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Bose-Einstein Condensation and Liquid Helium
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The mathematical description of B.E. (Bose-Einstein) condensation is generalized so as to be applicable
to a system of interacting particles. B.E. condensation is said to be present whenever the largest eigenvalue
of the one-particle reduced density matrix is an extensive rather than an intensive quantity. Some trans-
formations facilitating the practical use of this definition are given.

An argument based on first principles is given, indicating that liquid helium II in equilibrium shows B.E.
condensation. For absolute zero, the argument is based on properties of the ground-state wave function
derived from the assumption that there is no "long-range configurational order. "A crude estimate indicates
that roughly 8% of the atoms are "condensed" (note that the fraction of condensed particles need not be
identified with p,/p). Conversely, it is shown why one would not expect B.E. condensation in a solid. For
finite temperatures Feynman's theory of the lambda-transition is applied: Feynman's approximations are
shown to imply that our criterion of B.E. condensation is satisfied below the lambda-transition but not
above it.

1. INTRODUCTION

'HE analogy between liquid He4 and an ideal
Bose-Einstein gas was erst recognized by

London. ' ' He suggested that the lambda-transition in
liquid helium could be understood as the analog for a
liquid of the transition' ' which occurs in an ideal B.E.
(Bose-Einstein) gas at low temperatures. The fact' that
no lambda-transition has been found in He' supports
London's viewpoint. Further support comes from
recent theoretical work' ' which shows in more detail
how a system of interacting particles can exhibit a
transition corresponding to the ideal-gas transition.

Tisza' ' showed that the analogy between liquid He4

and an ideal B.E. gas is also useful in understanding
the transport properties of He II. Below its transition
temperature a B.E. gas in equilibrium has a charac-
teristic property: a 6nite fraction of the particles occupy
the lowest energy level. Tisza reasoned that the presence
of these "condensed" particles would make necessary
a special two-Quid hydrodynamical description for such
a gas. His idea that this two-Quid description applies
also to He II has been strikingly verified by many
experiments. ' ""

In theoretical treatments where the forces between
helium atoms are taken into account, the ideal-gas
analogy takes on forms diGering widely from one
treatment to another. For example, Matsubara' and
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Feynman' account for the lambda-transition by writing
the partition function for liquid helium in a form similar
to the corresponding expression for an ideal gas. In
Bogolyubov's theory" '4 of the superQuidity of a system
of weakly repelling B.E. particles, it is the distribution
of the momenta of the particles which resembles that
of an ideal gas. Yet another form for the analogy has
been suggested by Penrose"; this work will be discussed
in more detail in Sec. 4 below. A further complication
is that the excitation theory of superQuidity"' is
apparently independent of the ideal-gas analogy (though
Bogolyubov's work" suggests that there actually is a
connection).

The object of the present paper is, first, to unify the
varied forms of the ideal-gas analogy mentioned above
by showing how they are all closely related to a single
criterion for B.E. cotsdetssatiots, applicable in either a
liquid or a gas, and, secondly, to give an argument
based on first principles indicating that this criterion
actually is satisfied in He II. The relation between B.E.
condensation and the excitation theory of superQuidity
will be discussed in a later paper.

2. PRELIMINARY DEFINITIONS

We make the usual approximation of representing
liquid He by a system of S interacting spinless B.E.
particles, each of mass m, with position and momentum
vectors q& qz and p&

.pz, respectively. The Hamil-
tonian is taken to be

H= QPrs/2m jQ U, ;. —

Here U;; stands for U(~q, —q, ~), where U(r) is the
interaction energy of two He4 atoms separated by a

'2 N. N. Bogolyubov, J. Phys. U.S,S.R. 11, 23 (1947).
'3 N. N. Bogolyubov and D. N. Zubarev, Zhur. Eksptl. i Teort.

Fiz. 28, 129 (1955); English translation in Soviet Phys. 1, 83
(1955)."D.N. Zubarev, Zhur. Eksptl. i Teort. Fiz. 29, 881 (1955).

