�nite set of localquantum numbers fnj; I
g de�ned below. The z component of the spin ofthe state is given by Sz = 12(N � 2M). This is also the total spin of thestate since by construction the B(�
) operators (from Lecture 2) commuteamong themselves and thus specify a unique Young Tableau. The states weconstruct are therefore highest weight states, jS; Sz = S >, and the rest of thethe states in the multiplet are obtained by the action of lowering operatorsS�.In previous lectures we found that the energy eigenvalues are given byE = NeXj=1 kj (1)with the momenta kj obtained from the eigenvalue zz = eikjL = MY
=1 �
 � 1 + ic=2�
 � 1� ic=2 : (2)Hence, kj = 2�L nj + 1L MX
=1[�(2�
 � 2) � �]; (3)with nj an integer arising from taking the logarithm, and�(x) = �2 tan�1(x=c): (4)The expression for the energy becomes (dropping inessential terms)E = NeXj=1 2�L nj +D MX
=1[�(2�
 � 2) � �]; (5)where D = N e=L is the electron density.The spin momenta �1::::�M are found from the condition guaranteeingthe cancellation of the \unwanted terms" (see Lecture 2),� MY�=1 �� � �
 + ic�� � �
 � ic =  �
 � 1� ic=2�
 � 1 + ic=2!Ne  �
 � ic=2�
 + ic=2! : (6)34



Note that the equations determining the f�
g have decoupled from those de-termining the momenta fkjg, re
ecting the complete charge-spin decouplingdiscussed earlier.Upon taking the logarithm of eqs(6) we �nd that the variables f�
g satisfythe following set of coupled equations.N e�(2�
 � 2) + �(2�
) = �2�I
 + MX�=1�(�
 � ��); 
 = 1::::M (7)The numbers I
 are even or odd half integers depending on N �M �1 beingeven or odd, and together with the integers nj they specify a solution ofeqs(3,7).Each allowed choice (see below) of fnj; I
g uniquely determines an eigen-state of the Hamiltonian. We shall refer to the fnj; I
g con�guration as thequantum numbers of the state they determine.These quantum numbers replace, for example, the fn+j ; n�j g quantumnumbers of the free electron gas, where in the conventional Fock-basis eachlevel nj could be populated by a spin up and a spin down particle. Whenthe impurity is removed the Bethe ansatz equations describe a free electrongas. Indeed, in the absence of the term �(2�) in eq(7) we have,E = NeXj=1 2�L nj +D MX
=1[�(2�
 � 2)� �]= NeXj=1 2�L nj + 1L MX
=1[�2�I
 + MX�=1�(�
 � ��)]= NeXj=1 2�L nj + MX
=1�2�L I
;namely, a noninteracting gas given in a basis which is already charge-spindecoupled, and therefore adapted to turning on the spin exchange interactionwhich couples to the spin sector only.What restrictions are there on the choice of con�gurations fnj; I
g ?Obviously, the spectrum is unbound from below, as the integers nj can takearbitrarily large and negative values. To de�ne the model we introduce a\bottom to the sea", a cuto� K, taken to be very large compared with anyphysical parameter in the theory. Then, since we are interested in the low35



energy properties of the model, we may study it in the limit where the cuto�is taken to in�nity as long as the physical quantities of the model have a wellde�ned limit. We impose the cuto� as follows:j2�L njj < K: (8)The cuto� K is imposed on the eigenstates of the fully interacting Hamil-tonian and thus di�ers from the conventional cuto�s that are imposed on theeigenfunctions of the free Hamiltonian. The choice of cuto� is irrelevant inmodels, such as the Kondo model, that are renormalizable. It a�ects the wayphysical scales (such as the Kondo temperature) depend on bare parameters,but not the way physical functions depend on physical scales [1].From the action of the spin 
ip operators B(�
) on j! > it is obvious thatthe state B(�1):::B(�M)j! > vanishes if two of the �'s coincide. Further,as j�(x)j � �, it is clear that the I
 must satisfy the restrictionI�(N;M) = �(N �M � 1)=2 � I
 � (N �M � 1)=2 = I+(N;M): (9)We shall call a con�guration fI
g, for which a solution exists with all�
 distinct, allowed. Counting all allowed con�gurations (using the stringhypothesis, see below) one �nds that there are, indeed, 2N con�gurations, asrequired by the dimensionality of the spin space.We turn now to the determination of the eigenstates beginninig with theground state con�guration fnoj ; I0
g.The ground state.The state with the lowest energy is a spin singlet, M0 = N=2, induced bya con�guration of consecutive fI0
g,I0
+1 = I0
 + 1 (10)with the I
 �lling all the slots from I+ to I�I� � I
 � I+; I� = �(N=2� 1)=2: (11)There are N=2 slots from I+ to I� and all are occupied by the M0 = N=2spin quantum numbers I
.The charge quantum numbers fn0jg are taken the minimum allowed bythe cuto�. They are all distinct and run from �KL=2� upwards. SettingEF = 0 we have K = 2�D; D = N e=L.36



We shall be interested in solving the equations in the thermodynamiclimit: N;L ! 1, with D = N e=L held �xed (later we shall also take thescaling limit: K = �D!1 to achieve universality). Therefore, rather than�nding the actual solutions f�
g we consider their density �(�), describingthe number of solutions in the interval (�;�+ d�). In other words,�(�
) = 1=(�
+1 � �
): (12)When all �-solutions are real (which is the case of the ground state) eqs.(5) and (7) can be rewritten in terms of the �-densityE = NeXJ=1 2�L nj +D Z d��(�)[�(2�� 2)� �] (13)and N e�(2�
 � 2) + �(2�
) = Z d�0�(�0)�(�
 � �0)� 2�I
: (14)An equation for the �-density in the ground state, �o(�), is obtained bysubtracting eq(14) written for �
 from that written for �
+1 and expandingin the di�erence �� = �
+1 � �
, assumed to be of order 1=N . One then�nds �o(�) = f(�)� Z K(�� �0)�o(�0)d�0; (15)where f(�) = 2c� " N ec2 + 4(�� 1)2 + 1c2 + 4�2# ;K(�) = 1� cc2 + �2 � K2(�): (16)Here we used �0(�) = �2c=(c2+�2), and the fact that, for the ground state,I
+1 � I
 = 1 for all 
. We also de�ne, for future use,Kn(x) = 1� n c2(n c2)2 + x2 = � 12��0n(x)�n(x) = ��2xn � (17)37



The solution of eq(15) by means of Fourier transform is immediate,�o(�) = 12c " N ecosh �c (�� 1) + 1cosh �c�# : (18)The transformation properties of the ground state are found by calculat-ing Mo = R �o(�)d� = 12N in accordance with the consideration in eqs(9,11)for �nite N and M . The state has a Young tableau of two equal-length rowsand is a SU(2) singlet.The ground-state energy is given byEo = Xj 2�L nj +D Z d��o(�) [�(2� � 2) � �]= � �2L(N e)2 � iD ln �(1 + ic)�(12 � ic)�(1 � ic)�(12 + ic); (19)To show that, indeed, this is the lowest energy state we shall study vari-ations from the ground-state con�guration fn0j ; I0
g. These correspond toexcited states.Elementary ExcitationsCharge excitations (particle-hole) � obtained by exciting the charge de-grees of freedom. Thus excite a given n0j , where �K � (2�=L)n0j < 0, ton0j = n0j +�n � 0. The change in energy involved is�E = 2�L �n > 0: (20)Obviously M , which depends only on the fI
g quantum numbers, doesnot change and neither does the spin.We see that the charge spectrum of the theory is that of a decoupled freegas, a result of the interaction acting only on the spin degrees of freedom.Spin excitations � obtained by varying the fI0
g sequence from its ground-state con�guration, leaving the charge quantum numbers, nj, unchanged.One way to modify the sequence is to put \holes" into it, namely to haveun�lled slots, and correpondingly omit �'s. Another way is to add complexconjugate pairs of �'s.The triplet: The simplest excitation (keeping the number of electrons�xed) is obtained by considering the state with M =Mo � 1. This is a spin38



triplet since S = N=2 �M = 1. Equivalently, �M = �1 means that onebox is moved from the lower to the upper row in the Young tableau.This choice induces two holes since now I� = �N=4 yielding N=2 + 1slots for the M = N=2 � 1 I
's leaving two slots un�lled. To �nd the e�ectof a hole suppose we choose a sequence fI
g such that I
0+1 = I
0 + 2, andI
+1 = I
 + 1; 
 6= 
0, omitting the integer Ih = I
0+1. The spin momentumcorresponding to it, �h, constitutes a \hole". This means that we have tosolve eq(14) in the presence of a (bare) hole density �h(�) = �(� � �h).To be more precise consider an fI
g sequence with holes in it, denotingthe omitted integers by fIhj ; j = 1; :::;mg. The BAE with the prescribedquantum numbers fI
g determine the corresponding set f�
g. Now de�nethe function�(�) = � 12� [N e�(2�� 2) + �(2�)� MX
=1�(�� �
)]; (21)constructed with the determined values �
. Those values of the variable �that satisfy �(�
) = I
 ; (22)where I
 is an integer belonging to the sequence, are the solutions we beganwith, while those values of � satisfying�(�hj ) = Ihj ; (23)where Ihj , the integers omitted from the I
 sequence, are the holes. Introduc-ing the distribution functions �(�) and �h(�) of the �-solutions and �-holes,respectively, we have d�d� = �(�) + �h(�); (24)since the number of holes and �'s in the interval d� is given, on the onehand, by [�(�)+ �h(�)]d� and, on the other hand, by the number of valuesof Ihj and I
 which �(�) takes as it ranges over the interval d�.The equation for the density �(�) in the presence of holes is obtainedfrom eq(21) by taking the derivative with respect to �,�(�) + �h(�) = f(�) � Z K(�� �0)�(�0)d�0; (25)39



where �h(�) = mXj=1 �(�� �hj ): (26)The solution (in Fourier space) to the equation is given by~�(p) = ~�o(p) + �~�(p) (27)with �~�(p) = � mXj=1 e�i�hp exp c2jpj2 cosh c2p (28)being the change induced in the density.Thus the \bare" hole density e�i�hp (in Fourier space) is \dressed" toe�i�hp exp c2 jpj2 cosh c2p by the back 
ow of the sea of spin momenta �: since all �momenta are coupled through eq(14), removing one of them a�ects all andleads to the redistribution given by ��(�).Given the density we can calculate the properties of the state; M , thenumber of \down spins", or the length of the lower row in the Young tableau,is M = Z �(�)d� = ~�(p = 0) = 12N � 12m (29)so that each hole contributes (�M)h = �12 and corresponds to a spin-1/2object, a spinon in modern parlance, since it obviously carries no charge.The triplet excitation, being characterized by �M = �1, is made of twoholes, again in accord with the �nite N considerations. In the languageof spin representations the state consists of a symmetrized product of twospin-1/2 objects yielding spin-one.The triplet excitation energy �Et for holes at �h1 and �h2 is given by�Et = D Z ��(�)[�(2�� 2)� �]d�= 2D tan�1 e(�=c)(�h1�1) + 2D tan�1 e(�=c)(�h2�1): (30)It is a sum of two terms, each term being the energy carried by the spin-halfspinon.We claim, then, that the triplet is composed of two spin-1/2 unchargedobjects whose spins are coupled symmetrically to form a spin-1 state. Tocon�rm this interpretation we need to show that another state exists where40



the spins are coupled antisymmetrically to form a spin singlet. We are leadto consider con�gurations of I
 inducing complex �
 solutions. Since theenergy is real these complex solutions occur in conjugate pairs. We shallshow that a singlet excited state is composed of a \sea" of real �-solutionswith two holes, at �h1 and �h2 , and a two-string, namely, a pair of complex�'s located at �� = ��� ic=2, where �� = 12(�h1 + �h2).The singlet: The equations governing the state are obtained from eq(7)written �rst for real �'s (1-strings) and then for the �'s in the 2-string. The�rst equation determines the density of real �-solutions �(�)�(�) + �h(�) = f(�)� Z K(�� �0)�(�0)d�0 � �st(�); (31)where �h(�) = �(�� �h1) + �(�� �h2);�st(�) = K3(�� ��) +K1(�� ��):The second equationN e�(��� 1) + �(��) = �2�I(2)+ MX�=1�1(�����) + MX�=1�3(��� ��) (32)�xes the position of the 2-string ��.As before, �h(�) arises by placing holes in the ground-state (consecutive)sequence. The string term �st(�) is the contribution �(�
��+)+�(�
���)of the two-string at �� = ��� ic=2 to the sum in eq (7). This contributioncan be rewritten as �1(�� ��)+�3(�� ��) with �� real, recall �n(x) = �( 2nx).When we convert the set of algebraic equations to an integral equation, bythe method described before, we obtain eqs(31).Its solution in Fourier space is~�(p) = ~�o(p) + �~�st(p) + �~�h(p); (33)with �~�h(p) = � exp c2 jpj2 cosh c2p(e�i�h1 p + e�i�h2 p);�~�st(p) = �e�(c=2)jpje�i��p:41



When �(�) is fed into eq(32) we �nd �� = 12(�h1 + �h2), as stated.This state is indeed a singlet, as can be deduced from calculatingM = 2 + Z d��(�) = 2 + ~�(0)= 2 + ~�o(0) + �~�h(0) + �~�st(0) = 12N;leading to a Young tableau with two rows of equal length.The singlet excitation energy, �Es, is also easy to calculate, and is foundto be degenerate (in the thermodynamic limit) with the triplet excitationenergy, �Es = D Z ���h(�) + ��st(�)� (�(2�� 2)� �) d�+D ��(2�+ � 2) + �(2�� � 2)� 2��= 2D(tan�1 e(�=c)(�h1�1) + tan�1 e(�=c)(�h2�1)); (34)since R d���st(�)[�(2�� 2)� �] + �(2�+ � 2) +�(2�� � 2) = 0. We �ndthat the string induces a change in the sea of real � momenta which exactlycancels its direct contribution.We thus con�rmed the picture of spin-1/2 objects, each corresponding toa \hole" in the I
 sequence, being the underlying fundamental excitations inthe spin sector [1]. But though the energy of a two spinon state does notdepend on the total spin, it does not follow that the interaction between thespinons is spin-independent. Indeed, we shall calculate the phase shift whenthese excitations cross each other and �nd that they di�er in the singlet andthe triplet state.The doublet: To have a single spinon excitation it is necessary to addan electron to the system whose total spin will then change to be one-half.This change induces a hole in the sequence since M is unchanged and Nis increased by one so that there is another slot available which is un�lled.Denoting by �h the corresponding spin momentum we �nd that the energyassociated with the adding an electron to form a doublet is composed of twoterms �Ed = 2D tan�1 e(�=c)(�h�1) + 2�L n; (35)the �rst term being the spinon energy and the second the holon energy (nis the level into which the electron was inserted). In other words, the added42



electron decomposes into two independent excitations, one carrying the spincontent and one carrying the charge content of the bare electron.Another way of creating a one-hole state is by removing a particle fromthe system. Thus consider N ! N � 1 and M ! M � 1. The countingargument indicates that a hole opens in the I
 sequence leading to a spinonexcitation, but since an n level is removed (n is �lled in the ground state,n < 0 ) we have an antiholon, a massless anticharged particle, rather than aholon �Ed = 2D tan�1 e(�=c)(�h�1) + 2�L jnj: (36)Thus the states obtained by adding an electron have the identical spin-content as the states obtained by removing an electron. The decoupled chargesector is, of course, di�erent.We proceed to show that this basic excitation, the spin-12 spinon is amassless relativistic right-mover, and calculate its scattering phase shift o�the impurity as well as o� another spinon. From eq(35), we learn that theKondo system has no spin-gap, since there are arbitrarily low-lying spin-
ip excitations for �h arbitrarily large and negative. The spinon excitationenergy takes the form � = 2T0e(�=c)�h with T0, given by T0 = De��=c. This isa dimensionful scale, dynamically generated by the model, and in terms ofwhich all other dimensionful scales are measured.Having identi�ed a physical scale, T0, we may take the scaling limit,D ! 1 with the scale held �xed. The coupling acquires a dependence onthe running cut-o� c = c(D) = �= ln T0D ! 0 as D!1. In this limit, havingremoved the cut o� dependence, all surviving quantities are universal. Inparticular, the excitation energy is� = 2T0e� (37)with � = (�=c)�h held �nite in the limit. The form of the energy is typicalof a relativistically right moving particle with � being its rapidity. As suchit is also its momentum, p = �.Within the scaling regime we still distinguish between (universal) ultra-violet behaviour as T; h; �; ::: � To and (universal) infrared behaviour asT; h; �; :::� To. Of course, all energy scales are small compared with the cuto� D which has been taken to in�nity. We shall �nd soon that the limit-ing procedure assures a universal limit to all excitations and thermodynamicquantities. 43



We now wish to compute the various spinon scattering phase shifts. Todeduce them we return to the cut-o� theory on a large but �nite ring L,and note that �h is not a continuous, independent variable. It is determinedby the fI
g con�guration, and takes values which are determined by thechoice of the omitted Ih. This allows the calculation of the S-matrix, orthe scattering phase shift �(�), of the spinon o� the inpurity, as well as thescattering of one spinon o� another, �(�1 � �2). The method we use [8] isbased on the well known observation that when a particle is quantised on a�nite ring of length L, the shift of its momentum from the free value 2�L n isinterpreted as a phase shift,p = 2T0e� = 2�L n + �(�)L ; � = �c�h (38)We shall refer to this method of calculation as the momentum shift methodand will use it also in the next lecture to calculate the S-matrix of the Hub-bard model. Another method of calculation is due to Korepin [9]. Morerecently a bootstrap Kondo S-matrix approach was developed by Fendley[10].We determine the phase-shift as follows: consider again eq(21)�(�) = � 12� [N e�(2�� 2) + �(2�) � Z d�0�(�� �0)�(�0)] (39)and evaluate �(�) for a density �(�) in the presence of holes f�hj g, eq(27).We shall add 2-strings later. One �nds2��(�) = � 2N e(tan�1 e�c (��1) � �2 )� 2(tan�1 e�c� � �2 )+ 1i Xj ln �(1 � i���hj2c )�(12 + i���hj2c )�(1 + i���hj2c )�(12 � i���hj2c ) (40)Consider �rst the case with one \hole" in the fI
g sequence, a one spinonexcitation (induced, for example, by adding an electron to the system). Thecorresponding �h is given by the value satisfying 2��(�h) = Ih, where Ih isthe \hole", so that eq(40) takes the form (upon dividing by L ):2N eL (tan�1 e�c (�h�1) � �2 ) = 2�L Ih + 2 1L (�2 � tan�1 e�c�h) (41)44



