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discussed in I, this feature appears already in a per-
turbation evaluation of the energy, as has been em-
phasized by Huang and Yang. ' The rigidity against
particle excitation manifests itself in the peculiar exci-
tation spectrum which, as evaluated in this paper for a
hard-sphere gas, has the essential features of the
phonon-roton spectrum deduced by Landau from
experiment. The energy of the system cannot be evalu-
ated, except at very low density, by perturbation
methods based on an expansion in powers of (pa')'. As
we have shown, however, reasonably accurate nonper-

' K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).

turbation methods can be used for densities such as
those of He4.

These methods are being at present extended to a
study of the A,-transition region in He' which will be
published separately.
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It is shown that the pseudopotential method can be used for an explicit calculation of the 6rst few terms
in an expansion in power of (po')& of the eigenvalues and the corresponding eigenfunctions of a system of
Bose particles with hard-sphere interaction. The low-temperature properties of the system are discussed.

HIS paper is concerned with the low-temperature
properties of a dilute system of Bose particles

with hard-sphere interactions, at a low but finite
density. An explicit mathematical calculation is made
of the energies and wave functions of the ground state
and the low-lying excited states. The results confirm
the usual notion of phonon waves as the only low-lying

excitation, and the idea of momentum space ordering.
One concludes from the calculation that such a system
does show super Quidity and exhibit the two-Quid

behavior at low temperatures.
It may be appropriate here to describe the motivation

underlying the study of a system of hard spheres. One

would like, of course, to study the general many-body
problem with any potential of interaction between the
particles. Such a program can be formalistically carried
out. It is, however, generally recognized that to draw

any definite physical conclusions from such a general

program is very dificult. If one makes approximations
on the general problem in order to arrive at concrete
results, one usually encounters the great di%culty of
dehning and justifying the validity of the approximation
made. We therefore start instead from the concrete
Inodel of hard-sphere interactions, which is suKciently
simple so that one might hope to be able to discuss the
validity of the method of approach.

The interaction between real He atoms contains

besides a hard repulsive core, also an attractive inter-
action outside of the core. This attractive interaction
is responsible for many properties of the He liquid.
For example, the ground state of a system of He atoms
is known to have a negative energy corresponding to a
binding energy per He atom of (kX7'), as determined
from the experimental vapor pressure curve near the
absolute zero of temperature. Such a bound system
owes its origin, of course, to the attractive force. The
strength of the attractive force also determines the
density of the He atoms in the ground state. Now at
this density the total attractive potential that a He
atom experiences from its neighbors is expected not to
Quctuate very much. This fact suggests the following
approximate picture: One replaces the attractive inter-
particle forces by a constant uniform negative external
potential that acts on the individual particles, the
repulsive core is retained, and the system is kept by an
external pressure at a density equal to that of the
ground state of He. Many qualitative features of the
behavior of this hypothetical model may then be
expected to resemble those of real He. Since the uniform
external potential does not inQuence the system except
to give it a negative total energy, one may consider
simply a system of hard spheres at a given density and
in the end add the external potential separately. This
kind of reasoning is essentially contained in the work
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of London' on the density and the energy of liquid He
in the ground state.

In Secs. 1 and 2 the method of the pseudopotentiaP '
is applied to the problem. It is seen that the energy
per particle in the ground state and the energy level
spectrum near the ground state can be very easily
obtained as power series expansions in the parameter
(pus)&, where p is the particle density and a the hard-
sphere diameter. That the expansion parameter should
be (pa')& was already pointed out before. ' The ground
state energy per particle calculated with the present
method agrees with that given in reference 4. The
excited levels immediately above the ground state-
represent "phonon" states. The excitation spectrum
is the same as that of Bogoliubov's. '

In Sec. 3 the same method is used to calculate the
wave functions for the ground state, and the pair
distribution function for the ground state. The results
are compared with the work of Feynman6 and of
Penrose and Onsager. ~ It emerges from these results
that one can dehne a "correlation length" which
characterizes the spatial extension of the correlation
introduced by the hard-sphere interactions.

Section 4 is devoted to a critical discussion of the
validity of the method of the pseudopotential in the
present problem. The order of magnitude of the
expected corrections to the present calculation is
analyzed.

In Sec. 5 the physical properties of a dilute system
of a gas of hard spheres are discussed brieQy on the
basis of the energy spectrum obtained in Sec. 2. The
energy spectrum near the ground state is shown to be
that of a collection of "phonons. "The properties of the
system, such as the existence of a normal Quid and a
superQuid component, can therefore be inferred immedi-
ately from the work of Landau, ' Kramers, ' and others. '

In Sec. 6 the concept of a "correlation length"
introduced in Sec. 3 is further emphasized, and related
to London's idea' of an order in momentum space.
The question of the Qow of the superQuid is discussed

by the method of Sec. j.. It is indicated that the super-
Quid Qow is irrotational, as was pointed out by Onsager
and Feynman. "

~ F. London, Superjluids (John Wiley and Sons, Inc. , New
York, 1954), Chap. B.

s K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).' Huang, Yang, and Luttinger, Phys. Rev. 105, 776 (1957).' T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).' N. ¹ Bogoliubov, J. Phys. U.S.S.R. II, 23 (1947).
s R. P. Feynman, Phys. Rev. 94, 262 (1954).
r O. Penrose and L. Onsager, Phys. Rev. 104, 5/6 (1956).' L. D. Landau, J. Phys. U.S.S.R. 5, 71 {1940).' H. A. Kramers, Physica 18, 653 (1952).R. B.Dingle, Advances

in, Physics (Taylor and Francis, Ltd. , London, 1952), Vol. 1,
p. 112.