5 O. Penrose, Phil. Mag. 42, 1373 (1951).
6L D Landau~ J Phys U S S R. S~ 71 (1941)'r R. P. Feynman, Phys. Rev. 94, 262 (1954).
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distance r, and
~ q,—q;~ means the length of the vector

q, —q; (except when the artifice of periodic boundary
conditions is used, in which case

~ q, —q, ~

means the
length of the shortest vector congruent to q,—q;).
Many-body interactions are omitted from (1), but
including them would make no essential difference. The
interaction between the He4 atoms and those of the
container is also omitted from (1); these could be
included, but it is simpler to represent the container by
a closed geometrical surface, considering only con-
figurations for which all particles are within or on this
surface, and imposing a suitable boundary condition on
the wave function when any particle is on the surface.
This boundary condition must be chosen to make B
Hermitian. We denote the volume inside the container
by V, and integrations over V by fy d'x orf d'x
or f dx.

As always in statistical mechanics, we are concerned
here with very large values of Ã. Therefore we can
often neglect quantities (for example 1&&T

—") which are
small when E is very large. A relation holding approxi-
mately by virtue of E being very large will be written
in one of the forms A =B or A =B+o(1).These mean
respectively that A/B is approximately 1 and that
A —8 is negligible compared with 1, when Ã is large
enough. We shall also use the notation A=e (" to
mean that positive upper and lower bounds are known
for A, but that a relation of the form A —const has not
been established. Evidently A —const& 0 implies
A = eon&, but the example A = 2+sin% shows that the
converse does not hold in general. We shall use the
phrase "A is finite" to mean A = e ").

We can give more precise meanings to the symbols
—,etc., by considering not a single system but an
infinite sequence of systems with diferent values of S.
The boundary conditions for the different members of
the sequence should be the same, and should be specified
on boundary surfaces of the same shape but of sizes
such that X/V is independent of 1&&&'. Then, if the
quantities A, 8, etc. , are defined for each member of
the sequence, A Bmeans lim&v „(A—/B)=1, A=B
+o(1) means lim&v „(A B)=0, and —A=eo"& means
that positive constants ai, a2, and E~ exist such that
g&Eg implies that ai &A &a2.

We shall use Dirac's notation" for matrix elements
and for eigenvalues of operators.

3. A GENERALIZED CRITERION OF
B.E. CONDENSATION

It is characteristic of an ideal B.E. gas in equilibrium
below its transition temperature that a finite fraction
of the particles occupies the lowest single-particle
energy level. Using the notation of Sec. 2, we can
therefore give the following criterion of B.E. conden-

' P, A. M. Dirac, The I'rinciptes of Quantum Mechanics
(Oxford University Press, London, 1947l.

sation4 for an ideal gas in equilibrium:

(ep)~„/1l& =e i'& ~B.E. condensation"

(ep)&&„/X= 0(1) ~no B.E. condensation,
(2)

e&rr/1V = eo "& ~B.E. condensation,

n»r/IV= o(1) ~no B.E. condensation,
(4)

where e~ denotes the largest eigenvalue of o-i. In this
form the criterion has meaning for interacting as well
as for noninteracting particles, since 0-~ is defined in
either case; thus (4) provides a suitable generalization
of the ideal-gas criterion (2).

According to our criterion (4), B.E. condensation
cannot occur in a Fermi system, because" the exclusion
principle implies that 0~&n~~&1. For Bose systems,
however, the only general restriction on m~ is 0 &~e~ ~& X,
a consequence of the identity tr(or) =17 and the fact
that a~ is positive semidefinite.

The application of (4) is most direct when the system
satisfies periodic boundary conditions and is spatially
uniform (a homogeneous phase in. the thermodynamic
sense). For, in this case, the reduced density matrix
(q'~ ot~ q") is a function of q' —q" only, and specifying
this function is equivalent to specifying the single-

particle momentum distribution. In fact, the momentum

"A possible alternative to this equation is (n0)qII/Ã —const&0,
but the weaker form used in (2) is easier to apply.

20 J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, 1955), Chap. 4."P. A. M. Dirac, reference 18, Chap. 3.

2' P. A. M. Dirac, reference, pp. 130—135.
"K.Husimi, Proc. Phys. Math. Soc. Japan 22, 264 (194i&l.
'4 J. de Boer, Repts. Progr. Phys. 12, 313—316 (1949)."K. Husimi, reference 23, Eq. (10.6)."See, for example, P-O. Lowdin, Phys. Rev. 97' 1474 (1955).

where (ep)p„ is the average number of particles in the
lowest single-particle level and the sign ~ denotes
logical equivalence. This criterion has meaning for non-
interacting particles only, because single-particle energy
levels are not defined for interacting particles.