In the scaling limit the left hand side contains the spinon momentum,and we �nd that its shift from the free value 2�L Ih, namely the the scatteringphase shift, is �(�) = 2(�2 � tan�1 e�) (42)and the spinon-inpurity S-matrix becomesS = ei�(�) = �1 + ie�1 � ie� = � tanh(�2 � i�4 ): (43)The phase shift we found describes the one-dimensional scattering pro-cess. If we want to interpret it as an s-wave scattering in three dimensions,we have S = e2i�0 (44)with �0 being the s-wave phase shift so that�0(p) = 12�(p) = �2 � tan�1( p2T0 ): (45)As a function of the momentum the phase shift varies from �0 = �2 atlow momenta to �0 = 0 at large momenta. We shall interpret the the largemomentum physics as being described by a weak coupling hamiltonian, H0,while the physics in the infra-red is given by another hamiltonian H� which isstrongly coupled producing a maximal phase-shift. This is our �rst exampleof a crossover in the properties of the model.The phase shift describes the scattering of the spin content of the incom-ing electron. The charge does not scatter. Thus, after passing the impuritythe emerging state is not an electron anymore, but a superposition of un-scattered holons and a time delayed spinon.The spinon-spinon S-matrix can be read o� eq(40) by considering thecon�guration with two \holes" at �h1 and �h2 corresponding to the omittedintegers Ih1 and Ih2 . In this state the two spinon scatter in a triplet state. Wehave 2�L Ih1 = p1 + �(�1) + 1iL ln �(1� i�h1��h22c )�(12 + i�h1��h22c )�(1 + i�h1��h22c )�(12 � i�h1��h22c ) (46)with a similar equation determining p2. Hence, the spinon momentum, p1 =T0e�1 , is shifted by �(�1) in the presence of the impurity, and by �t(�1 � �2),45



the triplet spinon-spinon phase shift, in the presence of another spinon. Thetriplet scattering isSt(�1 � �2) = ei�t(�1��2) = �(1 � i �1��22� )�(12 + i �1��22� )�(1 + i �1��22� )�(12 � i �1��22� ) (47)In a simialr way, to determine the singlet scattering phase-shift we have toevaluate eq(21) in the presence of two holes and a 2-string, using the densityin eq(33). One �ndsSs(�1 � �2) = 1� i �1��2�1 + i �1��2� St(�1 � �2); (48)and hence the total spinon S-matrix in the Kondo model isS(�1 � �2) =  �(1 � i �1��22� )�(12 + i �1��22� )�(1 + i �1��22� )�(12 � i �1��22� )! �1��22� I12 + icP 12�1��22� + ic : (49)The S-matrix we obtained again satis�es the YBE as does its bare counter-part. This guarantees that the spinon quasi-particles, although interacting,do not decay. In fact they are protected by the conservation laws. The sameS-matrix was previously calculated for the spinons in the g-ology model [8],and will appear again in Lecture 4 to describe the scattering of the Hubbardspinons. The same S-matrix will describe the scattering of spinons in allmodels solved with the R-matrix of Lecture 2. It can be also deduced fromgeneral bootstrap considerations [11].The spinon-holon S-matrix, Ss;h = 1, linearizing the spectrum has com-pletely decoupled the charge from the spinon sector.The full spin spectrum of the model can be constructed this way; excita-tions are built of holes and complex pairs. If we have only real � solutionswith m holes in the �-sea, then the state will have spin S = 12m. (With N�xed m must be even.) These are maximum-spin excitations. The energyassociated with holes at �h1; � � � ;�hm is(�E)m holes = 2 mXj=1D tan�1(e(�=c)(�hj�1)): (50)46



When complex pairs are added they lower the total spin by coupling spinsantisymmetrically. The various complex structures allowed will be discussedbelow, but they have the feature that their contribution to the energy can-cels. The latter therefore is determined only by the holes in the sea of real� momenta. The contribution of the complexes shows up, however, not onlyin the counting of states and their total spin but also in the S matrix deter-mining the interaction of the various excitations. We conclude that the spinexcitations form a Fermi liquid.The nature of the complex solutions of the equations is captured by thestring hypothesis: the solutions of eq(7), in the limit N !1, always occur inthe form of n-strings, where an n-string is a complex of n �-solutions givenby �(n)j = �(n) + i c2(n+ 1 � 2j); j = 1; 2; : : : ; n: (51)This hypothesis has a long history[15],[12], but is not always valid; the hy-pothesis holds in the presence of a macroscopic number of holes, and is notnecessarily true in case we consider excitations containing only a small num-ber of them [13],[14]. Two-string solutions always exist (when two holesor more are present), but the conjugate pairs organize themselves into n-strings, n > 2, only if driven macroscopically. Thus more care has to betaken when analyzing scattering events of elementary excitations than inthermodynamic applications, where, in studying the response of the systemto external probes, we excite a su�ciently large number of holes and thestring hypothesis is valid.Let us develop the form that eq(7) takes in this case. Consider the casewithMn n-strings �(n)
;j = �(n)
 +i(c=2)(n+1�2j); 
 = 1; : : : ;Mn, with �(n)
the real part of the 
th n-string. Equation (7) then becomes:N e�n(�(n)
 � 1) + �n(�(n)
 ) = 0Xm;��n;m(�(n)
 ��(m)� )� 2�I(n)
 ; (52)where the summation is over all strings di�erent from the particular �(n)
string. The function �mn(x) is de�ned as�mn(x) = ( �jn�mj(x) + 2�jn�mj+2(x) + � � � + 2�n+m�2(x) + �n+m(x); n 6= m2�2(x) + � � �+ 2�2n�2(x) + �2n(x); n = m (53)47



and as a reminder, �(x) = �2 tan�1(x=c) = �11(x). Equation (52) is ob-tained from eq(7) by summing over all members of a string. For example,nXj=1�(�� �(n)j ) = 1i nXj=1 ln c� i(�� �(n)j )c+ i(�� �(n)j ) = �n+1(�� �n) + �n�1(���n);nXj=1�(2�(n)j � 2) = �n(�(n) � 1):The integers I(n)
 determine the allowed string solutions �(n)
;j , and are thespin quantum numbers of the system.The rest is just as before. For a chosen set of con�gurations I(n)
 onedetermines the corresponding �(n)
;j complex spin solutions, and then formsthe function�n(�) = � 12��N e�n(�� 1) + �n(�)�Xm;��nm(�� �(m)� )�; (54)with the �(m)� determined earlier, so that solutions of �n(�(n)
 ) = I(n)
 are theallowed strings, while solutions, �h(n)j , of�n(�h(n)j ) = Ih(n)j ; (55)where Ih(n)
 are the integers omitted in the sequence, correspond to n-stringholes. In the limit of N !1 we may introduce n-string density �n(�) andn-string hole density �hn(�), which obviously satisfyd�n(�)d� = �hn(�) + �n(�): (56)Combining the last expression with the derivative of eq(54) we �nd thatthe string densities obey the following set of equationsfn(�) = �hn(�) + 1Xm=1Anm�m(�);wherefn(�) = N eKn(�� 1) +Kn(�);Anm = [jn�mj] + 2 [jn�mj+ 2] + � � �+ 2 [n +m� 2] + [n+m];(57)48



and [n] is the operator given by[n]f(�) = Z Kn(���0)f(�0)d�0: (58)In terms of the string variables the energy can be expressed asE = DXn Z d��n(�) [�n(�� 1) � �] +Xj 2�L nj: (59)Here we have performed the sum over the individual members of a stringand are left with integration over the string locations only.With this complete classi�cation of states, we proceed to compute thepartition function of the system at nonzero temperature T and external mag-netic �eld h. We shall deduce a set of coupled integral equations determiningthe free energy F , using a method originated by Yand and Yang [16], andgeneralized by Gaudin [17] and Takahashi [12]. We shall analyse the equa-tions and demonstrate scaling behaviour and crossover properties in the fullh� T plane.The Thermodynamics of the Kondo Model.The formal expression for the partition function isZ = Tr exp �� 1T (H � 2�hSz)�;= N=2XS=0 SXSz=�S Trssz exp �� 1T (H � 2�hSz)�; (60)where H is the zero-�eld Hamiltonian, � is the magnetic moment and we setg = 2 for convenience. Trssz is the trace over all basis states with values Sand Sz of total spin and z component of the spin. Since H is invariant undersimultaneous rotations of all spins, we may split o� the sum over Sz to obtainZ = N=2XS=0 sinh �(2S + 1)�hT �sinh ��hT � Trss exp �� HT �� N=2XS=0 Trss exp �� 1T (H � 2�hS)�: (61)49



In the last approximation we have dropped terms proportional to exp(�Sh=T ),as well as an overall factor [2 sinh(h=T )]�1, since these terms contribute neg-ligibly to the calculation of thermodynamic quantities in the limit L ! 1(note that S�L).Now let us exploit the speci�c form of the energy for our basis states.Recall that each such state is labeled by a set of quantum numbers fnj; I
gwith nj � �N e. The corresponding energy isE = E(c)(fng) + E(s)(f�g) (62)with the charge energy E(c)(fng) = 2�L NeXj=1nj (63)and the spin energyE(s)(f�g) = D MX
=1 ��(2�
 � 2) � �� (64)The partition function factorizes acordingly,Z = Z(c)Z(s) ; (65)where the charge partition functionZ(c) = Xfnjg;nj��Ne exp �� 1T NeXj=1 2�L nj� (66)describes the thermodynamics of N e noninteracting spinless fermions withlinear kinetic energy. In the limit D !1 it leads to the free energyF (c) = �LT2� Z 1�1 dk ln (1 + e� kT ) = � �12LT 2 + fin�nite constantg (67)and is half the the free energy of a noninteracting electron gas at zero mag-netic �eld. Note that the e�ects of a magnetic �eld are all included in Z(s).The spin partition function isZ(s) = exp �N�hT �XM Xf�1;:::;�Mg exp �� 1T [E(s)(f�g) + 2M�h]�: (68)50



It can be rewritten in terms of the n-string and n-string hole density �n(�)and �hn(�) asZ(s) = exp �N�hT � Z YD�nD�hn expS(f�n; �hng) exp �� 1T [E(s)(f�g)+2�hM ]�;(69)with E(s)(f�g) + 2�hM =Xn Z d��n(�)gn(�) ; (70)where gn(�) = D[�n(�� 1)� �] + 2�hn (71)and where S(f�n; �hng) is the entropy associated with the densities f�n; �hng.In other words, expS(f�n; �hng) is the functional, counting the number ofcon�gurations fI
g leading to solutions f�
g that are consistent with a givenset of densities f�n; �hng. To determine S divide the � axis into intervals d�,chosen su�ciently small so that the densities are approximately constantover each interval, yet su�ciently large that (�n + �hn)d� � 1. The numberof slots for �-strings in the interval d� is d�n = (�n + �hn)d�, �nd� of whichare occupied, while �hnd� are empty; thus the number of ways of distributingthe n-strings among the slots is[(�(�) + �hn(�))d�]![�n(�)d�]![�hn(�)d�]!: (72)Using Stirling's formula, we can simplify this to givedSn = ln [(�n + �hn)d�]![�nd�]![�hnd�]! = [(�n + �hn) ln(�n + �hn)� �n ln �n � �hn ln �hn]d�so that entropy, S, becomesS(f�n; �hng) =Xn Z d�[(�n + �hn) ln(�n + �hn)� �hn ln�hn � �n ln �n]: (73)In thermodynamic limit, N ! 1, we may evaluate Z(s) by the methodof stationary phase approximation. Varying the functionalF (s)f�n; �hng = E(s) + 2�hM � TS �Nh (74)= Xn Z d���ngn � T�n ln �1 + �hn�n �� T�hn ln �1 + �n�hn ���N�h51



subject to the constraint, ��hn = �PmAnm��m, one �nds,ln[1 + �n(�)] = gn(�)T + 1Xm=1Amn ln[1 + ��1n (�)]; (75)where �n(�) = �hn(�)�n(�) : (76)This set of equations may be rewritten asln �n = G[ ln(1 + �n+1) + ln(1 + �n�1)]; (77)ln �1 = �2DT tan�1 e(�=c)(��1) +G ln(1 + �2);with the driving term, 2D tan�1 e(�=c)(��1), familiar as the one-hole excitationenergy �Ed. The operator G is de�ned byGf(�) � [1][0] + [2]f(�) = 12c Z d�0 1cosh �c (�� �0)f(�0): (78)To close the set of eqs(77) one has to supply a boundary condition forn!1. It turns out to belimn!1([n+ 1] ln(1 + �n)� [n] ln(1 + �n+1)) = �2�hT : (79)Once a set of solutions �n satisfying the equations has been found, thespin free energy may be obtained from eq(74), and considerably simpli�ed(we shall skip some of the steps),F (s) = Xn Z d���ngn � T�n ln(1 + �n)� T �fn �Xm Anm�m� ln(1 + ��1n )��N�h= �Xn T Z d�fn(�) ln(1 + ��1n )�N�h= �Xn T Z d�[ N e�(1� �) + �(�)][n] ln(1 + ��1n )�N�h= �T [N e�(1� �) + �(�)]G� ln(1 + �1)� g1T ��N�h= Z d��0(�)fg1(�)� T ln[1 + �1(�)]g �N�h= Eo � T Z d��o(�) ln[1 + �1(�)]; (80)52



where�o(�) = G[N e�(1��) + �(�)] = 12c� N ecosh �c (�� 1) + 1cosh �c�� (81)is the ground-state � density, and Eo is the is the ground state energy.Adding the charge free energy F (c), eq(67), we haveF = F (c) + F (s) = E0 � �LT 212 � T Z d��0(�) ln[1 + �1(�)]; (82)Eo now containing also the temperature-independent contribution of thecharge 
uctuation.We shall now demonstrate the scaling properties of the thermodynamicequations, describing the behaviour of the system in the regime where T; h <<D. In this case the function �1 has a very sharp decrease, proportional toexp[�(2D=T ) tan�1 z], where z = exp[(�=c)(� � 1)], and will contribute oforder exp(�2D=T ) to the partition function except for small z. Hence in thescaling limit we may replace tan�1 z by z in these integrals and compute �nfrom a modi�ed version of the thermodynamic equationsln �n = �2�n;1e� +G[ ln(1 + �n+1) + ln(1 + �n�1)] n = 1; 2; ::::: (83)where we now regard �n as a function of the new variable �,� = �c�� ln T0T ; (84)with G(� � � 0) = 12� 1cosh(� � � 0) (85)and by convention we set �0 = 0.The free energy becomes,F = E0��LT 212 � T2� Z d� 8<: N ecosh h� � ln T0T � �c i + 1cosh h� � ln T0T i9=; ln[1+�1(�; hT )];(86)which we rewrite now in terms of impurity and electron contributions ratherthan in terms of spin and charge sectors,F = E0 + F e + F i: (87)53



The impurity free energyF i = � T2� Z d� ln[1 + �1(�; hT )]cosh [� � ln T0T ] � Tf� TT0 ; hT � (88)depends on the coupling constant and the cuto� only through the combina-tion T0 = De��=c, the only scale in the problem. The free energy is universalto all materials or constructions with the same T0.The electron contributionF e = ��LT 212 � TN ef  TD; hT ! ����D!1 (89)is the free energy of a non interacting gas of electrons, here expressed in thecharge-spin decoupled basis. This is obviously so since it is the part of thefree energy that survives when the impurity is removed.Our task, then, is to solve the equations eq(83) and from the obtained�1(�) to compute the impurity free energy F i, eq(88). Some properties ofthe solutions are easy to establish, even though no analytic solution is yetavailable:1. �n(�) is monotonically decreasing in � ( �xed n).2. �n(�) is monotonically increasing in n (�xed �).3. �n(�) has �nite asymptotic limits:�n ! 8>><>>: �+n = sinh2(n+1)�hTsinh2 �hT � 1; as � ! +1��n = sinh2 n�hTsinh2 �hT � 1; as � ! �1 (90)These properties will be of use as we turn now to study the impurityphysics in the high tempertature and low temperature limits for a givenmagnetic �eld h, and then at zero temperature as a function of h.Let us check that the electron free energy F e coincides in the limit D!1with the conventional expression derived in the Fock basis[2]. Begin fromthe expression for F (s) = �Pn T R d�fn(�) ln(1+��1n ), and notice that now,as we are considering a free electron gas fn does not contain the impurity54



part, fn(�) = N eKn(� � 1), which is proportional to the derivative of gn,fn(�) = � L2�g0n(�) which in turn via eq(75) allows us to writeF e(s) = �Xn T 2 L2� Z d� dd�� ln(1 + �n)�Xm Anm ln(1 + ��1m )� ln(1 + ��1n )= �Xn T 2 L2� Z d� dd�� ln(1 + �n)� ln(1 + ��1n )� ln(1 + ��1n )= �Xn T 2 L2� Z d��0n�n ln(1 + ��1n ) = �Xn T 2 L2� Z �+n��n d�n 1�n ln(1 + ��1n )= �T 2 L2� Z 10 d� 1� ln(1 + ��1) = �T L2� Z 1�1 dk ln(1 + e� kT ): (91)We used the fact that ��1 = 0; �+n = ��n+1, and in the last step changedvariables � = e kT , to obtain an expression recognizable as the free energy ofa gas of non interacting spinless electron, and identical to F (c), both beinghalf the conventional free energy. We turn now to investigate the impurityphysics.Impurity behavior at high temperature.The impurity free energy at high temperature is determined by the func-tion �1(�) for large negative values of �. In the limit it is found from ��1 tobeF i = � T2� Z d� 1cosh [� + ln TT0 ] ln [1 + �1(�; hT )]! �T ln �2 cosh �hT �; (92)This is the free energy of an isolated spin in the presence of a magnetic�eld h, and we are therefore in the neighborhood of the weak coupling �xedpoint. How rapidly is this point approached? Assuming an expansion of �nin inverse powers of � and ln �, inserting the expansion in the thermodynamicequations we can determine the asymptotic behaviour of �1 and hence theimpurity free energyF i = T "ln(2 cosh �hT )� 12 �hT tanh �hT  1ln T=Tk + 12 ln ln(T=Tk)ln2 T=Tk ! # (93)leading to the susceptibility, 55