'OF. London, Superjluids (John Wiley and Sons, Inc. , New
York, 1954), pp. 142—144 and pp. 199—201."L. Onsager, Suppl. Nuovo cimento 6, 249 (1949). R. P.
Feynman, in Progress in I-om Temperature Physics, edited by
C. J. Gorter (North Holland Publishing Company, Amsterdam,
1955), Vol. 1, p. 17.

1. GROUND STATE ENERGY

%e use mostly the same notation as that of reference
2 but choose units so that A= T, 2@v=1, and recall that
the Hamiltonian of a system of hard spheres can be
replaced in certain approximations by the pseudo-
potential Hamiltonian Lsee Eqs. (32) and (33) of
reference 2):

H= —Q V';s+V,

V=gsa P 8(r;—r;) r,;.
Br;;

By using the language of quantized 6elds, the pseudo-
potential V can be recast in the form )see Eq. (38) of
reference 2j:

d rid rsvp (rl)f (r2)5(rl r2)
~~12

XLr 4(r)4(r)j. (2)

Ke shall not enter here into a discussion of the region
of validity of the use of the pseudopotential, a subject
that we shall come back to in Sec. 4. In the present
section and the next section it will be shown that the
pseudopotential (2) leads directly and simply to an
expression of the ground state energy per particle of
the Bose gas and to the energy spectrum near the
ground state.

It was already observed and emphasized in reference
2 that the pseudopotential V, when operating on a
wave function that is not singular at r,;=0, is equivalent
to the operator

V'=4n. g d'rtd'rsvp*(rr)f*(rs)8(rr —rs)f(rr)f(rs). (3)

It was further observed that using the potential (3)
leads to divergences which arise from the singularities
of the correct wave function. The use of the correct
pseudopotential V, however, does not lead to any
divergencies. For clarity we shall adopt the following
procedure in the present paper. The potential V' will
6rst be used to compute the ground state energy per
particle. It will be found that the expression obtained
is divergent, as expected. It will then be easy to see
that substituting the correct pseudopotential V, LEq.
(2)j, for the potential V', LEq. (3)j, in the calculation
leads very simply to a subtraction procedure which
yields a correct lnite result.

By expanding f into free-particle waves as was done
in reference 2, we obtain

V'=II '4rra Q a aap*a„a„b(k +kp —k„—k„), (4)
a,P,p, v

where e ~ and a are, respectively, the creation and
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(n~ V'(n) —4orap(X —1)

4m a 4+a
=87rap P n — ( P n.)' —P n. , (6)

a&0 Q ox/0 Q n~

with p=E/Q. If one takes a system for which the
density p is fixed and for which g and 0 both approach
infinity, Eq. (6) reduces to"

(ni V'in) —4orapX=Sprap P n .
a&0

(7)

The o6-diagonal matrix elements of the potential V'

cause transitions in which two particles of momenta k
and ko collide and go into the states k„and. k„. The
periodicity boundary condition that we took insures
that the matrix element is nonvanishing only if mo-
mentum is conserved: k +ks=k„+k„. The value of
such an oG-diagonal matrix element is equal to

(47ra/Q) (n np(n.„+1)(n +1)„$
t . (8)

The crucial point is now to observe that as the total
number of particles Ã approaches infinity, each of the
n 's is finite except np, which is E—Q ~o n . For large
values of E, the oB-diagonal matrix elements fall into
three categories in magnitude:

(1) Those in which two of the four momenta k, ko'

k„, k, are equal to 0. Such matrix elements are propor-
tional to 8map.

(2) Those for which only one of the four momenta
k, ks, k„, k„ is equal to 0. Such matrix elements are
smaller than those of the first category by a factor S—:.

(3) Those for which none of the four momenta k,
kp, k„, k„ is 0. Such matrix elements are smaller than
those of the category (1) by a factor E '.

annihilation operators of the free-particle states with
momentum k, and Q=ls is the volume of the cube
in which the X particles move. The delta symbol
5(k +kg —k„—k„) appearing in (4) is a Kronecker
delta function. It is essential that the boundary condi-
tion at the edge of the box be taken to be the usual
periodicity condition Lcompare reference 17). The
diagonal elements of (4) are

(n~ P'~n)=Q —'4ra(21P —X—P n '), (5)

where n is the occupation number a ~a . Equation (5)
has already been obtained in reference 2. Subtracting
a constant term 4Irap(E 1) f—rom expression (5), one
obtains