To generalize the criterion (2), we rewrite it in a
form which has meaning even when there are inter-
actions. This can be done by using von Neumann's
statistical operator, "cr, whose position representative"
(qr' . .q&v'~ o

~ g,
"

q&v") is known as the density
matrix. "We define a reduced statistical operator, ri, as
follows23 '4

o r N trs ——&v(o),

where trs. ..&v(o) means the trace of o taken with respect
to particles 2 X but not particle 1. For an ideal gas
in equilibrium, the eigenstates of o-i are the single-
particle stationary states, and the corresponding eigen
values are the average numbers of particles in these
stationary states. "Consequently, (2) may be rewritten
as follows:



O. PENROSE AND L. ONSAGER

representative" of 0-», given by

(p'I pi
I
p") —= (1

'
I

q'&dq'(q'
I il q")dq"(q"

I
u"&

exp[i(1i" q"—p' q')/8

)&(q'Ioil q")dq'dq"

must be the average number of particles with momentum
pi'. [To confirm this interpretation, note that'4

(2 f(1 ))"=Zu (p'I oil 1'&f(1')

for arbitrary f(p).j Therefore, according to (4), B.E.
condensation is present for a spatially uniform system
with periodic boundary conditions whenever a finite
fraction of the particles have identical momenta. The
work of Bogolybov" shows that this form of the
criterion is satisfied in a system of weakly interacting
B,E. particles at very low temperatures.

4. ALTERNATIVE FORMS OF THE CRITERION

When the system is not spatially uniform, it is more
difficult to diagonalize 0.», and some transformations of
the criterion (4) are useful. The simplest of these
depends on the following inequality:

NM ~&Ps +s ~&+Bi Pa +u '+M+~ (5)

where the n, 's are the eigenvalues of 0.», the fact that
ii,=tr(oi)=E follows from (3). We define

is a diagonal matrix, so that e~ is the largest diagonal
element of this matrix. Now, since

(1 i'" 1~'I o
I 1 i' "p~')

is the probability distribution in the (discrete) mo-
mentum space of g particles,

Unlike A2, this quantity has no simple interpretation
in terms of the eigenvalues of oi/1V, but it is easier to
use. An upper bound for A» comes from the fact that
(A i%/U)', the square of the mean value of the function
l(q'l oil q") I, cannot exceed A2(1V/U)', the mean value
of the square of this function; therefore we have

A»'~(- A2.

To find a lower bound for A», we use the fact that 0-»

is positive semide6nite (this follows intuitively from
the probability interpretation of the eigenvalues of
oi/1V; alternatively it can be proved rigorously from

(3) and the fact that o is positive semide6nite). Since
0-» has no negative eigenvalues, its square root is
Hermitian. Applying the Schwartz inequality to the
two state vectors oi'*

I
q'& and o i&l q"), we obtain

I
(q'I ~il q"&

I
( [(q'I pi I

q')(q"
I oil q")0'(~&/U (10)

where iilV/U is any upper bound of (q'lo. il q'). Com-
bining (6), (8), and (10), we 6nd

A2&~o.A».

For any physical system, n can be chosen independent
of E; for (q'I o i I

q') is the average number density at
the point q' and cannot become indefinitely large. For
example, in a liquid at thermal equilibrium, (q'I oil q')
is approximately E/U except near the boundary, so
that n can be chosen just greater than 1. Treating 0. as
6nite, and combining (7) with (9) and (11), we obtain

A» ——e (') +-+B.E. condensation,

Ai ——p(1) +-+no B.E. condensation.

A third form of the criterion is valuable when the
reduced density matrix (q' o.i I

q") has the asymptotic
form +(q')+*(q") for large q' —q"

I
(+*is the complex

conjugate of 4). Some consequences of assuming this
asymptotic relation for He II were discussed by
Penrose. " Here we formulate the assumption as
follows:

(6) l(q'lail q"&—+(q')+'(q")
I

& 9'/Uh(l q' —q" I) (»)

It is clear that Ai=E ' tr(o.P) = )V
—' P e,', and hence,

by (5), that (ri~/1V)'~& A2&~ri~/E. It follows that

where the (non-negative) function y(r) is independent
of E and satisfies

lim„„„y(r)=0.

A2 e oi~lir/lV= e "i while A&= p(1)~mid/JV =p(1).

The following criterion is therefore equivalent to (4):

To use (13), we need the following lemma:

I'(x) —= U ' y(l x' —xl)d'x'= p(1). (15)
A2 ——e (') ~B.E. condensation,

A, =p(1) ~no B.E. condensation.