�i = �2T �1 � � 1ln T=Tk + 12 ln ln(T=Tk)ln2 T=Tk �+O� ln2 ln T=Tkln3 T=Tk � �: (94)We have introduced a new scale the Kondo temperature Tk, de�ned by therequirement that no term of the form 1= ln2(T=Tk) appear in the expansion.In other words, the term a= ln2(T=T0) that actually does appear is absorbedby expressing the expansion in terms of a scale Tk = eaT0. This expression forthe susceptibility can also be obtained by conventional perturbation theory,by studying the neighborhood of the weak coupling hamiltonian, H0, theultra-violet �xed point.Impurity behavior at low temperature.We shall see now that as T tends to zero the system 
ows to a new�xed point that is Fermi liquid in character. Indeed, note that the functionf(t; x) which in eq(89) describes for small t the physics of a free electron gason all scales, also appears in eq(88), where it captures for small t the lowtemperature physics of the impurity. Since the former is the prime exampleof a Fermi-liquid it follows that so is the latter. More precisely, the impurityphysics at low temperatures is the same as the spin sector of the free electrongas, and as such it carries all the spin degrees of freedom but only half of theentropy. This is the origin of the value of the low-temperature Wilson ratioR to which we turn.Let us then carry out the limiting procedure t = TT0 ! 0. For su�cientlysmall t we may expand the kernel 1= cosh(� + ln t) = 2t exp �(1� t2 exp 2� +t4 exp4� + � � �), to obtain (we may perform the expansion within the integralas �1 vanishes for large � as e�2e� )f(t; x) = x� Z d�e� ln(1 + �1(�; x)) +O(t2); (95)so that F eL = ��T 212 � T 2� Z d�e� ln�1 + �1(�; hT )�+O� T 4D2�: (96)As argued earlier, F e is the free energy, in the spin-charge decoupledBethe basis, of a system of N e = DL noninteracting spin-12 electrons in the56



presence of a �eld h. Comparing it with F e=L calculated in the conventionalmanner in the the Fock basis (the identi�cation is valid as D !1),F eL = � T2� � Z 1�(�D��h) dk ln(1 + e�k=T ) + Z 1�(�D��h) dk ln(1 + e�k=T )�= ��T 26 � (�h)22� ;we obtain Z d�e� ln�1 + �1(�; hT )� = �212 + (�h)22T 2 : (97)The same integral appears in the impurity low-temperature expression,therefore we haveF i = � T 2�T0 Z d�e� ln�1 + �1(�; hT )� = � 1�T0��212T 2 + 12(�h)2�: (98)We �nd that the impurity contribution to speci�c heat at low temperatureis Fermi-liquid like C i = �6T0T (99)as is the magnetic susceptibility �i = �2�T0 : (100)The zero temperature susceptibility is �nite, indicating that the impurityspin manifest in the high temperature regime by Curie's law, �i = �2T , isnow completely screened. We shall interprete the e�ect as due to stronge�ective coupling between the impurity and the conduction electrons leadingto the formation of a local singlet, and the infra-red physics is dominated bya strong coupling �xed point.Although the strong coupling impurity physics is Fermi-liquid like, itis di�erent from the electrons' Fermi-liquid. This can be brought out bycomparing U i = T�iC i = 6�2�2 (101)57



with the corresponding electronic value U e = 3�2�2 . Hence Wilson's ratioR = �i=�eCi=Ce takes the value, R = 2: (102)The main element that allowed the identi�cation of the �xed point asa Fermi liquid was that the same function �1 occurs in the description ofboth the electron gas and the impurity. At the same time we have R = 2due to the decoupling of the charge degrees of freedom from the impurity.More generally, the natural basis in Hilbert space for the description of theinfra-red is the Bethe-basis with charge and spin decoupled, and the impuritymodifying only the spin sector, while in the ultra-violet the Fock basis is thenatural one.Let us study the crossover as a function of the magnetic �eld at zero tem-perature. In this case the in�nite set of themodynamic equations collapsesinto a single one,�B(�) + Z 1B K(�� �0)�B(�0)d�0 = f(�); (103)where the lower bound B is related to the magnetic �eld h. The magnetiza-tion equation can be derived directly by looking for the lowest energy statefor a given spin. In this state the spinons are excited at the lower end up to� = B.The equation can be solved by means of Wiener-Hopf technique and yieldsthe magnetization, M = �S = �12(N � 2M), as a function of the magnetic�eld [4][3]. The solution is of form,M =Me +Mi; (104)where Me = �� 2�e�1=2LT0e�B=c in the scaling limit. Identifying it as themagnetization of the free electron gas, MPauli = �hL=� ,Me = �� 2�e�1=2LT0e�B=c = �hL� ; where B << 1 (i.e., �h << D) (105)allows us to relate the parameter B to the magnetic �eld h,e�B=c = � 2�e�1=2 hT0 � hT1 (106)58



The second terms is the impurity magnetization which upon the previousidenti�cation becomes,Mi = 8><>: �p� P1k=0(�1)k 1k!(k + 12)k�(1=2)e�[k+(1=2)] ��hT1 �2k+1 ; �h � T1��1 � ��3=2 R10 dtt sin(�t)e�t(ln t�1)�T1�h�2t�(t+ 12)� ; T1 � �h << D:(107)This expression is valid over the entire range of the energies and we may reado� the asymptotics:In the ultra-violet,Mi ! ��1� 12 ln �hT1 + ln 2ln2 �hT1 � ln �hT12 ln2 �hT1 �+ � � � (108)which is the magnetization of a free spin weakly interacting with the conduc-tion band. This is in accord with our previous conclusions.In the infra-red[1], Mi ! �2�T0h (109)indicating a screened impurity.This magnetic crossover also �gures in another interesting quantity, thescattering phase shift of an electron on the Fermi surface o� the impurityas a function of the magnetic �eld, �0(h) [18]. This quantity determines thetransport relaxation time � 12� = �c sin2 �0(h) (110)and hence the magnetoresistance�(h) = 3ce2D0 sin2 �0(h): (111)Here c is the impurity concentration, and D0 the density of states at theFermi level.To calculate �0(h) we add an electron to the system which is at its lowestenergy state in the presence of a magnetic �eld, j
h >, creating a doublet, aone-\hole" state jk; a; 
h >. Denoting by Eo(N e; S) the lowest energy for a59



system with N e electrons and a total spin S, we have that the energy of thestate jk; a; 
h > with k on the Fermi-level isE(k;�1=2;
h)jk=kF (h) = E(N e + 1; S � 1=2) (112)where S is the spin corresponding to the �eld h. On the other hand we mayadd the electron far from the impurity, hence E(k;�; 
h) = k+E(
h) henceonly those values of k are allowed (on a �nite ring L) which satisfyk = E(k;�1=2;
h)� E(
h) = E(N e + 1; S � 1=2) � E(N e; S) (113)By studying the deviation of the allowed incident momentum k from freevalues we can determine, as before, the scattering phase shift,�0;�(h) = �0;�(kF (h)) = �2 [1�M i(h)=�]: (114)where the sign indicates whether the electron spin projection is parallel orantiparallel to S.The phase shift reaches its unitarity limit, �0 = �=2, at low magnetic �eldsand falls to zero logarithmically as the �elds are increased. The correspondingbehavior in the resistivity (albeit as a function of the temperature) was theexperimental measurement that ignited the interest in the model.We have explored the crossover as a function of temperature, magnetic�eld, and momentum concluding consistently that all infrared physics can bedescribed by a strong coupling �xed point that produces a Fermi liquid. Letus turn now to discuss it further.The strong coupling �xed point.In the infra-red regime the system can be viewed as a gas of quasi parti-cles scattering o� a non-magnetic potetial center characterized by the phaseshift �(p), and weakly interacting among themselves. These are the spinonsinteracting via scattering matrix elements Ss and St and undergoing a phaseshift �0(p) upon passing the screened impurity potential. The localized po-tential is due to a singlet formed by the impurity strongly interacting withthe electrons in the infra-red and e�ectively capturing an electron to forma local singlet. In other words, from Friedel's sum rule we can argue that�0(p = 0) = �=2 indicates an enhanced density of states around the impu-rity, tantamount to an electron (or its spin content) captured there, forming60



a singlet. Virtual transitions are then responsible for inducing the scatteringof the spinon o� the screened-impurity.We are immediately led to the following expession (valid at low temper-atures) for the impurity free energyF i = �2T Z 10 dp2��0(p) ln(1 + e� pT )! � �12 T 2T0 (115)as sum over spinons (hence the lower limit of the integral is zero). Here1��0(�) = Di = 1� 2To(2T0)2+�2 is the impurity part of the one-particle density ofstates. (An equivalent way to obtain it is from D = @�@� = �0(�)= � d�d��)More generally, Nozieres[19] has argued that the physics around this �xedpoint can be captured by a Landau expansion of the phase shift�0(�) = �0 � ��� �a2M e (116)with �0 = �2 from strong coupling arguments, and � and �a phenomenologicalparameters. These parameters determine all low temperature proprties of themodel. In particular, resistivity speci�c heat and magnetic susceptibility aregiven by �(T ) = �0 �1� (��T )2�C iCe = ��D0�i�e = ��D0 + 2�a�where D0 denotes the density of states, here D0 = L� . Wilson's Ratio is givenby R = 1 + 2D0�a=�. Assuming the Kondo singularity is tied to the Fermilevel and only antiparallel spin interactions Nozieres concluded 2D0�a=� = 1and hence R = 2 in accord with Wilson's result.The explicit values of these parameters can be read o� eq(45) and eq(114),� = 12T0 ; �a = �4 M iM e = �4 �i�e = �4T0L:yielding a complete characterization of the �xed point.61



The Kondo Problem.We now return to consider the main question: the characterization ofthe crossover by universal numbers [5][20]. Begin by introducing the highmagnetic �eld scale Th, parametrizing the weak coupling regime in the h �T plane, by requiring that no term of O[ln�2(h=Th)] should appear in theexpansion. One �nds from eq(108),Mi ! ��1 � 12 ln �hTh + ln ln hTh4 ln2 �hTh + 0( 1ln �hTh )3 + � � � �;with Th = ��e�12T0: (117)The numberWh = ThT0 = q�e [3], de�ned as the ratio of the ultraviolet scaleTh to the infrared scale T0, relates to both �xed points and its computationrequires the construction of the model on all energy scales.Can one similarly understand the crossover as a function of the temper-ature? One wishes now to calculate W = TkT0 , where Tk was de�ned at theweak coupling regime and characterizes the corrections to Curie's law, whileT0 de�ned at strong coupling sets the screening scale. We have encounteredthe number previously in the form W = ea in the discussion after eq(94),but were unable to determine it from the in�nite set of coupled thermody-namic equations. We proceed to calculate it now, appealing to the idea ofuniversality. Expressing W asW = TkT0 = TkTh ThT0 ; (118)we note that the universal number Tk=Th is completely de�ned in the weakcoupling regime, and therefore can be calculated exactly by means of pertur-bation theory. We �nd, TkTh = 2�
p�e� 94 (119)where ln� = Z 10 dx(1 � x2)x  �2sin2 �x � 1x2! = ln e5=22� [21]ln 
 = C = Euler's constant:62



Hence W4� = e(C�1=4)4� = 0:102676::: [3]: (120)This number was �rst calculated by RG techniques to beW4� = 0:1032 � 0:0005 [5]; (121)in good agreement with the analytic result. Note that the three numbersTK=Th; Th=T0; TK=T0 were computed within three di�erent constructions ofthe model. Their accord is due to the renormalizability of the model and theuniversality resulting from it.We have seen that the Kondo model 
ows toward an infra-red behaviourthat is Fermi-liquid in character. We wish to describe now some generaliza-tions where this behaviour is modi�ed.The multichannel Kondo model.The model was introduced by Nozieres and Blandin [22] to include theorbital structure of the impurity,H = �i Z  �a;m(x)@x a;m(x)dx+ J �a;m(0)~�ab b;m(0) � ~S (122)here m = 1; :::; f = 2l + 1 is the orbital channel (or 
avor) index and thespin operator Si is in spin-S representation of SU(2). In the hamiltonian thevalues of f and S are unrestricted. To describe a magnetic impurity f = 2S,but other non-magnetic applications of the model exist with other values ofspin and 
avor [23].The nature of the infra-red �xed point depends on those values [22]: forf � 2S the coupling J 
ow to in�nity leading to a screened impurity in thecase f = 2S, and to a partially screened impurity S0 = S � 12 in the casef < 2S. The strong coupling �xed point becomes unstable when f > 2S andthe infra-red physics is then controled by a new, �nite coupling �xed point.This new �xed point is expected to describe non Fermi-liquid behavior.The model is integrable but presents some challenge as to the handlingof the cut o� scheme. The reason is that the e�ect of 
avor enters throughthe Fermi statistics; it allows f spin-up electrons to interact at a time witha spin down impurity. The cut o� procedure, if improperly handled, may63



smear out the local interaction and lead to wrong results. At the same timeit must respect integrability.One procedure [25], valid only for f = 2S, uses a version of the Andersonmodel as a cut-o�. A more gereral approach is not to linearize the spectrumab initio, but to maintain some curvature which is removed at the same timeas the cut-o�. This way one obtains a set of Bethe- Ansatz equations couplingspin and 
avor degrees of freedom [24], and a remarkable e�ect takes placewhen the cut-o� is taken to in�nity: the 
avor singlet sector separates fromthe rest of the Hilbert space leading to a new \fused" set of BAE describingthe interaction of e�ective spin-f=2 electrons with the spin-S impurity. Thisdynamical fusion to form the spin-f=2 electron complexes, captures the fullspin content of the model and underlies the appearance of the non-Fermi-liquid behavior.We shall skip further details of the Bethe-Ansatz construction and writedown directly the BAE for the model,� MY�=1 �� � �
 + ic�� � �
 � ic =  �
 � 1 � ifc=2�
 � 1 + ifc=2!Ne  �
 � icS�
 + icS! ; (123)and the resulting thermodynamic equations in the scaling limit,ln �n = �2�n;f +G[ln(1 + �n+1) + ln(1 + �n�1)]; (124)noting that the e�ect of 
avor is to move the driving term to the fth rowof the coupled set of equations. The asymptotic conditions on the equationsare, [n+ 1] ln(1 + �n)� [n] ln(1 + �n+1)! 2�h=T; n!1: (125)Having solved the equations one computes the spin-S impurity free energyfrom �n=2S , F iS;f = � T2� Z d� ln[1 + �2S(�; hT )]cosh [� � ln T0T ] : (126)The same set of equations determines the free energy for all values of the spinS. We shall see below that the overscreened solutions �n; n < f di�er incharacter from those with n � f . The electronic properties are still calculated64



from �f . Hence we may expect Fermi-liquid behaviour only in the case f =2S.The functions �n are analytic monotonically decreasing in � for all n andtending to �nite limlts �� as � !�1. The limits are given by��n = sinh2[(n+ 1)�h=T ]sinh2(�h=T ) ; n = 1; 2; :::; (127)and �+n = 8<: sin2[(n+1)�=(f+2)]sin2[�=(f+2)] � 1; for n < fsinh2[(n+1�f)�h=T ]sinh2(�h=T ) � 1; for n � f (128)Consider now the high-temperature properties of the model. They aredetermined, for a spin-S impurity, by behavior of �2S in the limit � ! �1.As in the one-
avor case we have discussed in detail thus far this limit isapproached with power corrections leading toF i ! �T ln sinh(2S + 1)�h=Tsinh �h=T + B1ln T=T0 : (129)This is the weak-coupling regime, governed by the �xed point at J = 0.The free energy is that of an isolated spin S up to the usual logarithmiccorections. The nature of this �xed point is una�ected by the introductionof 
avor degrees of freedom.On the other hand 
avor a�ects signi�cantly the low temperature prop-erties of the model. These are determined by the behavior of of �2S in thelimit � ! +1. The nature of the limit and the approach to it depend onthe 
avor degrees of freedom.The underscreened functions, �n; n = 2S > f , attain their asymptoticlimit �+n with power corrections and we have,F i ! �T ln sinh(2S + 1 � f)�h=Tsinh �h=T + C1ln T=T0 + : : : as T ! 0: (130)This is the free energy of a spin S0 = S � 12f . In other words, the impurityspin is partially screened. The approach to the limiting value is logarithmicin the temperature indicating a �xed point at J =1.65