Starting from the free-particle ground state, by ftrst
considering only matrix elements of category (1), we
would obtain the dominant term of the energy of the
system. The matrix elements of categories (2) and (3)
will later be shown in Sec. 4 to give rise to higher order
corrections. To calculate the dominant term of energy,
we thus need only consider those free parti-cle states 5
tokick are connected to the free pa-rticle grolnd state,
directly or indirectly, through og dia-gonal matrix elements

of category (1), i.e., matrix elements that represent the
scattering of two particles of mornenta k and —k into
the ground state or vice versa. Evidently a state in S
is specified by /» pairs of particles each with momenta
ki and —ki, ls pairs of particles each with momenta ks
and —ks, etc. , and X—2+1; particles with momentum
zero. We denote such a state by

0 1 0 0
1 0 2 0

Bp(k)= 0 2 0 3
0 0 3 0

(12)

in the standard representation in which a~ a~ is diag-
onal:

0 0 0 0
0 1 0 0

ay*ay= 0 0 2 0
0 0 0 3

~ ~ ~

(13)

One has evidently the commutation relations

0= $B (k),a„.j=LBo(k),a *g if k&k'. (14)

The Hamiltonian H'= —g V;s+ V' between the states
of Sis then

H'= 4rrapX+ 2 Q'(ks+kos) Laa*as+ysBo(k) ), (15)

In terms of the annihilation operators as, where k/0
ranges over half of the momentum space, we can write
down the diagonal matrix elements (7) for the pseudo-
potential V' between the states of S:

4rrapE+16rrap g' as*as, (10)

where P' represents a summation over half of the k
space with k40. The off-diagonal matrix elements of
V' are given by those of

Sorap P' Bp(k),

where

'~ The neglect of the second and third terms of the right hand
side of (6) as compared to the first term is consistent with the
power series expansion of the energy in the parameter (pu')&.
It is shown later [see (41)g that

where
ko'= 8xap,

ys= stkos(ks+kos) ' (17)
X '(Z n ) (po')&,

tx+0

where the expectation value is taken with respect to the perturbed
ground state of the total system.

The summation P' in (15) is a sum of mutually
commuting operators. Its lowest eigenvalue is therefore
the sum of the lowest eigenvalues of the individual
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terms. It will be shown in Appendix I that the eigen-
values of

a*a+y&o

or
128

Ep 4x——aNp 1+ (a'p)',
15

(25)

8
V=lim4~aQ '—{rP exp[-', l(k„—k„) .r]

r~o

XP a *ap*a„a„&(k.+kp k„k.—)) —(20).
a, P

It can be seen that the replacement of (4) by (20) does
not acct in any essential way the general arguments
that led to the Hamiltonian (15), which is now replaced
by

H=4n.apN+2 Q'(k'+ko')ay*ax

8
+-', kp' Lim—{rP e'"'Bo(k)). (21)

"~o Br z~o

Using this Hamiltonian, the calculation of Eo proceeds
in the same way as before except that in the final
expression (19), the simple sum over k is replaced by a
limiting process, namely

8
Ep ——4m apN ——', Lim—{rQ e'"'[k'+koo

kgo

—k(k'+2koo) &]). (22)

The mathematical problem of evaluating this expression
is similar to the corresponding problems encountered in
reference 2. It can be shown without diKculty that

ko'
Eo 4~apN Q' k'+——kp' —k(k'—+2koo)1—

2k'
(23)

The sum can easily be evaluated in the limit 0—+~:
Qko'

Ep= 4n.apN+ dyy' —1—y'
4z' o

+yb+2)'+, (24)
2y-'

X„=——',+ (nz+-,') (1—4y') '*, (18)

with ns=o, 1, 2, . One thus obtains the lowest
eigenvalue of the Hamiltonian (15):

Eo' ——4n.apN+ Q'(k'+ kp') [—1+(1—4yo') '*]

= 4mapN —Q'[k'+ kp' —k (k'+ 2kp') ']. (»)

The above expression contains a spurious term which
makes the sum divergent. This is because we have used
V' instead of the correct pseudopotential V. The
situation is easily remedied by identifying the spurious
term and subtracting it.

The correct interaction V, Eq. (2), expressed in
momentum space, reads

a result which was first obtained in reference 4 by the
"binary collision expansion method. "

Another way of proving that the correct pseudo-
potential V of Eq. (1) leads to the convergent expression
(23) while V' leads to the divergen. t one [Eq. (19)] is
the following: Treating the pseudopotential V or V' as
a perturbation, one can calculate the ground state
energy Eo as a power series expansion in a. This was
the procedure followed in reference 2. In the order a',
using the potential V', one obtains a divergent expres-
sion. Using the correct pseudopotential V, however,
one obtains zero in the order a'. [See Eq. (53) below.
Notice that a/I. = 0 in the limit I~op.]Except for the
order a', V an.d V' give the same results. [We stay here
within the approximation of neglecting small oG-
diagonal matrix elements. As will be discussed in Sec. 4,
this approximation is equivalent to retaining the
maximum power of N to each order of a.] To obtain
the energy expression when V is used, one therefore
need only take the divergent expression (19) for the
case of V' and expand it in powers of a and strike out
the term a'. Now

P'[k'+koo —k(k'+2koo) &]=g' ko4 ko'
~ ~ ~

2k' 2k4

ko'= 8~up.