Another form of the criterion depends on inequalities
satisfied by

A i —= (&U) ' 1(q'I oil q")
I

d'q'd'q".
r J

(16)0 & q(r) (-',. if r &R.
We also have

0(y(r) (pic+';e if 0(r&R,

prppf. Let g 'be an arbit—rary positive number. Then,
by (14), there exists a number R (depending on ~) such
that
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where ysr is the maximum of the function y(r). Using
(16) in (15) we obtain 0&~I"(x) &-', s+ V 'ysiVit(x),
where Vir(x) is the volume of x'-space for which

I
x'—x

I ~& X. Since Vir(x) &~4s-2V/3, we can ensure that
0& I' &e by choosing V) 8sysrR'/3e. By the definition
of a limit, this implies limv „I'=0;that is, (15) is true.

%e can now obtain a criterion of B.E. condensation,
using the relation

(&v) ' l(q'I ~il q")—q'(q')q'*(q")
I

dq'dq" =o(1),J J
(17)

which follows from (13) and (15). Combining this with
(8) with the help of the elementary inequality—l~—sl ~& lll —lsl ~& ll —sl g~~~~

(18)

(since 9 is normalized) lais+ lbl'=1. Inserting this
expression for 9 into (21) gives

f{p) =
I
a

I
siss/X+ o(1)= (1—

I
b I')e~/N+ o (1)

Now, the maximum value of f{p}is nial/X, and it is
attained when & equals p~, the normalized eigenfunc-
tion of (q'I oil q") corresponding to the eigenvalue Nsr.
The last expression for f{y) shows that this maximum
is ns/N'+o(1) and is attained with Ibl =o(1). It
follows that nsi=e~ in agreement with (20), and also
that

(") y~(x) I'd'x=
lb I'=o(1) (22)

This equation tells us that 4'(x) is to a good approxi, -
mation proportional to psr(x). In view of these results,
we may call 4' the mane fsilctiom of the condensed par
ticles, and es/1V the fraction of coedensed particles.

V—' I%'
I
d'x= s &'& ~B.E. condensation,

V ' I+Id'x=o(1) ~no B.E. condensation.

(19)

Using (12), we obtain the criterion, valid whenever (13)
holds:

5. GROUND STATE OF A B.E. FLUID

In this section we derive some general properties of
the ground. -state wave function. These will be needed
in Sec. 6.

I.et us define the ground-state wave function
iP(x, . xiv) to be the real symmetric function which
minimizes the expression

The function 0 has a simple interpretation when B.E.
condensation is present: we can show that 4(x) is a
good approximation to the eigenfunction of the matrix
(q'lail q") corresponding to the eigenvalue tissu, and
also that its normalization is

N~=) I+(x) I'd'x Nsr— (20)

f{9(x)& =—& ' ' 9*(q')(q'I ilq")9(q")dq'dq"

=
I (s P) I'/&+o(1),

where q is an arbitrary normalized function and

(21)

(q,q) = ~le*(x)% (x)d'x.

The arbitrary function 9 (x) in (21) can be written
in the form y(x)=vs '[a4(x)+bC(x)), where C is
chosen to make (O',C)=0 and (C,C')=ass, and where

VVe note first that all eigenvalues of the matrix

» '(q'I lq")=—& '[(q'I i q")—q'(q')q'*(q")j

are o(1), since, by (17), (8), and (12), a system whose
reduced density matrix was v would not show B.E.
condensation. It follows that

while at the same time satisfying the boundary con-
ditions and the normalization condition. The Euler
equation of this variation problem shows that lb satisfies
Schrodinger's equation for the Hamiltonian (1). Now,
the function Ill I

also conforms to the above definition,
and so it too satisfies Schrodinger's equation. The erst
derivative of

I lb
I

must therefore be continuous wherever
the potential energy is finite. This is possible only if ll
does not change sign. We may therefore take tp to be
non-negative. Suppose now that i' and Ps are two
diGerent non-negative functions conforming to the
above definition. Then, since Schrodinger s equation is
linear, ipi —fs also conforms to the definition, and (by
the result just proved) does not change sign; but this
contradicts the original assumption that both i' and lbs
are normalized. Hence the above definition yields a
unique, non-negative function" ip.