The function �n; n = f , describes complete screening and, as T !0; F i � (D1T 2 + Sh2)=T0. A1; B1; C1; and D1 are numerical constants.A new situation arises when we consider the overscreened functions, �n; n <f . These functions approach their limit values exponentially, �n(�) ! �+n +cne���; � ! 1; n < f , with 0 < � < 1. Hence we may apply the opera-tor G directly to the asymptotic form G e��� = e���=2 cos(��=2) and thethermodynamic equations reduce to an algebraic recursion relation for thecoe�cients bn = cn=(1 + �+n ),�+n1 + �+n ( bn+1 + bn�1) = �bn; n = 1; :::; f � 1 (131)with the boundary conditions b0 = bf = 0. The eigenvalue � is related to �via � = 2 cos ��=2.The solution to the resursion relation isbn = sin[(n+ 2)�=(f + 2)]sin[n�=(f + 2)] (132)with the smallest eigenvalue � = 4f + 2 (133)(In the two channel case more care needs to be taken since � = 1 and applyingG to the asymptotic form generates logarithmic corrections.)The impurity free energy at low temperature takes the form ,F if;S = �12T ln(1 + �+2S)� b2S2 cos(��=2) T (T=T0)� + : : : (134)from which we conclude that the infra-red physics is dominated by a newnon-trivial �xed point generating power laws behavior for the speci�c heatand susceptibility C i � ( TT0 ) 4f+2 (135)�i � 1T ( TT0 4f+2 (136)66



A similar power law arises when one considers low-energy scattering of thespinon o� the impurity.These power laws allow the identi�cation of the infra-red �xed pointhamiltonian as the SU(2) level-f WZW conformal �eld theory where thecombination 1f+2 is the coe�cient of the hamiltonian in the Sugawara-form[27].This coe�cient determines essentially the conformal dimensions, and hencethe the asymptotic form of the dynamic correlation functions [26][28]. Inparticular, the primary �eld �1(z) has the dimension � = 2=(f +2) and canbe identi�ed as the spin operator from eq(136).Actually, the appearance of some WZW model as the �xed point hamil-tonian can be expected from symmetry arguments since it is the simplestmodel to incorporate scale invariance and SU(2) symmetry. Detailed calcu-lations are required to determine to which level (here level f) the full modelwill 
ow to in the infra-red.The zero temperature entropy can immediately be read o� eq(134),S = �12 ln(1 + �+2S) = � ln sin[(2S + 1)�=(f + 2)]sin[�=(f + 2)] (137)and is the logarithm of a fractional number! The appearance of fractionalentropy is due to the solitonic nature of the excitations[10], and is general inconformal �eld theory [29].The �xed point can also be approached as a function of the magnetic �eldat zero temperature. The thermodynamic equations collapse into a singleequation which describing the maximum spin excitations above the groundstate, consisting of an f -string con�guration in the presence of a magnetic�eld. For small magnetic �elds, however, we can deduce the asymptoticbehavior from the ground state solution. Denoting by �i0 the impurity con-tribution to the ground-state density of f strings, we have for the impuritymagnetization �elds hM i(h � 0) = (�=2) Z lnh=T0�1 dx �i0(x): (138)The density �i0 is given in Fourier space by~�i(p) = ( sinh(SJP )=[2 cosh(Jp=2) sinh(fJp=2)]; f > 2Sexp[(f=2 � S)J jpj]=[2 cosh(Jp=2)]; f � 2S:67



In the limit h ! 0, the magnetization is dominated by the properties of~�i(p) at p = 0. While for f < 2S; ~�i0(p) is discontinuous at p = 0 leading toM i(h�0) = 2�(S � 12f) + 0(ln h=T0), for f � 2S the transform is analytic in pso that M i(h) is controled by the pole at p = �2i=f . HenceM i(h) � �(h=T0)2=f ; h! 0 (139)leading to the critical exponent � = f=2 (and logarithmic corrections forf = 2).We have dealt thus far with the theoretical aspects of the Kondo model.It is, however, a model that describes an experimentally realizable system,and the mathematical structure we discussed can be confronted with reality.It is found that the theory provides a remarkably good �t for a large bodyof experimental data [30] with no adjustable parameter except the scale Tk.This is more remarkable still in view of the simplicity of the model, whichnevertheless captures the essential physics of a rather complex system.References[1] N. Andrei, Phys. Rev. Lett. 45, 379 (1980).[2] V. M. Filyov, A. M. Tsvelick and P. B. Wiegman, Phys. Lett. A81 (1981).[3] N. Andrei and J.H. Lowenstein, Phys. Rev. Lett. bf 46,356 (1981).[4] P. B. Wiegmann, JETP Lett. 31, 392 (1980).[5] K. G. Wilson, Rev. Mod. Phy. 47, 773 (1975).[6] N. Andrei, K. Furuya and J.H. Lowenstein, Rev. Mod. Phys. 55,331 (1983).[7] A. M. Tsvelik and P. B. Wiegmann, Adv. in Phys.32, 453 (1983).[8] N. Andrei, J. H. Lowenstein, Phys. Lett. B 91, 401 (1980).[9] V. E. Korepin, Theo. Math. Phys.41,953 (1979).68
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Lecture 4: written with Andres JerezThe Hubbard ModelIn this lecture we analyse the spectrum of the Hubbard model. Many ofthe results have been derived in the past by Lieb and Wu [1], Ovchinikov [2],Coll [3], Shiba [4], Takahashi [5], Woynarovich [6], and Kluemper et al.[7].We systematize the results, occasionally correct them, and derive new ones[8]. The latter category includes results concerning the spectrum and scat-tering of the excitation away from half �lling, for the repulsive and attractiveinteraction. While these lecture notes were written up Korepin and Esseleralso derived some of the results presented here [9]. Their work concentrateson the half �lled case and emphasizes the charge SU(2) symmetry that ap-pears in this case [10]. This symmerty is explicitly broken away from half�lling but we shall �nd some remnants of it.The analysis in this lecture is similar to the one carried out in Lecture3, but is much more involved due to the coupling of the Bethe-Ansatz equa-tions. We �nd that the fundamental excitations are, as in Lecture 3, spin-12uncharged spinons and spinless charged holons and antiholons. Indeed, anySU(2) invariant integrable model characterized by the R-matrix discussedin Lecture 2 will have excitations carrying the same spin quantum num-bers, since these are determined by counting. Also the spinon S-matrix,computed from a counting argument, has essentially the same form as weencountered earlier. The dynamics, on the other hand, captured by thefunction �j = �(kj) determines the dispersion of the excitations and de-pends on the particular form of the interaction. In the repulsive Hubbardmodel we shall �nd that spin excitations are always gapless and have a spinFermi momentum ksF = �2n, where n = N=L is the particle density. Thecharge sector is composed of gapless (holon-antiholon) as well as of gapfulexcitations (holon-holon). The gapless charge excitations are present only aslong as the band is less than half �lled, and their charge Fermi momentum iskcF = �n. When n = 1 no gapless charge excitations survive and the systemungergoes a metal-insulator transition.In the attractive model the situation is somewhat reversed. Gaplesscharge excitations always exist: the holon-antiholon excitation is gapless butdisappears from the spectrum at half �lling, while the holon-holon excitationbecomes gapless at this point. On the other hand the spin excitations are70



always gapful.The nature of the spin gap can be easily understood by comparing eq(44)and eq(46) in Lecture 2. The couplings of the (antiferromagnetic) Kondomodel and the attractive Hubbard are of the same sign. But as we saw inLecture 3, the e�ective spin coupling then 
ows to the strong coupling �xedpoint generating a spin scale for the Kondo model, and a spin gap for theattractive Hubbard model. In the repulsive model the e�ective spin coupling
ows to zero and the spin excitations are gapless.The same argument applies to the charge gap at half �lling due to theappearance of the charge SU(2) symmetry, but the e�ective couplings arereversed; thus a charge gap opens in the repulsive case, but not in the at-tractive case. Away from half �lling the charge symmetry is broken to U(1)and gapless charge excitations are present (holons-antiholons).The Z2 particle-hole transformation [1] maps, at half �lling, spinons mak-ing up the singlet excitation in the repulsive case (always gapless) to theobjects that make up the the holon-holon excitation in the attractive case(gapless at half �lling). This is quite remarkable in view of the very di�erentstructure of the wave functions of the respective states. Not only are the en-ergy and momentum the same but also the scattering matrices. To completethe corespondance, the triplet of the repulsive model would be matched notwith the holon-antiholon of the attractive model (which disappears from thespectrum at half �lling) but with states obtained by removing/adding twoelectron to the system applying the operator C� mentioned in Lecure 1. Asone moves away from half �lling one can follow explicitly the breaking of thesymmetry.Spin and charge sectors are coupled; spin excitations involve rearrange-ment of charge degrees of freedom and vice versa. In the low energy limit,however, we shall see that complete decoupling takes place, similar to theone occuring on all energy scales for the Kondo model.Let us proceed now to the construction of the eigenstates. We considera system of N electrons moving on a chain of L sites (N and L are assumedeven, and the lattice spacing is 1 in some unit). We denote by kF = �2n theFermi momentum of the non-interacting system. For the Hubbard model�j = sin kj , and c = u2 ; with u = Ut , see Lecture 2. Therefore the Bethe-71



Ansatz equations take the form:eikjL = MY�=1 �� � sin kj � iu4�� � sin kj + iu4 (1)and � MY�=1 �� � �
 + iu2�� � �
 � iu2 = NYi=1 �
 � sin ki � iu4�
 � sin ki + iu4 ; (2)for a state with M down spins and N �M up spins. The quantum numberM labels both the total spin and its z-component, as discussed earlier, Sz =12(N � 2M) = S.Upon taking the logarithm of eqs(1,2) we obtain:Lkj = 2�nj + MX�=1�(2 sin kj � 2��); j = 1; :::; N (3)NXj=1�(2�
 � 2 sin kj) = �2�I
 + MX�=1�(�
 ���); 
 = 1; :::;M (4)where �(x) = �2 tan�1(2x=u); �� � � < � (5)The quantum numbers fnj; I
g label the states, and are integers or halfodd integers. The charge quantum numbers fnjg are integers if M is evenand half odd integers if M is odd. They are de�ned modulo L, and willtake values between upper and lower bounds N� = �(L � 1)=2. The spinquantum numbers fI
g are integers when N �M � 1 is even, and half oddintegers when it is odd, and are subject to the same restriction as before,I�(N;M) = �(N �M � 1)=2 � I
 � (N �M � 1)=2 = I+(N;M) (6)After solving the equations for an (allowed) con�guration fnj; I
g theenergy and momentum of the that state areE = NXj=1�2t cos kj; (7)P = NXj=1 kj = 2�L (Xj nj +X
 I
); (8)72



where the last expression for the momentum is obtained from eq(3)and eq(4).The solutions, fkj;�
g, of eqs(1,2) fall, in the thermodynamic limit, intopatterns described by the string hypothesis [5]:1. Real kj2. � n-string, of the form �(n)j = �(n) + i c2(n + 1� 2j); i = 1; 2; :::; n:3. k�� n-string, consisting of a � n-string and n complex k-pairs k(n);�j ,each centered around � string position, sin k(n);�j = �(n)j � iu4 .In the Appendix we present a more detailed discussion of some of thesolutions listed.These states form a complete set of 4L eigenstates [11]. Their degeneracymust be properly taken into account. We saw previously that the Bethe-states are highest weight states of the spin SU(2) symmetry group, and therest of the multiplet can be obtaines by repeated action of the spin loweringoperator S�. Less obvious but still true is the fact that the Bethe states arealso the highest weight states of the charge SU(2) group and therefore therest of the multiplet can be obtained by the action of the C� operator.We shall be mainly interested in the low lying excitations; the generalstructure of the solutions will interest us only towards the end of the lecture,when we wish to sum over all eigenstates to obtain the free energy.We turn now to determine which of the possible solutions corresponds tothe lowest energy eigenvalue. We shall �nd that the answer depends on thesign of the coupling: The ground state is composed of 1-strings (real kj) inthe repulsive case, and of k 2-strings (rather k�� 1-strings in the terminologyof the string hypothesis) in the attractive case. Still, the excitations abovethese ground states so di�ering in structure are spinons and holons carryingthe same quantum numbers and, in particular at half �lling, having the samedispersion laws, and interacting via the same S-matrices.We consider now each case separately.The repulsive Hubbard model.The ground state solution consists of real k's and real �'s. In the ther-modynamic limit we shall be interested in the (real) solution-densities �(k)and �(�), de�ned by; L�(kj) = 1=(kj+1 � kj)L�(�
) = 1=(�
+1 � �
)73



The k-solutions are distributed between the pseudo charge Fermi-momenta�Q and Q with Q � �, since they are de�ned modulo 2�, while the (real)� solutions will be distributed between the pseudo spin Fermi momenta �Band B, B �1. The integration limits are to be determined fromZ Q�Q �(k)dk = N=L (9)Z B�B �(�) = M=L (10)and can vary with the state, even as the number of electrons is held �xed.In terms of the densities the energy and momentum becomeE = �2tL Z Q�Q �(k) cos kdk (11)P = L Z Q�Q �(k)kdk (12)The ground state.We begin by identifying the ground state con�guration fn0j ; I0
g. We shall�nd that the ground state is a singlet, Mo = N=2, given by a con�gurationsymmetrically arranged around zero and as closely packed as possible:noj+1 � noj = 1Io
+1 � Io
 = 1with the nj and I
 �lling all the slots from n+ to n� and from I+ to I�respectively, I� � I
 � I+; I� = �(N=2 � 1)=2:n� � nj � n+; n� = �(N � 1)=2:We have tacitly made the choice that N=2 is an odd integer.The densities corresponding to this con�guration of quantum numberssatisfy the integral equations (their derivation is the same as the one outlined74



in Lecture 3)�o(k) = 12� + cos k Z Bo�Bo d��o(�)K1(sin k � �) (13)�o(�) = Z Qo�Qo dk�o(k)K1(sin k � �)� Z Bo�Bo d�0�o(�0)K2(�� �0) (14)Here �o(k); �o(�), Qo and Bo are respectively the densities and integra-tion limits for the ground state, and we encounter the kernels from previouslecture, Kn(x) = 1� nu4(nu4 )2 + x2 = � 1� ddx��2nx� ; n = 1; 2::: (15)with Fourier transform ~Kn(p) = e�nu4 jpj.The structure of the equations (13,14) will recur often, and it is convenientto introduce the notation,�o = 'o +M(Qo; Bo)�o (16)where we denote �(k;�) = � �(k)�(�)� ; 'o = � 12�0 �and the matrix of integral operators,M� = � 0 cos k K1K1 �K2 �� ��� (17)given in more detail,M(Q;B)�(k;�) =  cos k RB�BK1(sin k � �)�(�)d�RQ�QK1(sin k � �)�(k)dk � RB�BK2(�� �0)�(�0)d�0 ! :To proceed we need to determine the Fermi-levels. We shall �nd that tominimize the energy we have to set B0 =1 irrespective of the density of elec-trons n (which determines the value of Q0.) The state is a singlet as followsby intergating eq(14) over �, R1�1 �0(�)d� = M0L = 12(NL ) = 12 RQo�Qo �o(k)dk:75



Finite values of B correspond to non-vanishing ground state spin and andwill occur in the presence of a magnetic �eld. We shall return to this pointat the end of the lecture.As B0 = 1 we may solve the spin-equation, eq(14), for any �lling, bymeans of the Fourier transform,�0(�) = 1u Z Q0�Q0 dk�0(k)sech(2�u (�� sin k)): (18)and derive an integral equation for �0 substituting (18) in (13),�0(k) = 12� + cos k 4u Z Q0�Q0 dk0�0(k0)R�4u(sin k � sin k0)� : (19)The function R, the resolvent of K2, (1 +R)(1 +K2) = 1, is given by[4],R(x) � Z 1�1 dp2� eipx1 + e2jpj = 14� Z 1�1 dt sech �12�t�1 + (x� t)2 ;= 1� 1Xn=1(�1)n+1 2nx2 + (2n)2 : (20)It is convenient to introduce the integral operatorK(Q0)�(k) = Z Q0�Q0 dk0 ��(k � k0)� cos k 4uR�4u(sin k � sin k0)�� �(k0); (21)in terms of which (19) becomes, suppressing the Q0 dependence in the oper-ator, K�0(k) = 12� : (22)We need to determine Q0. Consider �rst the ground state at half �lling,(N = L). The quantum numbers nj assume all allowed values, in other words,n� = N� and therefore, also the k-solutions are distributed over the maximalrange: Qo = �, as can be immediately veri�ed in the thermodynamic limitby integrating eq(13) over k. In this case we can derive explicit expressionsfor �o(k) and �o(�),�0(k) = cos k� Z 10 dpJ0(p) cos(p sin k)1 + eu2 jpj ; (23)�0(�) = 12� Z 10 dpJ0(p) cos(p�)cosh(u4p) = 12�u Z ��� dk sech�2�u (�� sin k)� :(24)76



Hence the energy can be calculated [1]E0L = �2t Z ��� dk�0(k) cos k = �4t Z 10 dp J0(p)J1(p)p(1 + eu2 jpj) : (25)The ground state away from half-�lling is not accessible in closed form,except in some limits such as weak coupling, strong coupling or low density[4] [12]. In particular, in the strong coupling limit, u� 1 we have2��o(k) = 1 + 4u ln 2Qo� cos k; (26)from which the relation of n = N=L and Qo can be determined�n = Qo[1 + 4u� ln 2 sinQo]; (27)and the energyEo=L = �2t " 1� sin(�n) + 2 ln 2u (�n� )2(1 � sin(2�n)2�n )# : (28)In the half �lled case, n = 1, this equation reduces to the ground stateenergy of the Heisenberg antiferromagnet with exchange coupling J = 2t2=U .This relation between couplings can be obtained perturbatively.In the general case one needs to solve the equations numerically [4]. Theresults clearly demonstrate the e�ects of correlations, which become mostpronounced at strong coupling, or as n = N=L tends to 1.Elementary excitationsLet us consider now excitations above the ground state. Excitations arecreated by varying the quantum numbers from their ground state con�gura-tion; spinons - by varying only the spin quantum numbers, fI
g, and holons- by varying only the charge quantum numbers fnjg. We shall �nd thatholons and spinons are interacting, and will compute their scattering matrix.In the low energy limit they decouple in a manner similar to the decouplingof holons and spinons in the Kondo model. We shall see that the low lyingspectrum is linear in the momentum and therefore can be captured by a con-tinuum e�ective hamiltonian: the g-ology model [13] (which is also integrable[14].) 77