Striking out the term a' therefore means subtracting
from the summand kp'/2k', leading immediately to (23).
%e shall return to this discussion in Sec. 4.

Iq'1 'l~ lp '' ') (26)

which means that there is a particle of momentum q,
and in addition, there are /, pairs of particles q, —q; lI
pairs k~, —k~, lo pairs kp, —kp,' etc. , with k;Aq. The
rest of the particles, (N —2+l;—1) in number, have
momentum k=0. The total momentum of every state
in S' is q. The Hamiltonian II' for the states S' is very
similar to that for the states S given before by Eq.
(15).It is

H'=4wapN+2 P'(k'+ko')[ak*a~+yo&o(k)]

+2(q'+ko')[No+yoB&(q)]+8m ap+q', (27)

2. ENERGY LEVELS NEAR THE GROUND STATE;
PHONON SPECTRUM

The method of the last section can also be applied
to discuss the energy of a state with a nonvanishing
momentum. We start from an unperturbed state

~ q) in
which all particles have momentum zero except one,
which has momentum i{I. The set of unperturbed states,
denoted by S', connected to

~ q) by large off diagonal
matrix elements are all of the form
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where
0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

(28)

considering the excited states of (15) and (27) and also
considering the states connected to an unperturbed
state that contains more than one particle having
nonvanishing momentum. This is discussed in detail in
Appendix I. The eigenvalues for these states can be
shown to be

has diagonal values equal to l~, and

0 (1X2)*
(1x2)-'* 0

o (2x3)''

0
(2x3)-:

0

The matrix Bs(k) is given by Eq. (12). The eigenvalue
of X+yBr is discussed in Appendix I. The lowest
eigenvalue is

—1+L1—4y')-:. (30)

E» Ep= q(q'—+2kp')'= q(q'+ 16»rap) l. (31)

It will be shown in Appendix II that the wave
function in coordinate space for the state we just
discussed, i.e., for the lowest excited state with mo-
mentum q, is to the order of approximation considered
equal to

The difference of the lowest eigenvalue of (27) and that
of (15) is the energy of excitation into a state of
momentum q. From (30) and (18) it is evidently equal
to"

E=Ep+ P nzsk(k'+16m. ap)',
k&0

(34)

3. WAVE FUNCTIONS AND THE PAIR
DISTRIBUTION FUNCTION

The ground state wave function 4'0 of the Hamil-
tonian (15) can be written in terms of the free-particle
states ~l„/„. .) &Eq. (9)) as

os= QA(lrl, . )~l, l, )
is=0

(36)

with A(Er, ls, ) representing the probability ampli-
tudes. The value of A(lr, ls, ) is found to be (see
Appendix I)

with the corresponding total momentum

P=Q trask, nza=o, 1, 2, . (35)

They represent therefore states with nzk phonons of
momentum k.

~sf. lj+
7

where

A(lr, 4, . )=Cg'[—n(k;))", (37)

dp)s d
n=

~

2—~, and p= ps (Es/N). —
E dp) dp

(32)

where 0 0 is the wave function of the ground state. This
means that these excitations are density Ructuations
(i.e., sound waves, or phonons), as has been discussed
by Bijl" and Feynman. '

The velocity v of sound waves of infinite wavelength
is directly related to the macroscopic compressibility,
which can in turn be computed from the energy
expression Eq. (25) for the ground state. In fact,
remembering that in our units ms= ~, one has

n(k) = (Ssap)-'(ks+ Snap —k(k'+16sap) &), (38)

and C is a normalization constant given by

C=g'L1 —n'(k;)) l. (39)

In Eqs. (37) and (39) the product g extends over
half of the k space with k,/0.

Upon using Eq. (37), it is easy to compute the
average occupation number (es) of the free-particle
states with momentum k for the ground state wave
function %0. One finds

Equations (25) and (32) together give

s- (16vrap)i[1+16'=l(asp)l). (33)

n'(k)
(ns) =

1—n'(k)
for kwO, (4Oa)

The first term of (33) agrees with the velocity that one
computes from (31) for the sound waves with momen-
tum k=o, as it should. The second term in (33) repre-
sents a correction term that is beyond the accuracy
of (31).

In an entirely similar way, one can solve other
eigenvalues and eigenstates of the Hamiltonian (1), by

'37o calculate the excitation energy (E&—Eo), the identical
result is obtained by using either U' PEq. (3)g or the correct
pseudopotential U LEq. (2)g.

'4 A. Bijl, Physica 7, 869 (1940).