For a Quid phase, we can obtain further information
if we assume "that there is No long range coefigsirat-i onal"These properties of the ground-state wave function are fairly
well known [see, for example, R. P. Feynman, Phys. Rev. 91,
1301 (1953)j, hut the authors have seen no proof in the literature.
A proof for the special case X=1 (to which no symmetry require-
ments apply) is given by R. Courant and D. Hilbert, 3fethoden der
3fathematischee I'hysik (Verlag Julius Springer, Berlin, 1931),
Vol. 1, Chap. 6, Secs. 6, 7.

2'A similar principle is often used in the classical theory of
liquids —for example by J. E. Mayer and E. W. Montroll J.
Chem. Phys. 9, 2 (1941).Its use here amounts to assuming that
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order. By this we mean that there is a finite "range of
order" E. with the following property: for any two con-
centric spheres Si and Ss with radii Ei and Ri+R,
respectively, the relative probabilities of the various
possible configurations of particles inside S~ are ap-
proximately" independent of the situation outside S2.
By the "situation" outside S2, we mean here the number
of particles ouside S2, their positions, and the position
of the part of the boundary surface outside 52.

This assumption implies that, if the configuration of
the particles inside S~ is altered while everything else
remains the same, then the probability density in con-
figuration space changes by a factor approximately
independent of the situation outside 52. Hence, if the
point x, is inside Si, then V;loglt is approximately
independent of the situation outside S2. This is true
for any choice of Si provided S~ encloses x;, and in
particular it is true when R& is vanishingly small. There-
fore, V; log/ is independent of the situation outside a
sphere S(x,) with center x; and radius R.

Setting i= 1 in this result and integrating shows that
P can be written in the form

$(xl' ' 'xN) = 8(x2' ' ' xx)x(xl i x2 ' ' 'xi@) ) (24)

where the functions 8 and x are symmetric in x~ x~,
and y is approximately" independent of the situation
outside S(xi).

The function 8 in (24) has a simple physical meaning.
To find this, we write the Schrodinger equation satisfied
by f in the form

8(xs' x~)~c8(xs' xiii), (22)

where c is a constant and 8 is the normalized ground-
state wave function for E—1 particles.

A simple illustration of (24) is provided by a type
of approximation to P(xi x&) used by various
authors" ""

0( ) "HI~( )]II (l '— I), (2g)

where oi(r)—+1 when r is large. In this approximation,
(24) can be satisfied by taking

8(x, x ) III'l (x,)jII'~(lx, —x, l), (29)

that V'; logx 0, so that the first sum vanishes approxi-
mately; they also imply that the summand in the
second sum is negligible unless

l x;—xi l
&~R. The

argument preceding (24) shows, however, that V, loge
is independent of x, unless

l x,—x,
l

&&E. Since
l x;—xi

l

and lx, —x;l cannot both be less than R (because
lxi —x, l) 2R), the summand in the second sum is
always negligible. The term V,U~; also vanishes, because
the interaction has a short range. Thus the entire right
member of (26) vanishes approximately. " The ex-
pression in curly brackets is therefore approximately
independent of x; for i= 2 .E. This means that
8(xs . x~) approximately satisfies an equation, analo-
gous to (25), which is equivalent to Schrodinger's
equation for a system of Ã—1 particles. Since 8 is
non-negative, it must therefore have the form

—(A'/2m)g/Vis log/+ (V; loglt)']-+P U,,= const.
i i(j (25) x(xi, xs x~) =p(x,)II oi(lx, x, l), (30)

Taking the gradient with respect to x; (i /1) and sub-
stituting from (24), we obtain after some rearrangement

V,{—(A'/2m)g LV;s log8+ (V, log8)'$+g;" U, ,}
= (A'/2m)P, LVis+2(V; log8) V,jV; logy

+ (h'/m) P, (V„logy) .V. ;V, log/ —V', Vi, , (26)

where P means a sum with the j=1 term omitted,
and g," means a sum with the j 1an=d j =i terms
omitted. Since the left member of (26) does not contain
xj, the right member must be independent of x~. To
evaluate the right member, we may therefore choose x~
to make

l
x,—xil )2R. The properties of x then imply

where II' means a product with alii = 1f actors omitted.
It is clear that (29) is consistent with (27), and that, if
R is large enough, x as defined in (30) is approximately
independent of the positions of the particles outside
S(xi).

6. LIQUID HELIUM-4 AT ABSOLUTE ZERO

At absolute zero, the density matrix is given by

(qi' q~'l~lqi" q~")=4(qi' . .q~')4(qi ' ' qx ),

since the ground-state wave function lt is real and
normalized. The reduced density matrix is therefoxe

the probability density in configuration space is qualitatively
similar to the corresponding probability density for a classical
liquid. The importance of this principle for the ground state of a
quantum liquid was noted by A. Bijl, Physica 7, 869 (1940).