Spin excitations.These are obtained by varying the fIo
g sequence from its ground statecon�guartion (the attentive reader will note that the arguments, and wordsparallel those in Lecture 3).The triplet. The simplest spin excitation (keeping N �xed) is obtained byplacing \holes" in the fI
g sequence. Consider a state with M = N=2 � 1,namely a spin-1 state. As before, this corresponds to two \holes" in thesequence since the bound I�(N;M) = �(N � M � 1)=2 takes the valueI� = �N=4. Hence there are N=2 + 1 slots for the spin quantum numbersI
 and M = N=2 � 1 of them, leaving two \holes". We shall see again thateach \hole" corresponds to an excitation, a spinon, carrying spin-12 .We consider the con�guration fI
gI
+1 � I
 = 1 + �
;
1 + �
;
2; (29)leaving the fnjg con�guration unchanged. (Actually, the nj quantum num-bers change from half-odd-integers to integers. This change generates extraterms in the energy and momentum which, after a careful analysis, turn outnot to be relevant.)The triplet con�guration, eq(29), leads, by methods previously discussed,to the following equations for the densities �(k) and �(k),�t = 't +M(Q;B)�t (30)where we denote�t(k;�) = � �(k)�(�)� ; 't = � 12�� 1L�h(�)�with �h(�) = �(�� �h1) + �(�� �h2) (31)or expilicitly,�(k) = 12� + cos k Z 1�1 d��(�)K1(sin k � �) (32)�(�) = � 1L�h(�) + Z Q�Q dk�(k)K1(sin k ��)� Z 1�1 d�0�(�0)K2(�� �0)(33)We denoted by �h1;�h2 the hole positions corresonding to the quantum num-bers omitted from the sequence. To determine them we use the same line of78



argument as in previous lecture; from the prescribed con�gurations fnj; I
gone �nds the corresponding solutions kj;�
, and de�nes the counting func-tions,�(�) = 12� 0@ MX�=1�(�� ��)� NXj=1�(2�� 2 sin kj)1A 
 = 1; :::;M!(k) = 12�  Lk � MX�=1�(2 sin k � 2��)! j = 1; :::; NThe hole positions in the triplet state then satisfy�(�h1;2) = Ih1;2: (34)Note that the densities �(k) = �(k; �h1 ;�h2; Q) and �(�) = �(�;�h1;�h2; Q) de-pend also on the hole positions and on the charge pseudo Fermi-momentum,Q, which is determined from the condition RQ�Q dk�(k) = NL and may di�erfrom its ground state value Qo. The � integration limit stays at in�nitysince the corrections are of order 1=L. (We shall usually spell out only thevariables we need.)Eqs(32,33) describe a spin-1 state, as can be deduced by integrating withrespect to �. One �nds, NL = ML +ML + 1L(1+1), that isM = N=2�1. Again,this consideration is just the counterpart in the thermodynamic limit of thecounting argument presented above.Since the holes contribute to the distribution equations terms of order 1L ,we may write �(k) and �(�) as�(k) = �o(k) + 1L�1(k)�(�) = �o(�) + 1L�1(k)with �o(k) = �o(k;Q) and �o(�) = �o(�;Q) satisfying the ground-stateequations (13,14) for a given value of Q, while �1(k) = �1(k; �h1;�h2; Q) and�1(�) = �(�;�h1;�h2; Q) satisfy the equations�1(k) = cos k Z 1�1 d��1(�)K1(sin k � �) (35)�1(�) = ��h(�) + Z Q�Q dk�1(k)K1(sin k � �)� Z 1�1 d�0�1(�0)K2(�� �0)(36)79



The structure of the equations is as before, � = '+M(Q;B)�, but nowthe inhomogeneous term is' = 'o + 1L � 0��h(�)� = 'o + 1L'1 (37)and writing � = �o + 1L�1 we derived a reduced equation for �1�1 = '1 +M(Q;B)�1: (38)All excitations will be determined from this equation with only the inho-mogeneous term '1 and the integration bounds Q and B varying from caseto case.As before, we solve for �1 by taking the Fourier transform with respectto � of eq(45),�1(�) = 1u Z Q�Q dk�1(k)sech2�u (�� sin k)� 12� Z 1�1 dpeip(���h1 ) + eip(���h2 )1 + e�u2 jpj (39)The second term is identical to the corresponding spin contribution in theKondo model, while the �rst term represents the rearrangement in the chargesector that takes place due to its coupling to the spin sector.Feeding eq(39) into eq(35) one has,�1(k) � �1(�h1;�h2) = �s1(k; �h1) + �s1(k; �h2); (40)where each term satis�es,K�s1(k; �h) = �cos ku sech2�u (sin k � �h): (41)We may take the integration limit implicit in the equation to be Q0 ratherthan Q, since the correction are of a higher order in 1=L.From �1 we compute the excitation energy and momentum. The totalenergy eigenvalue is given byE = �2tL Z Q�Q �(k) cos k = Eo(Q)� 2t Z Q�Q �1(k) cos k;hence the excitation energy, �E = E � E0,�E(�h1;�h2) = �2t Z Q�Q �1(k) cos kdk + �Eo(Q)� Eo(Qo)�; (42)80



where we de�ne Eo(Q) = �2tL Z Q�Q �o(k;Q) cos kdk: (43)with �o(k;Q) being the solution of the ground-state equation eq(13) withintegration limit Q, which we now turn to determine. Denoting No(Q) =L RQ�Q �o(k;Q)dk allows us to rewrite the condition L RQ�Q �(k;Q)dk = Nas No(Q) + RQ�Q �1(k;Q)dk = No(Qo), yielding to order O( 1L ),Q�Qo = � Z Q�Q �1(k)dk�@No(Q)@Q ��1Q=Q0: (44)Thus to order O( 1L) the excitation energy becomes,�E(�h1;�h2) = �2t Z Qo�Qo dk�1(k) cos k + (Q�Qo)@Eo(Qo)@Qo= �2t Z Qo�Qo dk�1(k) cos k � � Z Qo�Qo dk�1(k)where the chemical potential, �, is given by� = dE0dN = �@Eo(Qo)@Qo ��@No(Qo)@Qo ��1 = �2tcosQo + RQo�Qo �(k;Qo) cos kdk1 + RQo�Qo �(k;Qo)dk : (45)We denoted �(k;Q) = 12�o(Q;Q) @�o(k;Q)@Q ; (46)and used the fact that �o(k;Q) = �o(�k;Q).Again as in Lecture 3 we �nd that the triplet excitation energy is com-posed of two terms �E = �(�h1)+�(�h2) each of which we identify as a spinonexcitation energy,�s(�h) = � Z Qo�Qo dk�s1(k;�h)[2t cos k + �] (47)Now to the excitation momentum �P (�h1;�h2). The total momentumof a state characterized by a con�guration fnj; I
g is, as we saw earlier,P = 2�L �PNj=1 nj +PM
=1 I
�. Here we are considering a con�guration with81



two \holes" in the spin sequence, Ih1 and Ih2 , hence the momentum of theexcitation is�P (�h1;�h2) = �2�L (Ih1 + Ih2 ) = �2�L (�(�h1) + �(�h2)) (48)We used P0 = 0 and dropped a term arising upon the shift of all quantumnumbers nj from half-odd-integers to integers when M changes by one. Thisshift has no e�ect on the momentum which is periodic in �n.We wish to identify the momentum of a single spinon in the sum eq(48).It must depend on a single parameter �h and have a �nite limit as L!1.The function �(�h) implicitly depends on both �h1 and �h2. However, we maywrite �(�h1) = Z Q�Q dk�(2 sin k � 2�h1)� Z d�0�(�0)�(�0 � �h1)= �0(�h1) + 1L�(�h1;�h2) (49)(and a similar expression for �h2) where,1L�(�h1;�h2) = (Q�Qo) d�0dQo + 1L Z Q0�Q0 dk�1(k; �h1;�h2)�(2 sin k � 2�hj ) (50)� 1L Z d�0�1(�0; �h1;�h2)�(�0 � �hj )and �0 is the ground state counting function. Hence, it is clear that thespinon momentum can be identi�ed asps(�h) = �2�L �0(�h) = ��2n + 2 Z Q0�Qo dk�o(k) tan�1 exp 2�u (�h � sin k);(51)yielding, together with the expression for the spinon energy eq(47), a para-metric representation of the spinon dispersion.The shift of the momentum from a free value, �(�h1;�h2) = L(�(�h1) ��0(�h1)), is the scattering phase shift of spinon 1 o� spinon 2, accordingto the method of momentum shifts discussed in Lecture 3 [15]. A generalexpression for it is given in eq(50), shall calculate it more explicitly soon.We can see immediately that the spinons are gapless; consider �(�h) inthe limit �h ! �1. The form of �1(k;�) in this case can be explicitly found82



from eq(41) [3] �s1(k;�h) = �2u cos ke� 2�u �h (k); (52)with  (k) satisfying [4], (k) = e 2�u sin k + 4u Z Qo�Qo dk0 cos k0R( 4u(sin k � sin k0)) (k0): (53)Hence, �s(�h) ! 8� tu [C(2) + �2tC(1)]e� 2�u �hps(�h) ! �[�2n� 4�e� 2�u �hC(0)]with C(n) = C(n)(u;Qo) = 12� Z Qo�Qo dk (k): cosn(k) (54)It follows that the energy vanishes linearly with the momentum measuredwith respect to the spin Fermi-momentum ksF = �2n = kF ,�s(p) = �vs(p� ksF ) (55)with the spin-velocity vs = 2tu �C(2)C(0) + �2t C(1)C(0)� (56)These spin-excitations, surviving in the low-enrgy limit, lead to a power lawbehaviour in the spin density correlation function for momentum transferq � 2kF .The spinons can be excited (in pairs) without exciting charged modes.However, due to the coupling of the charge-sector to the spin-sector, thecharge Fermi sea rearranges when spin modes are excited and modi�es theirenergy. This can be seen, in particular, when we study the spinon scatteringphase shifts.To compute the scattering phase shifts we consider the shift of the onespinon momentum from its free value 2�L Ih, due to the presence of the other83



spinon, �2�L Ih = �2�L �(�h) = ps(�h) + �(�h1 ;�h2 )L . Thus, scattering phase shiftfor spinons in the triplet state,�trip(�h1 ;�h2) = �2�(�(�h1)� �0(�h1))= �� + Z Q0�Q0 dk�1(k)(dps(�h1)dn ��(2(sin k ��h1)))+ Z 1�1 d�0�1(�0)�(�0 ��h1): (57)The constant �� appears because the set fI�g is shifted by 12 with respectto the ground state set. We have�trip(�h1;�h2) = �� + 1i log8>><>>:�� 12 + i�h1��h2u ���1� i�h1��h2u ��� 12 � i�h1��h2u ���1 + i�h1��h2u �9>>=>>; (58)+ Z Q0�Q0 dk�1(k; �h1 ;�h2)(2 arctan �e 2�u (�h1�sink)�+ �2 + dps(�h1)dn ) ;withdps(�)dn = �2 + arctan� cosh(2�u sinQ0)sinh( 2�u �) �� 2 R Q0�Q0 arctan �e 2�u (��sin k)��(k;Q0)dk1 + RQ0�Q0 dk�(k;Qo)The �rst two terms in (58) correspond to the pure spin scattering and havealready appeared in the spinon scattering in the Kondo model. The lastterm corresponds to the interaction of the spinon with the change in thecharge distribution produced by the presence of the triplet. As Q0 tends to�, the redistribution of the charge degrees of freedom decreases and so doesits contribution to the phase shift.At half �lling the expressions simplify. The Q-level does not shift fromits ground state value Qo = �, so � = 0, and the solution of eq(41) isstraightforward,�1(k) = � cos k � 1u sech2�u (sin k � �h1) + 1u sech2�u (sin k ��h2)�:84



Hence the spinon excitation energy and momentum are��s (�h) = 2tu Z ��� cos2 k sech2�u (sin k � �h)dk = 2t Z 10 dpJ1(p) cos p�hp cosh u4pp�s (�h) = ��2 + 1� Z ��� tan�1 exp 2�u (�h � sin k) = ��2 + Z 10 dpJ0(p) sin p�hp cosh u4p ;and the spin velocity at half �lling becomesvs = 2tI1(2�u )I0(2�u ) ; (59)with In being Bessel functions with imaginary argument. The spinon velocityvaries from vs = 2t when U = 0 to vs = 0 when U = 1, corresponding tothe excitation spectrum �s(p) = 2t cos p and �s(p) = 0, respectively.The spinon-spinon scattering matrix becomes identical to the Kondospinon scttering matrix (and to the pure spin S-matrix in any SU(2) modelsoluble with the R-matrix given in lecture 2)S(trip)� (�h1;�h2) = �(1 � 2iu (�h1 � �h2))�(12 + 2iu (�h1 � �h2))�(1 + 2iu (�h1 ��h2))�(12 � 2iu (�h1 � �h2)) : (60)To validate the claim that the spin-1 state considered thus far consists oftwo spin-12 excitations we must show that a state exists in the spectrum, de-generate in energy with the triplet state, with these spin excitations coupledto form a spin-0 eigenstate.The singlet. The spinons can be coupled antisymmetrically to form asinglet by adding to a �-con�guration with \holes" at �h1 and �h2 a 2-string�� = �o � iu=4, �o = 12(�h1 + �h2). This is, indeed a solution correspondingto the choice of I
-quantum numbers with two un�lled slots at Ih1 and Ih2 andan additional I(2) quantum number related to the 2-string position.The equations for the (reduced) densities �1; �1 satisfy the reduced equa-tion with inhomogeneous term'1 = � cos k K2(sin k � �o)��h(�)� �st(�) � (61)85



where �h(�) = �(�� �h1) + �(�� �h2)�st(�) = K1(���o) +K3(�� �o):We �nd for the spin density~�1(p) = Z Q�Q dk�1(k) e�ip sink2 cosh(u4p) � (e�ip�h1 + e�ip�h2 )1 + e�u2 jpj � e�u4 jpje�i�opleading to an equation for �1 which is identical to the equation determining�1(k) in the triplet case, (the 2-string contributions, although modifying thethe spin-sector, cancel in the equation for �1 leaving the charge-sector un-changed!) Hence the triplet and singlet are degenerate in energy (in the limitL ! 1), con�rming the physical picture, totally analogous to the one wehave found in the Kondo model, of these states describing two spin-12 objectscoupled symmetrically in one case and antisymmetrically in the other.The interaction of the spinons, however, depends on the spin-state. Fol-lowing the procedure previously outlined we �nd that the spinons, when inthe singlet state, undergo scattering with the phase shift�sing(�h1;�h2) = (62)= 1i log (1 + i 2u(�h1 ��h2)1 � i 2u(�h1 � �h2)) + 1i log8>><>>:��1� i�h1��h2u ��� 12 + i�h1��h2u ���1 + i�h1��h2u ��� 12 � i�h1��h2u �9>>=>>;+ Z Q0�Q0 dk�1(k; �h1;�h2)(arctan(e 2�u (�h1�sink))� �2 � dps(�h1)dn ) ;consisting of a charge contribution identical to the one we encountered dis-cussing the triplet scattering, and a spin contribution that is modi�ed in amanner similar to the modi�cation we found for the Kondo-spinons scatteringin the singlet state.Again, in the case of half �lling the charge sector does not contribute tothe spinon scattering, and the singlet S-matrix is found from the �rst twoterms on the right hand side of eq(62)S(sing)� (�h1;�h2) = 1 + 2iu (�h1 � �h2)1� 2iu (�h1 � �h2) �(1 � iu(�h1 � �h2))�(12 + iu(�h1 � �h2))�(1 + iu(�h1 ��h2))�(12 � iu(�h1 � �h2)) : (63)86



We can combine (60) and (63) to get the scattering matrix for spinons athalf �llingSspin� (�h1 ;�h2) = ��(1 � iu(�h1 � �h2))�(12 + iu(�h1 � �h2))�(1 + iu(�h1 ��h2))�(12 � iu(�h1 � �h2)) ((�h2 � �h1)I12 + iu2P 12(�h2 ��h1) + iu2 ) ; (64)where I12 and P 12 are the identity and the exchange operator in spin space,respectively. This expression satis�es the Yang-Baxter equation guaranteeingthat the physical, dressed S-matrices which describe the scattering of theactual quasi-particles do factorize consistently in the same manner as do thebare S-matrices discussed in Lecture 1. As a consequence we conclude thatthe excitations, though interacting, never decay! This is more remarkable stillsince gapless excitations are present, and is due to the dynamical conservationlaws (brie
y mentioned in Lecture 1) which protect the excitations.Charge excitations.Still keeping the number of electrons �xed, we now vary the fnjg se-quence from its vacuum con�guration, leaving the spin con�guration fI
gunchanged.The holon-antiholon. We consider �rst the case N < L, where the fol-lowing charge con�guration is allowed; remove the level nA from the groundstate sequence (creating a hole at the corresponding kA � Q0), and add alevel outside the charge-sea, nB (creating a particle at kB � Q0). Obviously,this excitation is not present at half �lling.The fnjg con�guration we consider, nB > n+; nj+1 � nj = 1 + �j;A,leads to the equations (here �Q � k � Q)�(k) = 12� � 1L�(k � kA) + cos k Z 1�1 d��(�)K1(sin k � �)�(�) = 1LK1(sin kB ��) + Z Q�Q dk�(k)K1(sin k � �)� Z 1�1 d�0�(�0)K2(�� �0);with the Q-level set by the requirement RQ�Q �(k)dk = N�1L : It can be easilychecked integrating over � thatM = 12N as expected since we did not changethe spin-sequence fIo
g.Again, �1(k) and �1(�) satisfy the reduced equation with the inhomoge-neous term 87