(ns s)=E 1— (nsp)&,
3 7r

(40b)

where X is the total number of particles and ( )
means taking the average over the ground state of the
system. For an ideal Bose system the ground state of
the system is characterized by the fact that all particles
are in the free-particle ground state. In the present
case, owing to the interactions, particles are excited
from the state, 4=0, into various free-particle states
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( a$' (a)
D(r)~l 1—I+Ol —

l

ri (ri

with k/0. Let f be the total fractional number of Correspondingly, we see that for r«rp,
particles excited. We 6nd for the ground state of the
entire system, this fraction is

(pa')'. and for r))rp,41)

It is important to note that the occupation number of
the free-particle ground state {eq=p) is proportional to
E while all the other free-particle states have finite
occupation numbers as E—+. The significance of
these free-particle state occupation numbers in the
discussion of a Bose system with interactions has
recently been pointed out and emphasized by Penrose
and Onsager. '

Another important quantity is the pair distribution
function D(rip), defined by

D(r») =p (P(r&)'P(r~)f(r~)4'(r&)) (42)

The. pair distribution function D(r) describes the rela-
tive probability for 6nding two particles at a distance
r apart. The normalization of the function is so chosen
that D(r)~1 as r~po. By using Eqs. (36)—(39), the
function D(r) can be readily evaluated. It is

D(.) = [1+G(r)]+ [1+v(r)] —1

-4f[G(r)+F(r)], (43)
where

1 ~ n'(k)
F(r) = e'"'d'k

8m'p& 1—n'(k)

D (r)~1+Ol —l. (48)

Thus the correlation length ro characterizes the exten-
sion of the correlation between particles introduced by
the hard-sphere interaction. Qualitative discussion of
the physical implications of this correlation length will

be given in Sec. 6.
It is of interest to compare the present result with

the work of Feynman. ' The function S(k) in Feyn-
man's paper can be defined in terms of the Fourier
transform of D(r) as

S(k)=—1+p] D(r)e' 'dPk (49)

Ek—Ep ——k'/S (k) (51)

From Eq. (44), one finds

S(k)=k(k'+16m ap) -'*[1+0(pa')'], (k&0). {50)

Substitution into the Feynman-Bijl relation' " for
the phonon energy,

1 t n(k)
G(r) =- ei" ~d'k,

8m'p& 1—n'(k) Eg—Ep= k(k'+16prap) -'* (52)

rp =—(8prap) l. (45)

rp is the inverse of kp introduced in Eq. (16).For r))rp,
the functions Ii and G approach, respectively,

and

F(r)~+
w2pror2

G(r)~—
m pror

(46)

while for small distances r(&ro,

and

F(r)~f=
3

(pa')'*

(47)
a 8

G(r)~ ——+ (pa')'*.

with f and a(k) given by Eq. (41) and Eq. (38). To
study the behavior of these two functions Ii and 6,
it is convenient to introduce a "correlation length" ro,
deined as

in agreement with Eq. (31).This is not surprising since
we shall see in Appendix II that the wave functions
of the excited states have the form used by Feynman
and Bijl from which Eq. (51) was derived. '

4. CRITICAL DISCUSSION OF THE VALIDITY OF
THE PSEUDOPOTENTIAL METHOD FOR

THE PRESENT PROBLEM

The method used in the present paper evokes many
questions concerning its validity. In particular the
following points need be analyzed:

(1) It has been emphasized in reference 2 that the
pseudopotential (1) is in general accurate only to the
order a', and that as applied to the ground state energy
it is only accurate to the order a'. The approximations
involved include the neglect of the D-wave scattering
and the genuine triple collisions as explained in Fig. 2

of reference 2. In the present paper we have used the
pseudopotential (1) to calculate quantities which cer-
tainly involve contributions from infinitely high powers
of u. How could one then be sure that such use of the
pseudopotential is justi6edP Also, in reference 2 the
energy per particle for the ground state was calculated
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up to a'. The result was

Eo 4na(S —1) l u' 1+2.37—
L' l L

a2

+—("")'+—('"—')
J2 7r2

g,m, ~) W (O,O,O).
&,~,~=~ (t'+eP+e')'

If one keeps p=lV/0 constant and allows Q=L' to
approach ~, expression (53) diverges as 1V&. How does
one reconcile this divergence with the 6nite result
obtained in Sec. 1, of the present paperP

(2) Even assuming the validity of the use of the
pseudopotential (1), how can one justify the neglect of
the small oR-diagonal matrix elements (8)?

(3) What is the nature of the series expansion of
which (25) gives the first two terms? What is the limit
of validity of the phonon spectrum (31)?

We start with a discussion of point (1) by examining
the divergence of formula (53). If the expansion is
carried out to higher orders of a, one can express the
energy per particle Eo/S as a power series in a/L. The
coefficient of (a/L), m~ 3, is a polynomial in S:

] (gi Wb

I

—
I

(A1V"+BS '+ +Zg,
NL' ( L)

where A, 8, - Z are numerical constants independent
of a, I., or N, and v is an integer depending on m,
giving the maximum power of E that occurs in the
coefficient of (a/L) . Of the terms in the polynomial,
the most divergent one in the limit E—+~ at constant
p is

1 (')
I

—
I

AS". (A, v=functions of m). (54)
SL'E L)

Now in the discussion of Sec. 1 the guiding principle
was that to each order of a, only the term with the
maximum power for X be retained. The calculation
that leads to (25) is therefore a calculation of the sum
of the terms (54). This calculation shows that for the
order (a/L), the maximum exponent of S is

v=m (m&3),
as one verifies immediately by expanding (23) in powers
of u. The power series for Eo/S can therefore be written
in the following way:

Eo 1 (aSq ' )alVy ' (aSq '—4 ~p= A
I I

+A'I
I
+A"

ISL2 EL) &Li
puSq8 1

+ +~I I
—+~'I

I

—+~"
I&L) S &L) S IL) S

+" +cI -
I

—+" + ", (55)EL) 1P

where terms of the form (54) are written in the first
line. The calculation that leads to (25) consists of
summing the first line of the foregoing expression, and
the result shows that this series, namely

1
-

t
aSy' puSq'

SL2 EL) EL)

approaches the Rnite limit

1 4~)(128 (Sup ' 128
I

=4irap (u'p)&
SL' 15'~ E L i 15'~

as Su/L-+~.
It is clear that D-wave scattering introduces terms

that contain higher powers of a for given-powers of E.
Triple collisions give rise to terms also of such nature.
Therefore, their inclusion does not aGect the 6rst line
of (55), but only subsequent lines.

It seems reasonable to expect that the sum of the
terms in the second line of (55), i.e.,

1 1 paSq' (ulV)'
I+8' +

NL'S L L)
would also converge to a Gnite number of the limit
aS/L +~. This can —happen only if the series in the
square bracket approaches (uS/L)4 as aS//L-+m. In
that case the second line of (55) reduces to an expression
of the form

(constant) p'a',

indicating that the expansion (25) is in powers of (esp) &.

One arrives at the same conclusion in discussing
question (2) mentioned at the beginning of this section.
If one attempts to include the next dominant oG-

diagonal matrix elements, the additional perturbation
energy is of the form

AE= P (matrix element)'/(energy difference).

The matrix elements are of the order S &ap and
connects the ground state with states in which three
phonons ki, k2, ka are present, where ki+k, +k3=0.
One therefore has a sum of the form

(ap)'S '
aE=P S(k,+k,+I,)

E(ki,km, k3)

Using the energy spectrum for the phonons calculated
in Sec. 2, one obtains

QE= (ap)2S 'J6 dkidk2F((ap)&, ki,k2).

By a dimensional argument one obtains

DE= (ap)'S ' L'(ap)'(c ontsnat) = (constant)Sa'p',
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indicating again that the expansion (25) is in powers of
(~'~)'

The surmise that the expansion (25) is in powers of
(a'p) l is in agreement with a conclusion already drawn4

from the "binary collision expansion method. "
We now come to the third point raised at the be-

ginning of this section: the limit of validity of the
formulas (25) and (31).The above discussions indicate
that they represent the first terms of expansions in
(a'p) l. As has been pointed out before, ' such expansions
are probably asymptotic expansions which even may
not converge. For the phonon spectrum (31) the limit
of validity,

AG((1,

has to be imposed in addition to the condition

(a'p) l((1.

(56)

Condition (56) is necessary for the validity of the
pseudopotential (1).

We conclude this section by stating that to develop
a systematic expansion method starting from the
pseudopotential method of the present paper seems
dificult, because the inclusion of triple collision terms
presents grave obstacles. On the other hand, in the
"binary collision expansion method'" triple and higher
order collision terms can be automatically included.
A systematic approach starting from the "binary
collision expansion method" appears hopeful.

5. "TWO-FLUID MODEL" AND THE LOW-
TEMPERATURE PROPERTIES OF THE

HARD-SPHERE SYSTEM

In Sec. 2 we obtained the low-lying energy levels
of a Bose system of hard spheres. The levels can be
described as those of a collection of phonons with a
spectrum given by (34). If one examines, by a method
similar to the one already used, the low-lying energy
levels of a corresponding Fermi-Dirac system, one finds
that the energy level density near the ground state is
infinitely greater than in the Bose case. The scarcity
of low-lying energy levels in the Bose case has long been
recognized" as the reason for the superQuid behavior of
liquid helium. Feynman" has given arguments to show
that for a- Bose system of interacting particles such
scarcity is to be expected. The results of Secs. 1 and 2
of the present paper confirms this conclusion in the
case of a dilute hard sphere gas by an explicit mathe-
matical treatment.

Knowing the spectrum of the phonons (i.e., of the
low-lying states), one can easily obtain the specific heat
of the system at low temperatures. Furthermore, by
the reasoning developed by Landau, ' Kramers, ' and
others' one can conclude that the system shows a
two-Quid" behavior. According to these authors the

'5 See, e.g. , R. P. Feynman, in Progress in Lom Temperctlre
Physics, edited by C. J. Gorter (North Holland Publishing Com-
pany, Amsterdam, 1955), Vol. 1, p. 17."L.Tisza, J. phys. radium 1, 164 (1940).

ground state of the system is looked upon as a pure
"superQuid. " The low-lying excited states are looked
upon as a mixture of "superQuid" and "normal Quid"
components, with the collection of phonons constituting
the "normal Quid" component. The "normal Quid"
thus can be said to be moving against a "background
superQuid. " With such an identification of the two
Quids, one can use all the formulas which the previously
mentioned authors have established for the two-Quid
model, and one can compute the density of the normal
Quid, the velocity of second sound, and the magnitude
of the fountain eGect at very low temperatures. We
shall not go into these discussions in detail as we have
nothing new to add to the reasonings already developed
in the literature quoted. It is to be noticed, however,
that the present explicit mathematical treatment of a
definite model allows one to visualize very clearly the
fact that a phonon does carry a momentum equal to Ak,
where k is its wave number, and that by a superposition
of phonon waves one does obtain a mass transport of
the Bose particles.