'1 = � ��(k � kA)K1(sin kB � �)� : (65)Hence immediately,~�1(p) = Z Q�Q dk�1(k) e�ip sink2 cosh(u4p) � e�ip sinkB2 cosh(u4p) ;and the equation for �1(k) follows. It is convenient to introduce a smoothdensity �01(k), �01(k) = �1(k) + �(k � kA) (66)and one has �01(k) � �01(k; kA; kB) = �c1(k; kA)� �c1(k; kB): (67)with K�c1(k; kj) = �4u cos k R�4u(sin k � sin kj)� j = A;B: (68)The calculation of the energy and momentum proceeds as before; theenergy is given byE = �2t cos kB � 2tL Z Q�Q dk�(k) cos k= �2t cos kB � 2t Z Q�Q dk(�01(k)� �(k � kA)) cos k + Eo(Q)and the excitation energy by�E(kA; kB) = 2t cos kA � 2t cos kB � 2t Z Q�Q dk�01(k; kA; kB) cos k + Eo(Q)� Eo(Qo)= ��c(kA) + �c(kB); (69)where we introduced the holon energy88



�c(kA) = �2t cos kA + Z Qo�Qo dk�c1(k; kA)[2t cos k + �]: (70)This function is monotonically decreasing to�c(Qo) = � (71)as kA tends to Q0.The momentum of the excitation isP � P0 = 2�L Xj (nj � n0j) + 2�L nB = 2�L (nB � nA) = �pc(kA) + pc(kB); (72)with the holon momentum, following previous arguments,pc(kA) = 2�L !0(kA) = 2� Z kA0 �o(k)dk (73)= kA � i Z Q0�Q0 dk�0(k) log8<:� �1 + i sinkA�sin ku �� � 12 � i sinkA�sinku �� �1 � i sinkA�sin ku �� � 12 + i sinkA�sinku �9=; :Both forms for the momentum will be useful. Together with the expres-sion for the holon energy we have a parametric representation of the holondispersion.It is obvious that the excitation is gapless when kA = kB = Q0 (recall that�� � �Q0 � kA � Q0 � kB � �.) The holon momentum in this limit tendsto the charge Fermi momentum kcF = �n, pc(kA) = 2� R kA0 �o(k)dk ! ��n,hence the vanishing of the excitation energy will lead to power law behaviourfor charge density correlation functions at momentum transfer q � 2kcF =4kF . In a few paragraphs we shall �nd that the holon-holon excitation, onthe other hand, is gapful.Once more we are able to describe the excitation as a combination of twoobjects. We will call holon the one with energy �c(kA) and momentum pc(kA)associated with the hole in the sequence, and antiholon the one created byadding an electron to the system and characterized by ��c(kB) and �pc(kB).The holon-antiholon phase shift �h;�h = �2�(!(kB)� !0(kB)) is given by�h;�h = 1i log8<:� �1 + i sinkB�sin kAu �� � 12 � i sinkB�sinkAu �� �1� i sinkB�sinkAu �� � 12 + i sinkB�sinkAu �9=; (74)89



� Z Q0�Q0 dk�01(k; kA; kB)241i log8<:� �1 + i sinkB�sin ku �� �12 � i sinkB�sin ku �� �1� i sinkB�sinku �� �12 + i sinkB�sin ku �9=;� dpc(kB)dn 35 :As before there are two contributions to the phase shift: the �rst line cor-responds to direct holon-antiholon interaction; the rest describes the e�ectof the interaction between the excitations and the redistribution of chargethey produce. Since the interaction is between charge degrees of freedom,the integrand is of the same form as the �rst term of the phase shift. Athalf �lling it vanishes and the �rst term would describe the holon-antiholonscattering had they existed.The holon-holon excitation. We were considering con�gurations with onlyreal k-momenta and holes in them. To discuss states with double occupancy,however, we need to consider solutions involving complex k-pairs. As a result,a gap of order U opens, and the excitations lie in the \upper Hubbard band".These gapful excitations are present both at half �lling and away from it, butare the only ones surviving at half �lling ( keeping the number of electrons�xed.) The disappearance of the gapless holon-antihilon excitation from thespectrum at half �lling is the origin of the charge gap and the concommitantmetal-insulator transition.Consider then a con�guration fnjg leading to a complex k�pair k� =� � i� and two \holes" in the real k-sea (the number of electrons is kept�xed). In the notation of the Appendix we haveM 0 = 1 complex k-pairs (i.e.a k � � 1-string) with the associated quantum number I 0. The number ofreal k-momenta is N � 2 and M = N=2� 1. The number of real � decreasedby one since one of them becomes the parameter � to describe the complexpair. From the counting arguments we have I 0 = 0, the set fI
g splits aroundzero so that P
 I
 = 0, but there is a � contribution to the phase shift.The Bethe Ansatz equations now take the formL(�� i�) = 2�nj + M�1X�=1 �[2 sin(�� i�)� 2��] (75)The right-hand side can be converted to an integral and evaluated toorder 1L by means of the ground state density �o(�). One �nds the complexis driven to string positions centered around a particular � solution. Denoting90



this particular solution by �, we �nd that it must satisfy (to order O(e��L)with � a number of order 1)sin(�� i�) = � � iu=4 +O(e�L) (76)namely, k� = � � arcsin(�� iu4 ) (77)with � real.Substituting (77) in the eigenvalue equations for real k,eikjL = 0@M�1Y
=1 �
 � sin kj � iu4�
 � sin kj + iu4 1A � � sin kj � iu4� � sin kj + iu4it follows that the real k's (the 1-strings) satisfyLkj = 2�nj + M�1X�=1 �(2 sin kj � 2��) + �(2 sin kj � 2�) (78)where the fnjg set has two \holes" in it, at nh1 and nh2 , corresponding toomitted momenta kh1 and kh2 , respectively.Similarly, the eigenvalue equation for real-�, becomes� M�1Y�=1 �� � �
 + iu2�� ��
 � iu2 ! �� �
 + iu2� � �
 � iu2 = 0@N�2Yj=1 �
 � sin kj � iu4�
 � sin kj + iu4 1A �
 � �� iu2�
 � � + iu2namely,N�2Xj=1 �(2�
 � 2 sin kj) = �2�I
 + M�1X�=1 �(�
 � ��); 
 = 1; :::;M � 1 (79)which has the same form as eq(4) but for N � 2 particles.Solving the equations for real k and � and evaluating eq(75) one has� = 12(sin kh1 + sin kh2 ) (80)similar to the result we encountered discussing singlet spin excitations.91



We convert (78) and (79), to the integral equations for �(k) and �(�),then de�ning �1 and �1, and �nally introducing�01(k) = �1(k) + 1L�(k � kh1 ) + 1L�(k � kh2 ) (81)we �nd that the densities �1 and �01 satsfy the usual reduced equation withthe following inhomogeneous term'1 = � cos k K1(sin k � �)�K1(sin kh1 � �)�K1(sin kh2 � �)� (82)and with the Q-level set by the condition RQ�Q �(k)dk = N�2L :Hence, ~�1(p) = Z Q�Q �01(k) e�ip sink2 cosh(u4p) � e�ip sin kh1 + e�ip sinkh22 cosh(u4p) (83)and �01(k) � �01(k; kh1 ; kh2 ) = �c(k; kh1 ) + �c(k; kh2 ) + �st(k;�) (84)where �c(k; khj ) satisfy eq(68), and �st(k;�) is the solution ofK�st(k;�) = cos k K1(sin k � �): (85)The energy of the state is given byE = �2t(cos k+ + cos k�)� 2tL Z Q�Q dk�(k) cos k (86)with the �rst term being the contribition of the string. Using some identities:cos k+ + cos k� = 2Re �q1� (�+ iu4 )2� = u2 + 1� R ��� dk cos2 kK1(sin k � �),we �nd for the excitation energy�E(kh1 ; kh2 ) = U + 2Xj=1 �c(khj ) + 2t Z ��� dk cos2 kK1(sin k � �)�2t Z Q0�Q0 dk�st1 (k;�)�cos k + �2t�= �g(U;Q0) + 2Xj=1 �c(khj ) (87)92



with the �c(k) same as de�ned for the holon-antiholon case, eq(70). Theholon-holon energy gap �g(U;Q0) + 2�c(Q0) does not vanish for any �lling.Away from half �lling, however, the holon-antiholon gapless modes are avail-able to carry the charge.We evaluate now the excitation momentum. Since there are no holes inthe spin quantum numbers and we are taking I 0� = 0, the only contributionto the change in momentum comes from the holes in the charge distribution.Then�P = �2�L (nh1 + nh2) (88)= kh1 + kh2 � 1L N2 �1X�=1 n�(2(sin kh1 ���)) + �(2(sin kh2 � ��))o+ 1L n�(2(sin kh1 � �)) + �(2(sin kh2 � �))o= pc(kh1 ) + pc(kh2 ): (89)with pc(k) de�ned in (73).The holon-holon phase shift is�h;h(kh1 ; kh2 ) = �� �8<: RQ0�Q0 dk�01(k)2�0(Q0) + RQ0�Q0 d�0(k)dQ0 9=; dpc(k1)dQ0 (90)+ Z 1�1 d��1(�)�(sin k1 � �)��(2(sin k1 � �));and can be written more explicitly as�h;h(kh1 ; kh2 ) = � + 1i log8>><>>:1 + i 2u(sin kh1 � sin kh2 )1� i 2u(sin kh1 � sin kh2 ) ��1 � i sinkh1�sinkh2u ���12 + i sinkh1�sin kh2u ���1 + i sinkh1�sin kh2u ���12 � i sinkh1�sin kh2u �9>>=>>;+ Z Q0�Q0 dk�01(k; kh1 ; kh2 )26641i log ��1 + i sinkh1�sin ku ���12 � i sinkh1�sinku ���1 � i sinkh1�sinku ��� 12 + i sinkh1�sinku � � dpc(kh1 )dn 3775(91)It is worth comparing (74) and (91), specially the terms that do not dependon the charge densities. These, as we shall see, are the only terms surviving93



at half �lling. If both excitations were present at half �lling, they would havethe singlet-triplet relation that we found for the spin excitations.At half �lling matters simplify again; we have explicit solutions�c(k; khj ) = � cos k 4uR( 4u(sin k � sin khj )); �st(k;�) = cos kK1(sin k � �);leading to the holon-holon excitation energy�Eh;h(kh1 ; kh2 ) = U + 2Xj=1 �c(khj ); (92)with the holon energy explicitly given by��c (kh) = �2t cos kh + 4t Z 10 dpJ1(p) cos(p sin kh)p(1 + eu2 jpj) ; (93)and the gap by �g = U + 2��c (�): (94)Likewise, the momentum of the holon can be explicitly computedpc(kh) = 2� Z kh0 �o(k)dk = kh + Z 10 dpe�u4 pJ0(p)p cosh u4p sin(p sin kh)= kh + 12�i Z ��� dk0 log8<:� �1 + i sinkh�sink0u �� �12 � i sinkh�sin k0u �� �1� i sinkh�sin k0u � � �12 + i sinkh�sin k0u �9=;and the phase shift,�h;h� = �� + 1i log8>><>>:1� i 2u(sin kh2 � sin kh1 )1 + i 2u(sin kh2 � sin kh1 ) ��1 � i sinkh2�sin kh1u ���12 + i sinkh2�sin kh1u ���1 + i sinkh2�sin kh1u ���12 � i sinkh2�sin kh1u �9>>=>>;(95)Note the similarity with the singlet scattering shift, eq(63).94



Charge-spin excitations.We studied thus far pure spin excitations, as well as pure charge excita-tions. The latter fall into two categories; the gapless holon-antiholon and thegapful holon-holon excitations. In the half �lled band only the latter existsand a charge gap opens. Similarly the simplest spin excitation are the tripletand the singlet composed of two spin-1/2 spinons.A single holon cannot be excited if we keep the the number of electrons�xed. Neither can we excite a single spinon. To do so we need to change thenumber of particles in the system. When we add an electron we modify boththe spin and charge con�guration, creating a hole in the former and adding alevel in the latter, thus exciting a spinon and an antiholon excitation (rathera coherent superposition of them). When we remove an electron we createholes both in the spin and the charge sequences, exciting a spinon and aholon. These considerations are similar to the corresponding ones in theKondo model. However, unlike the situation there, the spinon and holon donot decouple except in the low-energy limit.Now that we are considering a change in the number of particles it isconvenient to change the form of the hamiltonian to make it more symmetric.We shall replace the interaction termHI = UPj nj"nj# byH 0I = 12UPj(nj"+nj#�1)2. The di�erence, H 0I �HI = �12UN̂ = �12U Pj(nj"+nj#) commuteswith the hamiltonian and only modi�es the energetics. We have, in otherwords, added a chemical potential, A = �12U , to the system to make itparticle-hole symmetric.We begin by removing an electron, creating a charge hole at kh and aspin hole at �h corresponding to the omitted quantum numbers nh; Ih. Thenj quantum numbers change from half-odd-integers to integers, while the I
stay half-odd-integers.Following the well trodden path we introduce the densities �1(k) and�1(�), then �01(k) = �1(k) + �(k � kh) obeyingK�01(k) = � cos k 1usech(2�u (sin k � �h))� cos k 4uR�4u(sin k � sin kh)� ;with the solution given by�01(k) = �s1(k; �h) + �c1(k; kh):95



Hence the excitation energyE(N � 1; kh;�h)�E0(N) = �E�(kh;�h) = U2 + �s(�h) + �c(kh): (96)and momentum�P = �2�L �Ih + nh� = pc(kh) + ps(�h); (97)Therefore, this excitation is composed of a holon and a spinon. They interactand the phase shift can be calculated, for instance, from the spin contributionto be, �h;s = �2 � 2 arctan(e 2�u (�h�sinkh))� Z Q0�Q0 dk�01(k)(2 arctan(e 2�u (�h�sin k))� �2 � dpsdn ) : (98)When we remove an electron in a de�nite momentum state p forming thestate cp;aj
 > we end up with a coherent superposition of the eigenstates justdescribed, subject to p = pc(kh) + ps(�h). The associated spread in energiesgives a measure of the life time of an electron (or electron hole) in the system.At half-�lling the excitation energy and momentum are�E�(kh;�h) = U2 + 2t cos kh + 4t Z 10 dpJ1(p) cos(p sin kh)p(1 + eu2 jpj) + 2t Z 10 dpJ1(p) cos p�hp cosh u4p�P (kh;�h) = �2 � Z 10 dpJ0(p) sin(p�h)p cosh u4p+kh + 12�i Z ��� dk0 log8<:� �1 + i sinkh�sink0u �� � 12 � i sinkh�sin k0u �� �1 � i sinkh�sink0u �� �12 + i sinkh�sin k0u �9=;= Z 10 dpJ0(p) sin p�hp cosh u4p + kh + Z 10 dpe�pu4 J0(p)p cosh pu4 sin(p sin kh):The minimum energy to remove a particle from a half �lled band occursat kh = �; �h =1,�E� = Eo(N�1)�Eo(N) = 12U�2t+4t Z 10 dp J1(p)p �1 + eu2 jpj� = 12U+�c(�) = 12�g(�):(99)96



We shall compare it to the energy required to add a particle at half �lling inthe next subsection.The phase shift is just the �rst term in (98)�h;s = �2 � 2 arctan(e 2�u (�h�sinkh)); (100)and is similar to the spinon-impurity scattering phase shift we encounterd inthe Kondo model. The reason for the similarity is that in the half �lled casein the Hubbard model the charge distribution is locked and does not interactdirectly, while in the Kondo model it decouples completely. We concludethat spinon-holon scattering matrixSs;h� (kh;�h) = ie 2�u sinkh + ie 2�u �he 2�u sinkh � ie 2�u �h ; (101)indicates that the low-energy spinon sector (�! �1) completely decouplesfrom the charge sector. This decoupling is captured by the g-ology model,describing the low-energy physics of the model. As discussed earlier, in thelatter model spinon sector and holon sector belong to di�erent Hilbert spacesin analogy to the situation in the Lecture 3. It was in this context that the�rst spinon S-matrix was calculated [15].Consider now adding a particle to the system. This can be done in twoways; creating a state with double occupancy, described in the Bethe-Ansatzlanguage by con�guration containing complex k-pairs, or creating a statewith all momenta real. At half �lling only the �rst possibility exists.We begin by discussing this situation. We consider a con�guration withone hole in the real k-sea and a 2-string. A hole also opens in the �-sequencesince N is increased by one while M is unchanged. Placing the charge-holeat k�h, the charge-string at k�, where sin k� = � � iu4 , and the spin-hole at�h, we �nd upon solving for the density of real-� and real-k that � = sin k�h.The relevant integral equation isK�01(k) = cos k �K1(sin k � �) � 1usech(2�u (sin k � �h))� 4uR�4u(sin k � sin k�h)�� :leading to the excitation energy, momentum and phase-shift�E(2)+ (k�h;�h) = E(2)(N + 1; k�h;�h)� Eo(N)97



= �g(U;Q0) + �s(�h) + �c(k�h); (102)�P (k�h;�h) = �2�L (Ih + nh) = pc(k�h) + ps(�h); (103)�s;�h(2)(k�h;�h) = �2 � 2 arctan(e 2�u (�h�sin kh))� Z Q0�Q0 dk�01(k)(2 arctan(e 2�u (�h�sink�h))� �2 � dpsdn ) :(104)At half �lling we have explicit results, and it can be easily seen that theyare the same as when we were removing an electron,�E(2)+ (k�h;�h) = 12U + 2t cos k�h + 2t Z 10 dpJ1(p) cos p�hp cosh u4p + 4t Z 10 dpJ1(p) cos(p sin k�h)p �1 + eu2 jpj�where 12U is composed of two contributions: 12U � the chemical potential,and U � string contribution arising from double occupancy. Hence the min-imum energy required to add an electron,E0(N + 1) �Eo(N) = 12U + �c(�) (105)is the same as to remove one (due to our choice of a particle-hole symmetrichamiltonian).Away from half �lling we can add a particle without creating doubleoccupancy. There are spaces available for an extra k = k�h, but as before ahole opens in the fI
g sequence at position �h.The excitation energy is�E(1)+ (k�h;�h) = �2t cos k�h � Z Q0�Q0 dk�1(k) f2t cos k � �g � U2 ;= �U2 + �c(�h) + �s(k�h); (106)and the momentum�P (k�h;�h) = 2�L (n�h � Ih) = pc(k�h) + ps(�h): (107)The spinon-antiholon phase-shift,�s;�h(1) = �2 + 2 arctan(e 2�u (�h�sink�h))� Z Q0�Q0 dk�1(k)(arctan(e 2�u (�h�sin k))� �2 � dpsdn )98



is conjugate to the spinon-holon phase-shift.To summarize our conclusions for the repulsive interaction: the spin ex-citations are gapless for any value of n, while gapless charge excitations existonly away from half �lling. When the density reaches this critical point, allgapless charge carrying modes disappear from the spectrum (gapful modesare always present), and the system becomes an insulator. This is the mech-anism underlying the Mott transition in this model.The structure of the excitations is rather complex. Away from half �lling,there is an incoherent charge background that is modi�ed in the excitedstates. This is particularly manifest in the phase shifts. We see that, fora given excited state, the phase shift of one of the elemantary excitationsconsists of a term due to the interaction with the other excitation, and aterm that describes the interaction with the change from the ground state ofthe charge incoherent background.At half �lling, the charge distribution becomes rigid, and we only seeinteractions between the elementary excitations.When a magnetic �eld is turned on similar comments will apply to a spinbackground. We will see the same behavior in the attractive case.The low energy physics can be captured by an e�ective �xed point hamil-tonian, calculated by repeatedly integrating out higher energy degrees offreedom. This e�ective hamiltonian in our case will describe excitations withlinear dispersion and hence will be conformally invariant. One can, then,from the exact solution calculate the parameters specifying the conformalhamiltonian directly without carrying out RG transformations [20][21].The attractive Hubbard modelThe structure of the wave functions of the ground state and the excitationschanges completely; it is advantageous to have doubly occupied sites to lowerthe energy. Therefore the ground state is composed entirely of k 2-strings,and the excitations involve either the breaking or displacing of 2-strings.The ground stateThe ground state con�guration for u < 0 consist of a sea of k 2-strings.To minimize the energy we choose the con�guration of quantum numbersfI 0�g to consists of consecutive integers centered around 0, �lling all slots99



between I� and I�. The k 2-strings satisfy the string hypothesisk�;� = arcsin(�� � iu4 ) � = 1; � � � ;M; (108)where �� are real solutions of the eigenvalue equations. It is easy to see thatthis choice satis�es the �-equations (2) trivially, whereas the k-equationsbecome ei2Re(arcsin(��+iu4 ))L = 0@ MY
=1 �
 � �� � iu2�
 � �� + iu2 1A (109)whose logarithmic version is2LRefarcsin(�� + i juj4 )g = 2�I 0� � MX�=1�(�� � ��)); (110)with I 0� integer (h.o.i) if L�M is odd (even). The integral equation satis�edby the density of strings, �0(�), for the ground state in the thermodynamiclimit isL�0(�) � �0(�) + Z B0�B0 d�0�0(�0)K2(�� �0) = 1�Re8<: 1q1 � (� + i juj4 )29=;(111)where now Kn(x) = 1� n juj4(n juj4 )2+x2 , and the integration limit B0 depends on thedensity n = N=L through RB0�B0 d��0(�) = 12N=L. The integral operator Lintroduced in eq(111) plays a role similar to the one played by the operatorK in the repulsive case.The energy and the momentum of the ground state are given byE0(B0) = 2t M 0X�=1(cos k�;+ + cos k�;�) = �4tL Z B0�B0 d��(�)Res1� (�� i juj4 )2;= �jU jN2 � 2t Z ��� dk cos2 k Z B0�B0 d��0(�)K1(sin k � �); (112)P0(B0) = 2�L M 0X�=1 I 0� = 0: 100



where we explicitly separated the contribution to the energy, � jU j2 N , due todouble occupancy.Consider �rst the case of half �lling. It is obtained by setting B0 = 1;as can be easily veri�ed by integrating eq(111). In this case the equation canbe solved by Fourier transform to yield�10 (�) = 12� Z 10 dpJ0(p) cos(�p)cosh � juj4 p� ; (113)the same function that described the ground state spin density in the U > 0case, eq(24). From eq(113) and eq(112) we getE10 (U)L = U2 � 4t Z 10 dp J0(p)J1(p)p�1 + e juj2 jpj� : (114)Comparing (114) to the results for the U > 0 case, we �nd a relation betweenthe the ground state energies of the attractive and repulsive hamiltoniasEatt0 (U ;Bo =1) = UL2 + Erep0 (jU j;Q0 = �)as expected on general grounds [1].To go away from half-�lling one needs B0 < 1, and it is convenientto use a formalism where the physical quantities at arbitrary density aregiven by equations with those quantities evaluated at half �lling appearingas inhomogenous terms. The method is due to Gri�th [16]: eq(111) is of theform �(�) = f(�) + Z B0�B0 d�0�(�0)K(�� �0); (115)and from the solution we wish to calculate integrals of the formI = Z B0�B0 d��(�)"0(�); (116)where f(�), K(���0), and "0(�) are known functions de�ned in the wholereal axis, with Fourier transforms ~f(p), ~K(p), ~"(p). In this particular casef(�) = �0(�) � 1�Re�1=q1� (� + i juj4 )2� and "0(�) = Req1 � (�� i juj4 )2.101



The function �(�) is physically relevant in the interval [�B0; Bo]. How-ever, since f(�) and K(�) are de�ned in the whole real axis, the integralequation (115) de�nes a continuation of �(�) to the whole real axis. There-fore, we may manipulate the Fourier transform in (115),~�(p) = ~f(p) + Z B0�B0 d�0�(�0)eip�0 ~K(p);= ~f(p) + (Z 1�1 � Zj�0j>B0) d�0�(�0)eip�0 ~K(p);= ~f(p) + ~K(p)~�(p)� Zj�0 j>B0 d�0�(�0)eip�0 ~K(p)to obtain an equivalent equation for �(�)�(�) = �1(�)� Zj�0j>Bo d�0�(�0)R(�� �0); : (117)The function �1(�) = 12� Z 1�1 dp ~f(p)eip�1 + ~K(p) (118)is the solution of (115) for B0 ! 1, and we have often encountered theresolvent R(�� �0) = 12� R1�1 dp ~K(p)eip(���0)1+ ~K(p) .We rewrite now the integral (116)I = Z B0�B0 d��(�)"0(�) = (Z 1�1� Zj�j>Bo) d��(�)"0(�)= Z 1�1 d��1(�)"0(�)� Zj�j>B0 Z 1�1 d��(�0)R(� � �0)"0(�)� Zj�j>B0 d��(�)"0(�)= I1 � Zj�j>B d��(�)"(�);where "(�) is given by"(�) = "0(�) + Z 1�1 d�0R(�� �0)"0(�0); (119)102



and I1 is the value of I when B0 !1.In our particular case we have therefore,F�0(�) � �0(�)� 4juj Zj�j>B0 d�0�0(�0)R 4juj(���0)! = �10 (�) (120)where �10 is the density at half �lling and is given below. The integraloperator F will recur in our subsequent discussion. (This type of equationalso describes the magnetization of the repulsive Hubbard model, with B0related to the magnetic �eld.)The ground state energy isE0(B0)=L = E10 =L + jU j�(B0)=2 + Zj�j>B0 d��0(�0)��1c (�0); (121)where � = �(B0) = 1�n(B0) measures the doping, and ��1c is the the function��1c (�) = 2t Z 10 dpJ1(p) cos(p�)p cosh( juj4 p) (122)we met earlier when discussing spinon excitations of the repulsive model athalf �lling, ��1c = ��s . We shall see soon, when we discuss charge excitationin the attractive case, that it also corresponds to the energy associated withthe charge excitations, hence the notation. The fact that the same functionappears in the ground state energy and in the excitations is due to the struc-ture of the ground state in the attractive case. Eq(121) allows us to view theground state energy as the energy at half �lling plus the energy of the holesthat have been made on the charge distribution in order to reach a particular�lling.Close to half �lling we �nd an expansion in �,E0=L = E10 =L + jU j�2 + t��2 I1 �2�juj�I0 �2�juj� : (123)From this, the chemical potential is obtained� = dE0dN = �jU j2 � �t� I1 �2�juj�I0 �2�juj� : (124)103



(Notice that the chemical potential remains negative for any jU j 6= 0.) Fi-nally, we write the charge susceptibility�c = dnd� = 1�t I0 �2�juj�I1 �2�juj� : (125)Elementary excitationsTo obtain excitations one has to consider small variations of the quantumnumbers away from the ground state con�guration. This can be done withpair-breaking (spin excitations) or pair-rearrangement (charge excitations).We shall discuss both possibilities.Charge excitationsThe Holon-holon (Quartet). This excitation exists at half-�lling and awayfrom it. It is gapless and resembles the spinon excitation of repulsive model.To create it remove two 2-strings and combine the resulting four momentainto the following con�guration,k1� = arcsin(�00� + i juj2 ); k2� = � � arcsin(�00�);k3� = arcsin(�00�); k4� = arcsin(�00� � i juj2 ): (126)The quartet is parameterized by �00� and the quantum number associated isI 00�. From the constraints on the quantum numbers we can see that, at half-�lling, I 00� = 0, and the set fI 0�g is not shifted with respect to the groundstate con�guration. We will assume that this holds away from half-�lling.The set �0� is determined therefore from,2LRefarcsin(�0� + i juj4 )g= 2�I 0� � N=2�1X�=1 �(�0� � �0�)� ��(2(�0� � �00)) + �(23(�0� � �00))� :(127)which translates in the thermodynamic limit to an integral equation for thek 2-string distribution, �(�;B),L�(�) = �0(�)� 1L ��(�� �h1) + �(���h2) +K1(�� �00) +K3(�� �00)� (128)104



with �00 = 12(�h1 + �h2). The integration limits are set by the conditionL RB�B d��(�) = N=2 � 1:Writing �(�;B) as�(�;B) = �0(�;B) + 1L�01(�;B0;�h1;�h2)� 1L(�(���h1) + �(�� �h2)) :(129)we �nd that the excitation density is given by�01(�) = �c1(�;�h1) + �c1(�;�h2)� �q1(�) ; (130)where L�c1(�;�h) = K2(���hj ); (131)L�q1(�;�h) = K1(���00) +K3(���00) : (132)These equations bear similarity to the singlet equations in the repulsivecase. Here, as note before, they are de�ned with respect to �nite integrationlimits �B0 while there, as long as we considered excitations out of the groundstate, B0 =1. Rewriting the equations as,F�c1(�); �h) = �c;11 (�;�h); F�q1(�;�h1;�h2) = �q;11 (�;�00): (133)we �nd �Equartet(�h1;�h2) = ��c(�h1) + ��c(�h2)� ��q(�00) : (134)with ��c(�hj ) = ��1c (�hj ) + Zj�j>B0 d��c1(�;�hj )( jU j2 + � + ��1c (�)) ;��q(�00) = Zj�j>B0 d��q1(�;�00) fjU j+ 2� + ��1c (�)g ;where ��1c (�h) the charge excitation energy at half �lling, to be evaluatedshortly.The chemical potential � is� = dE0dN = �2tRe�q1 � (B0 + i juj4 )2�+ RB0�B0 d�	0(�)Re�q1 � (�) + i juj4 )2�1 + RB0�B0 d�	0(�) :(135)105



with 	0(�) � 12�0(B0) d�0dB0 satisfying Lf	0(�)g = �12fK2(� �B0) +K2(� +B0)g. Combining this result with the expression for ��1c one �nds ��1q =�g(B0) is a gap similar to the one encountered in the repulsive case, with theimportant di�erence that it vanishes at half �lling, �g(1) = 0. We shall seenext that holon-antiholon excitations are gapless but, of course, disappearfrom the spectrum at half �lling. This is precisely where the holon-holonecitation becomes gapless. We conclude therefore that in the attractive casegapless charge excitations are always present.The excitation momentum is�P quartet(�h1 ;�h2) = �2�L (��(�h1) + ��(�h2)) = �pc(�h1) + �pc(�h2); (136)with the counting function �� de�ned as usual (in this case from eq(127)).The momentum function �pc(�h) = �2�L ��0(�h) takes the form�pc(�h) = �2Refarcsin(�h + i juj4 )2g � 2� Z B0�B0 d�0�0(�0)�(�h � �0)= �p1c (�h)� i Zj�j>B d�0�c1(�0; �h) log8<:� �1 + i�h��0juj �� �12 � i�h��0juj �� �1� i�h��0juj �� �12 + i�h��0juj �9=; :In terms of these functions the excitation energy and momentum of thequartet state are�Equartet(�h1;�h2) = ��c(�h1) + ��c(�h2) + �g(B0)�P quartet(�h1;�h2) = �pc(�h1) + �p(c�h2) (137)As before, the quartet can be described as the combination of two objects,in this case both are holons. They interact and their scattering is given by�quartet(�h1;�h2) = �L(��(�h1)� ��0(�h1)) =1i log8>><>>:1 + i 2juj(�h1 � �h2)1 � i 2juj(�h1 ��h2) ��1� i�h1��h2juj ��� 12 + i�h1��h2juj ���1 + i�h1��h2juj ��� 12 � i�h1��h2juj �9>>=>>;+ Zj�j>Bo d�0�1(�0)8>><>>:1i log ��1� i�h1��0juj ���12 + i�h1��0juj ���1 + i�h1��0juj ��� 12 � i�h1��0juj � + d�pcdn 9>>=>>; ;106



where2dps(�h1)dn = �(�h1 �B0) + �(�h1 +B0) + RB0�B0 d�0	0(�0)�(�h1 � �0)1 + RB0�B0 d�	0(�) :(138)We now turn to compute the quantities at half �lling. As B0 ! 1 wehave explicitly,�c;11 (�) = 4jujR 4juj(�� �hj )! ; and �q;11 (�) = K1(�� �00): (139)Hence��1c (�hj ) = 2t Z ��� dk cos2 kK1(sin k � �)�4t 4juj Z 1�1 d�R( 4tjuj(���hj ))8<:Res1 � (�hj + i juj4 )2 � juj4t9=; ;= 2t Z 10 dpJ1(p) cos(p�hj)p cosh � juj4 p� ; (140)whereas �1q = 0. The function ��1c (�) was arrived at by a di�erent routewhen we discussed the ground state, eq(122).We also have�p1c (�h) = �2�L ��0(�h) = ��2 + Z 10 dpJ0(p) sin(p�h)p cosh( juj4 p) : (141)and the chemical potential becomes� = �jU j=2:We observe that at half �lling the holons of the attractive model havethe same dispersion as the spinons of the repulsive model. This is quiteremarkable in view of the profound di�ernce in structure of the respectiveground states. It is, of course, due to the underlying SU(2)�SU(2) symmetrythat is manifest at half �lling, and the Z2 transformation that exchangesthem. 107



The phase shift at half �lling follows immediately,�quartet1 (�h1 ;�h2) = 1i log8>><>>:1 + i 2juj(�h1 � �h2)1 � i 2juj(�h1 � �h2) ��1� i�h1��h2juj ���12 + i�h1��h2juj ���1 + i�h1��h2juj ��� 12 � i�h1��h2juj �9>>=>>; :(142)Comparing this result to the spin excitations for the U > 0 case, we noteagain, �quartet1 (U) = �singlet� (jU j); (143)substantiating the identi�cation of holons in the attractive model with spinonsin the repulsive model.Holon-antiholon. This excitation is only present away from half-�lling,where it is possible to remove one pair with �h � B0 from the sequence, andadd another with ��h � B0, namely outside the f��g set of the ground state.Denoting by I�h; Ih the corresponding quantum numbers, the excitation mo-mentum becomes �P �h;h = 2�L (I�h � Ih); (144)and the integral equations for the �-densityL�(�) = �0(�)� 1L�(�� �h) + 1LK2(�� ��h): (145)Again, writing �(�) = �0(�0) + 1L�01(�)� 1L�(�� �h), the integral equationbecomes L�01(�) = K2(�� �h)�K2(�� ��h): (146)with the solution �01(�) = �c1(�� �h)� �c1(�� ��h); (147)leading to the excitation energy and the momentum�Eh;�h(�h;��h) = ��c(�h)� ��c(��h)�P h;�h(�h;��h) = �pc(�h)� �pc(��h): (148)108