6. MOMENTUM SPACE ORDER, CORRELATION
LENGTH, AND SUPERFLUID FLOW

The method of Secs. 1 and 2 can be applied easily to
the case where one starts from an unperturbed state in
which almost all particles are in a given state of mo-
mentum ko&0. The lowest perturbed eigenstate there
describes a background superfluid flow with velocity 2ko
(notice that the mass per particle is -', ). The excited
states represent various phonon states in such a
background superQuid.

Is it possible to start from an unperturbed state in
which a finite fraction of the particles occupy each of
two diGerent momentum states? In other words, is it
possible to have an interpenetration of two superQuid
velocities' The answer is no, because the method of
Sec. 1 leads in this case to very large perturbations,
indicating" that the unperturbed state is very far from
an eigenstate.

The condensation of nearly all particles into a single
free-particle momentum state is what London" called
momentum space ordering. The foregoing discussion
and the wave function and eigenvalues found in Secs.
1, 2, and 3 give explicit demonstrations of this concept
for the special model of a dilute Bose system of hard
spheres.

The inQuence of the order in momentum space does
not, however, extend over infinite spatial distances. If
it did, there would not be the possibility of superQuid
Qow, but only uniform motion of the superQuid as a
whole. We shall in the following give a qualitative

'7 For the same reason it is important to take periodic boundary
conditions, as we remarked in Sec. 1. If one had chosen, e.g. , the
boundary condition 4 =0 on the surface of the box, the unper-
turbed ground state would have an unphysical density variation
across the box, so that the hard-sphere interaction would not be
a small perturbation.
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eiq+ik. r
) (57)

which form a complete set. Here, q is a function of r
(independent of k) and Vq varies little within each
small box. Expanding the second quantized wave
function into these individual particle waves,

P(r) —P ii siq+ik r

one can calculate the matrix elements of the kinetic
energy and the pseudopotential for the various eigen-
states of the occupation numbers a~*a~. It is then seen
that the pseudopotential has the same matrix elements
as in Sec. 1, and that the diagonal matrix elements of
the kinetic energy is also the same as in Sec. 1 except
for a uniform increment of the amount

discussion" of the superQuid Qow in the present model
and of the stability of the Qow. The Chsclssioe is to be

regarded as slg geste ve, rather thar mathematically
coecllsi~e.

We 6rst notice that the number of particles within
one correlation distance ro ——ko ' ——(8s ap) '* is

~pyoa~ (pga)
—l)&1

The number of excited particles among these is com-
putable from the fraction (41), and is a finite number
of the order of 1. The correlation distance is therefore
the distance within which the momentum space
ordering is strongly effective.

In order to allow for a variation of the superQuid
velocity, we divide the system into small boxes each
of which is of the dimension of the correlation length,
within which the ordering in momentum space forces
practically all the particles to have the same momen-
tum. The correlation between two diferent boxes is,
however, not so strong, with the result that the super-
Quid velocity. may vary from one small box to the other.
This suggests that one makes use of the method of
Secs. 1, 2, and 3, but takes the individual particle
wave functions to be

of phonon waves. The o6-diagonal matrix elements of
the kinetic energy then give rise to a possible transfer
of momentum and energy from the superQuid back-
ground Qow into the phonon waves.

The above discussion leads to the conclusion that the
superQuid Qow is described by a condensation of almost
all particles [i.e., other than a fraction ~(pu')') into
the single-particle state (57). This is clearly exactly
what London" meant by a macroscopic quantum state.
It is clear that from the single-valuedness of q one
would obtain a quantization of the vortices, an inter-
esting conclusion that has been discussed in detail by
Onsager and by Feynman. "

One of us (K. Huang) would like to thank Dr. J.
Robert Oppenheimer for the hospitality extended him
during his stay at the Institute for Advanced Study.

where

M, =cV+yB„ (A1)

0
0

X=. 0
0

0 0 0
1 0 0
0 2 0
0 0 3

(A2)

0
[1X(s+1)]»

0

[1X(s+1)]'* 0
L2(s+2)]'

[2(s+2))l 0
~ ~ ~

(A3)

Let g be an eigenstate, with

M,/= X',

and

.(A4)

APPENDIX I

In this Appendix, we discuss the eigenvalues and
eigenfunctions of the matrix

p (Vy)2dr. (58)

Ap

Ag
A2

(A5)

v, =2V'P. (59)

To give a physical meaning to Vp, we notice that in
each small box V'p may be taken as a constant vector.
It is then evident that for the ground state in each
small box the momentum of the superQuid is equal to
V'q per particle. In other words,

By substituting g into (A4), we have

~A.+y(A „-,[~(~+s)]-:
+A~i[(v+1)(n+s+1))&) =LA .