The holon-antiholon excitation is therefore gapless at �h = ��h = Bo. Atthis point the holon momentum reaches the charge Fermi momentum (of theattractive model) �2n = kF = kcF (att). We shall �nd power law behaviour forcharge density correlation functions at momentum transfer q � 2kF .Finally, the phase shift is�h;�h(�h;��h) = 1i log8><>:� �1 � i�h���hjuj �� �12 + i�h���hjuj �� �1 + i�h���hjuj �� � 12 � i�h���hjuj �9>=>;+ Zj�j>B0 d�0�1(�0)241i log8<:� �1 � i�h��0juj �� �12 + i�h��0juj �� �1 + i�h��0juj �� �12 � i�h��0juj �9=;+ d�pcdn 35 ;(149)with the �rst term corresponding to the triplet phase shift in eq(58).Spin excitationsThe charge excitations we studied were gapless at half �lling and awayfrom it since they essentially involved moving pairs around. The constructionof spin excitations, on the other hand, requires breaking of pairs and thereforean energy gap opens up.The Triplet. The k 2-strings describe spin singlets, hence the only way togenerate a spin excitation from the ground state is to break one of the pairscreating momenta k1; k2 the real line with the corresponding the quantumnumbers n1 and n2. Now M 01 = N=2 � 1, hence the state is a spin triplet,consisting of two objects, the spin-1/2 spinons of the attractive model coupledsymmetrically to form a spin-1 state.No hole opens in the fI 0�g set since one slot less is available to the re-duced number of pairs. The quantum numbers will still be distributed sym-metrically around the origin. As a consequence the only contribution to theexcitation momentum comes for the real k,�P = 2�L (n1 + n2): (150)Since there are no holes in the �-distribution, �(�) satis�es the integralequation L�(�) = �0(�)� 1LK1(�� sin k1)� 1LK1(�� sin k2) (151)109



As usual, we introduce an excitation density, �1(�), via �(�) = �0(�) +1L�1(�) and we have �1(�) = �k11 (�) + �k21 (�); (152)where �kj1 is the solution of the equationL�kj1 = �K1(�� sin kj); (153)or, equivalently F�kj1 = �kj;11 : (154)The excitation energy is�Etrip(k1; k2) = ��s(k1) + ��s(k2) ; (155)with��s(k1) = �2t cos kj � 4t Z B0�B0 d��kj1 (�)8<:Res1 � (�� i juj4 )2 + 2�4t9=;� �= ��1s (k1) + Zj�j>B0 d�0�kj1 (�)f��1s (�) + jU j2 + �g;and the excitation momentum�P trip(k1; k2) = �ps(k1) + �ps(k2) ; (156)with�ps(kj) = �p1s (k1)� Zj�j>B0 d�0�kj1 (�0)��2 � 2 arctan�e 2�juj (�0�sin kj)�� : (157)Finally, the phase shift is�trip = Z B0�B0 d��1(�)(�(2(sin k1 � �))� 2d�ps(k1)dn ) (158)= �trip1 � 2d �psdn + Zj�j>B0 d��1(�)(2 arctan �e 2�juj (��sin k1)�� �2 � d�ps(k1)dn )110



At half �lling we have�k1(�) = �1usech�2�u (�� sin k)� ; (159)hence �1s (k) = jU j2 � 2t cos k + 4t Z 10 dpJ1(p) cos(p sin k)1 + e juj2 jpj : (160)�p1s (k) = k + 2 Z 10 dpJ0(p) sin(p sin k)1 + e juj2 jpj : (161)From (160) and (161) we conclude that the spinons underlying the spintriplet correspond to the charged holons in the repulsive Hubbard model.This is further borne out by the phase shift,�trip1 = �2� Z 1�1 d� 1jujsech 2�juj(�� sin k)!�(2(sin k2 � �));= 1i log8<:� �1� i sink1�sink2juj �� � 12 + i sink1�sin k2juj �� �1 + i sink1�sin k2juj �� � 12 � i sink1�sin k2juj �9=; : (162)Away from half �lling the symmetry is broken but the identi�cation stillsurvives.The Singlet. We wish to break a pair without changing the spin, henceneed to introduce an additional I�. We have M 01 = N=2 � 1, M1 = 1. Asbefore, we have two real k and quantum numbers n1, n2. It can be seenfrom (198) that I� = 0. However, the presence of a new � implies thatthe quantum numbers have to be shifted by 12 with respect to those in thetriplet, as can be seen from (197). As a result, an extra � appears in thephase shift. Also, we determine the position of the added spin momentumto be � = 12(sin k1 + sin k2).We �nd that the densities �(�) and �1(�) are the same as in the tripletcase. So are the excitation energy and momentum. The only di�erence withrespect the triplet case appears in the phase shift,�sing = �trip ��(sin k1 � sin k2)� � (163)At half �lling, we have�sing1 = �� + 1i log8<:1� i 2juj(sin k1 � sin k2)1 + i 2juj(sin k1 � sin k2) � �1� i sink1�sink2juj �� �12 + i sink1�sink2juj �� �1 + i sink1�sink2juj �� � 12 � i sink1�sink2juj �9=; :111



a result we met as the holon-holon phase shift in the repulsive case, �h;h� . Wemust conclude that the spin excitations here are made of the same objectsthat made the charge excitations in the u > 0.Combining the singlet and triplet reults we �nd that the spin S-matrixat half �lling has the familiar form for spinon scattering,Sspin1 = � �1� i sink1�sin k2juj �� �12 + i sink1�sin k2juj �� �1 + i sink1�sink2juj �� �12 � i sink1�sin k2juj � 8<:(sin k1 � sin k2)I12 + i juj2 P 12(sin k1 � sin k2) + i juj2 9=; :(164)Charge-spin excitationsWe consider now excitations where the number of electrons changes.Again we add an extra term to the hamiltonian to make apparent the particle-hole symmetry.To remove an electron wemust break a pair. Once the electron is removed,we have an unpaired real k left. We have N �1 electrons and M 0 = N=2�1,hence the number of slots available does not change. As there is one less k2-string a hole in the f�g sequence will appear. The state is labeled by theholon parameter kh and the spinon parameter �h, with the correspondingquantum numbers nh and Ih, and momentum momentum excitation �P =2�L (nh � Ih) .The integral equations for �(�) and �01(�) are straightforward leading to�Es;h(kh;�h) = ��s(kh) + ��c(�h); �P s;h(kh;�h) = �ps(kh) + �pc(�h) ;(165)Again we �nd theat an elctron is comopsed of a spinon excitation carryingthe spin content and a holon carrying the charge. An electron with de�nitemomentum p removed from the system will be a superposition of the typeof state just constructed subject to �P s;h(kh;�h) = p, the spread being ameasure of its lifetime.The spinon-holon phase shift is�s;h(kh;�h) = �(2(sin kh � �h))� Z B0�B0 d�[�c1(�;�h) + �kh1 (�)](�(2(sin kh � �))� 2d�ps(kh)dn )= �s;h1 � 2d�psdn (166)112



+ Zj�j>B0 d�[�c1(�;�h) + �kh1 (�)](2 arctan �e 2�juj (�h�sinkh)�� �2 � d�psdn )At half �lling we have,1. From (139) �c;11 (�;�h) = 4jujR 4juj(�� �h)! ; (167)2. From (159) �kh;11 (�) = �1usech�2�u (�� sin kh)� ; (168)3. From (140) ��1c (�h) = 2t Z 10 dpJ1(p) cos(p�h)p cosh � juj4 p� ; (169)4. From (160)��1s (kh) = jU j2 � 2t cos kh + 4t Z 10 dxJ1(p) cos(p sin kh)1 + e juj2 jpj ; (170)5. From (137) �pc(�h) = Z 10 d�0J0(p) sin(p�h)p cosh( juj4 p) (171)6. From (161) �ps(kh) = kh + 2 Z 10 dpJ0(p) sin(p sin kh)1 + e juj2 jpj : (172)7. From (166) �s;h1 = �2 + 2 arctan �e 2�juj (�h�sinkh)� (173)113



Once more we see that an energy gap is present at half �lling.When we add an electron we introduce a real k describing the antiholonand, from (198), it is clear that the number of available slots for the fI 0�g-quantum numbers increases by one, while the same amount of k 2-stringsare present. As a result, a hole appears in f�g. The state is labeles by thespinon parameter �h and antiholon parameter k�h.The integral equations are straightforward and similar to the previouscase. However, the value of the integration limit is di�erent, since the numberof k 2-strings does not change. We have RB�B d��(�) = RB0�B0 d��0(�) =N=2L, and hence a shift in the integration limitL(B �B0) = 1� RB0�B0 d��01(�)12 dN0dB0 : (174)This change a�ects the values of the excitation energy and the phase shift,but not excitation momentum,�Es;�h(k�h;��h) = ��s(k�h) + ��c(�) + jU j2 + 2� ; (175)�P s;�h(k�h;��h) = �ps(k�h) + �pc(�h) ;�s;�h(k�h;��h) = �(2(sin k�h ��h))+ Z B0�B0 d�[�c1(�;�h) + �k�h1 (�)](�(2(sin k�h � �))� 2dpc(k�h)dn ) + 2d�psdn= �s;�h1 + Zj�j>B0 d�[�c1(�;�h) + �k�h1 (�)](2 arctan�e 2�juj (�h�sin k�h)�� �2 � d�psdn ) :Turning to half �lling, the results (167-173) apply here too. In particular,we �nd that the phase shift is the same�s;hN=L = �s;�hN=Lre
ecting the appearance of the charge SU(2), as the relation between theenergies �Es;h = �Es;�h (176)114



re
ects the particle hole symmetry.We have completed a detailed discussion of the elementary excitationsand their varoius characteristics. These are the low lying solutions of theBethe-Ansatz equations. To compute the free energy, however, we need thecomplete set of solutions as given by the string hypothesis.The Thermodynamics of the Hubbard ModelThe thermodynamics is derived [5] by the method [22] we already em-ployed in Lecture 3. We shall merely outline the main steps and write downthe answer.Consider the thermodynamic potential, 
 = E � AN � TS, with S theentropy and A the (external) chemical potential. One calculates it summingover all energy eigenstates, or equivalently integrating over all allowed solu-tion densities. Denote by �(k); �n(�) and �0n(�) the distribution functionsof k;�(n);�0(n) respectively, where �(n) is the real part of the � n-string and�0(n) is the real part of the k � � n-string, and by �h(k); �hn(�) and �0hn (�)the corresponding hole-distributions, see Appendix. Further de�ne:�(k) = �h(k)=�(k); �n(�) = �hn(�)=�n(�); �0n(�) = �0hn (�)=�0n(�).The same steps that led to the thermodynamic equations in Lecture 3lead now to the following expression for the thermodynamoc potential,
=L = Eo �A� T � Z ��� �o(k) ln(1 + �(k))dk + Z 1�1 �o(�) ln(1� �1(�))d��with Eo; �o(�); �o(k) being the ground state energy and densities at half�lling, and the functions �(k) and �1(�) are determined from the followingset of coupled integral equations,ln �n = G[ ln(1 + �n+1) + ln(1 + �n�1) ] n = 2; 3; :::ln �0n = G[ ln(1 + �0n+1) + ln(1 + �0n�1) ] n n = 2; 3; :::ln �1 = G[ ln(1 + �2)� Z ��� �(�� sin k) ln(1 + ��1) cos k dk]ln �01 = G[ ln(1 + �02)� Z ��� �(�� sin k) ln(1 + �) cos k dk]ln � = �2 cos kT + 1u Z 1�1 d� sech2�u (�� sin k)� 4T � (sgn U) Rer1 � (�� u4 i)2 + ln 1 + �011 + �1�115



where G is the integral operator, Gf(�) = 1u R 1cosh 2�u (���0)f(�0). The asymp-totic conditions are, ln �n ! n2hT ; as n!1 (177)ln �0n ! nu� 2AT ; as n!1 (178)We leave it as an exercise to show that in the limit T ! 0 and no magnetic�eld the equations collapse, depending on the the sign of U , to their respectiveground state equations: eqs(13,14) in the case of repulsion, eq(111) in thecase of attraction. If the zero temperature limit is taken in the presence of amagnetic �eld one obtains the corresponding magnetization equations.In the repulsive case,�(k) = 12� + cos k Z B(h)�B(h) d��(�)K1(sin k � �)�(�) = Z Q�Q dk�o(k)K1(sin k � �)� Z B(h)�B(h) d�0�(�0)K2(�� �0);In the attractive case we have�(�) = 1�Re8<: 1q1 � (� + i juj4 )29=;� Z Q(h)�Q(h)K1(�� sin k0)�(k0)dk0 � Z B�B d�0�(�0)K2(���0)�(k) = 12� + cos k Z B�B d��(�)K1(sin k � �)The integration limits are now determined by the imposed magnetic �eldh. In the repulsive case it mainly a�ects B = B(h) < 1 ( Q is mainlydetermined by the density though there is also a weak dependence on h.) Thesituation is reversed in the attractive model where B is mainly determinedby the density and Q mainly by the magnetic �eld.Unlike the magnetization equation discussed in lecture 3 the limits areimposed symmetrically and therefore analytical results are available only insome limits. For extensive numerical work see [17] and [4] in the repulsivecase, and [18] [19] in the attractive case.116



The thermodyanmic equations can now be analysed in a manner discussedin Lecture 3 to determine the behavior of the model in the infra red. Thephysics is determined by the gapless excitations: charge excitaions in theattractive model, spin excitations in the repulsive model at half �lling andboth charge and spin away from it, and will 
ow to a �xed point accordingly.Alternatively, the nature of the �xed point can be identi�ed using Bethe-Ansatz �nite size calculations combined with methods of conformal �eld the-ory [20][21]. But that would be the subject of Lecture 5.AppendixHere we discuss the di�erent species of fkjg and f��g that appear inthe attractive and repulsive cases. We can classify the eigenvalues in thefollowing categories:1. Real kj. They have associated quantum numbers nj .2. k 2-strings. We may have solutions with pairs of complex k, k� =��n � i�n.To be solutions of the Bethe-Ansatz equations, eqs(1,2), in the ther-modynamic limit we must have [6],sin ��(�)n � i�(�)n � = �n � iU4 +O�e��(�)n N� (179)This is valid only if we can neglect O �e��(�)n N� terms, where�(�)n = �(�)n � 1N Im8<:Xm6=n 2 arctan� 4U �sin ��(�)n � i�(�)n �� �m��9=;(180)Therefore, we must have �(�)n � 0. Let's prove this point. That is, thevalues described by the string hypothesis (180) are indeed solutions ofthe eigenvalue problem. We will start with the spin equation (2). Let'swrite sin k� = sin (�� i��) = � + �� i c2 ; �� � (181)where � belongs to the f��g set and, for simplicity, we let all the �'sto be real. Then (2) becomes 117



� M�1Y�=1 �� � �
 + iu2�� � �
 � iu2 ! � � �
 + iu2� ��
 � iu2=  1 + i u2�1� i u2�!0@N�2Yj=1 �
 � sin kj � iu4�
 � sin kj + iu4 1A �
 � �� iu2�
 � � + iu2�!0' ei� N�2Yj=1 �
 � sin kj � iu4�
 � sin kj + iu4 (182)which is again spin equation, but for N � 2 particles see eq(79).We now turn to the charge equation, (1). After substitution, we getei(��+i��)L =  ��� iu2 ! Y
 6=� �
 � sin (�� + i��)� iu4�
 � sin (�� + i��) + iu4 (183)ei(���i��)L =  �+ iu2� ! Y
 6=� �
 � sin (�� � i��)� iu4�
 � sin (�� � i��) + iu4 (184)Dividing (184) by (183), and taking logarithms we get��L ' � log �+ log u4 + X
 6=� Im (�2 arctan (sin (�� + i��)� �
))(185)Notice that log u4 � L. Therefore, in order for (185) to be satis�ed, wemust have � � O �e��L� (186)with �� given by (180).When we neglect the exponential term, (179) has two possible solutions(a) �(�)n � i�(�)n = arcsin��n � iU4 � ; ��2 � �(�)n � �2 =) cos �(�)n � 0(187)118



This givessin ��(�)n � i�(�)n � = sin �(�)n cosh�(�)n � i cos �(�)n sinh�(�)n = �n � iU4(188)Since cos�(�)n � 0, �(�)n > 0() U < 0 (189)(b) �0(�)n � i�(�)n = � � arcsin��n � iU4 � ; �2 � �0(�)n � 3�2 =) cos �0(�)n � 0(190)This givessin ��0(�)n � i�(�)n � = sin �0(�)n cosh�(�)n � i cos �0(�)n sinh�(�)n = �n � iU4(191)Since cos�0(�)n � 0, �(�)n > 0() U > 0 (192)We conclude that the forms of the k 2-string that is a solution of theproblem depends on the sign of the interaction.Therefore, the k 2-strings are of the formi) u > 0. k�� = � � arcsin(�0 � iu4)k+� = � � arcsin(�0 + iu4) ; (193)ii) u < 0. k�� = arcsin(�0 � i juj4 )k+� = arcsin(�0 + i juj4 ) : (194)119



Notice that each pair is described by only one parameter, �0�. Thequantum numbers associated to the pairs will be denoted I 0�.3. Quartet, k�� 2-string. One of the possible excitations in the attractivecase involves a group of four complex k� such thatk1� = arcsin(�00� + i juj2 ) ;k2� = � � arcsin(�00�) ;k3� = arcsin(�00�) ;k4� = arcsin(�00� � i juj2 ) (195)parametrized by a single variable �00� and the quantum number associ-ated is I 00�.4. Real ��. The corresponding quantum numbers are denoted I�, as inthe ground state.5. � 2-string. It will only appear in the elementary excitations for u > 0.We have ��� = �� � iu4 : (196)The pair is parametrized by the real �� and has quantum number J�associated to it.In the thermodynamic limit, where the string hypothesis is valid, theobjects enumerated are allowed solutions of the Bethe-Ansatz equations, andthe sets f�0�g, f�00�g, and f��g are subsets of f��g.We wish to count the number of slots available for each con�guration.Denoting, M = number of real ��;�M = number of ��; � 2-stringsM 0 = number of �0�; k 2-stringsM 00 = number of �00�; quartetsM 000 � M 0 + 2M 00;N � 2M 000 = number of real kj ;N# = M + 2 �M +M 000;N" = N �N#:120
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