The expression (58) then gives simply the kinetic
energy of the superfluid flow, which according to (59)
is irrotational.

Neglecting the off-diagonal matrix elements of the
kinetic energy, one could solve for the excited states too.
The excited states are again describable as the states

It is convenient to introduce A„' de6ned by

e. s

A„'= A„.
(I+s)!

The diAerence equation for the A ' becomes

(A6)

'8 See similar discussions by Onsager and Feynman, reference 11. (n —X)A '+y[eA „ i'+ (a+s+1)A ~i)=0, (A7)
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which can be readily solved by defining a generating
function

H(s)—= P A 's".
n,M

APPENDIX II

In this Appendix, we discuss the properties of the wave

functions in the configuration space. From Eqs. (36)
and (37), the ground state wave function %'p can be
written in the configuration space as

dH sy
[s+ys'+yj=a X—ys—.

82'
(A9)

In order that f be normalizable we must have

From (A7), we obtain the differential equation for II as

where

N/2

+p=&Z X-, (A16)

P (A„('=finite,
n~o

which in turn implies that in the complex s plane except
for s=O, II(s) has no singularity inside the unit circle

~s~ (1.Thus, the eigenvalues of M, are immediately
determined. They are

X„=——,
' (1+s)+(-,'+m+-,'s) (1—4y') &, (A10)

with m=O, 1, 2,
The corresponding eigenstates are given by Eqs.

(AS) and (A6), with

A '=coeKcient of z" in 8'„(s), (e&0).

(NNO) (A17)

and C is the normalization constant. The functions g
represent the part in which e pairs of particles are
excited. In (A17), the sum extends over all diferent
combinations of selecting e pairs made. of 2e different
particles among a total of E particles. Each term in
the sum is a product of I functions f(r;;) with the
distances between these e pairs as arguments. Alto-

gether there are

(g 2~) IN l2~

The generating function II (s) is

In particular, for s=O and m=0

(A11)

(A12)

terms in the sum. The function f(r) is

1
~&eA rd pk.

)

with

(A18)

) = —-', +-', (1—4y')-*',

and the corresponding unnormalized A„are

(A13) a~ ——(S~ap) '[k'+Sm ap —k (k'+16nap) &).

Its behaviors at large and small distances are as follows:

A =(—n)", (n=0, 1, 2 ), (A14) f(r)~ a/r as r~0,— (A19)

which yields Eq. (37).
The Hamiltonians (1S) and (27) are related to the

matrices M, with s=O and s=1. Consider now the
more general case of starting with any unperturbed
state which has sq free particles with momentum k.
(Without loss of generality we can restrict the momen-

tum k to range over only half of the k space. ) Using
the same arguments as that of Sec. 1, it is easy to see
that the dominant part of the Hamiltonian II, Eq. (1),
connects this state with other states which has in
addition to these s» particles also L» pairs of particles
each of momentum k and —k, etc. Thus the Hamil-
tonian reduces to

II'= 4n.aplV+2 Q'(k'+kp') [E&+y&B,(k)+-', spy, (A1S)
»&0

where kpP and y& are given by Eqs. (16) and (17). The
sum P' extends over half of the k space with k/0.
From the solution (A.10), we obtain immediately the
complete phonon spectrums which are listed in Eqs.
(34) and (35).

f(r)~ (2n. 'a'*p'r') ' as —r~~ .

Using the ground state wave function +0 in the con-

figuration space, it is also possible to obtain directly
.the pair distribution function D(r») [Eq. (43)) by
integrating over the remaining spatial coordinates

r3, , r„.
Our ground state wave function %0 satisfies the

boundary condition,

+t)=0 at r;; =a, (A20)

(A21)

which satisles the required boundary conditions. We

only approximateLy. Its violation of this boundary
condition, however, has an effect on the energy spectrum
only in higher orders of (pa')'*. To see this more clearly,
let us consider the wave function
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~12 ~13 (A22)

must be omitted. The diGerence between +0' and 0'0,
therefore, consists of terms like (A22), which expresses
a correlation among more than two particles. Such
terms belong to a higher order of (a'p)& than we have
considered. For example, upon Fourier-analyzing (A22),
we find that it is of the form of a sum over three
momenta k~, k2, k3, subject to k~+k2+k» ——0. Such
terms arise from a calculation of order u', as shown in
Sec. 4.

can obtain %0 from the above wave function by ex-
panding the above product in powers of f and then
omitting all terms in which the coordinate of any
particle, say r;, occurs more than once. For example,
a term like

i=1
(A23)

where 4'o is the ground state wave function LEq. (A16)
or Eq. (A21)]. Thus it is to be expected that the
Feynman-Bijl relations LEq. (52)] correlating the
excitation energy of a phonon with the pair distribution
function is satisfied for a dilute system of hard spheres
with Bose statistics.

The wave function for the one-phonon state can be
obtained directly from (A11). By an argument similar
to the above one, it can be shown that upon neglecting
terms of higher orders in (pa')& the wave function 4»
of one phonon with momentum q in the configuration
space is