2' The meaning of the word "approximately" is purposely left
vague, since it would complicate the discussion too much to
attempt a rigorous formulation. As we see it, a rigorous formula-
tion would have to depend on a limit operation R—+~: that is,
it would assume that the approximation of statistical independence
could be made arbitrarily good by choosing E large enough.

~ If the theory were formulated more rigorously (see reference
29), the corresponding property of y might be V';x(x1,. x& ~ x~)
&~ X(~ x;—xi ~) where E'(r)~0 in a suitable way as r~ ~.

"Only a rigorous treatment can completely justify the implicit
assumption that the sum of Ã negligible terms is itself negligible.
The present methods can, however, be used to show that the
contribution of a given j value to the sums in the right member
of (26) is negligible compared with its contribution to the sums
in the left (with a finite number of exceptions, for which

~
x;—xi~ ~& R and the contributions on both sides are negligible).

32 A. Bijl, reference 28."R. B. Dingle, Phil. Mag. 40, 5/5 (1949).
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(33)

Under the approximation. (32), the integrand in (31)
is I/Qir times that in (33) when

~

q' —q"
~

&&d, so that

(q'~
~

q")=s—'ri (q', q") if
~

q' —q"
]

&d. (34)

Here s—= (1V+1)Qir/Qir+i is the activity of the hard-
sphere system. The physical meaning of e2 shows that,
for large ~q' —q" ~, e2 tends to (N/V)'. Hence (13)
can be satisfied by taking %=const=s '1V/V (except,
possibly, near the boundary). Hence, by (19), B.E.
condensation is present; moreover, by (20) and the
discussion following (20), the fraction of condensed
particles is

ri~/N =I~/N =O'V/N =N/Vs. (35)

The right member of (35) can be calculated from the
virial series for hard spheres. '4 Taking the density of
He II to be 0.28 times the density at closest packing,
we obtain the result 0.08. Thus, Feynman's approxi-
mation (32) implies that B.E. condensation is present
in He II at absolute zero and that the fraction of con-
densed particles is about 8%.

The above discussion makes it plausible that a
treatment based on the true wave function will also
indicate the presence of B.E. condensation. To supply
such a treatment, we first substitute from (24) and (27)
into (31).This yields

(q'~ ~1
~

q")= c'N&x(q', g)x(q"; K))8, (36)

where, for any function f(g)

&f)a=&f(x))~= " . "f(a)+'(x)4 (37)

where g and dg are abbreviations for x2 ~ xi' and
d'x2 ~ d'x&, respectively. For a preliminary discussion
of (31), we use a crude approximation to f suggested
by Feynman~:

P(xi xi') (Qir)

Fir�(xi

.xi') i (32)

where Qir is a normalizing constant, and F~(xi xi')
by definition takes the value 1 whenever x~ .x~ is a
possible configuration for the centers of E hard spheres
of diameter d and the value 0 for all other configura-
tions. Here d~2.6A is the diameter of a He4 atom. The
approximation amoun. ts to using (28) with p=1 and
with cv(r) =0 for r (d and co= 1 for r ~&d.

The normalization integral corresponding to (32)
shows that Q~/N! is. the configurational partition
function for a classical system of X noninteracting
hard spheres. Moreover, the integral in. (31) is now
closely related to the pair distribution function for
1V+1 hard spheres, defined as follows'4:

is the expectation value of f(g) in the ground state of
a liquid of Ã—1 particles whose configuration is
Q=X2 ' Xg.

In studying (36) it will be convenient to look on q'
ancl q" as parameters and to treat x'—=x(q';g) and
x"=x(q";g) as variables depending on the configura-
tion g of a liquid of E—1 particles. The correlation
coefficient" of g' and x" is dined by

(x'x")~-&x')a(x")a
p(q', q") —= „.. . „, „,. (38)

[(x")~—(x')~'1'[&x'")~—(x")~']'

Now, it was shown in Sec. 5 that g' is independent of
the "situation" outside S(q') and that x" is independent
of the situation outside S(q").By applying the principle
of no long-range configurational order, given in Sec. 5,
to the ground state of a liquid of X—1 particles, with
the sphere S~ chosen large enough to enclose both
S(q') and S(q"), we find that p(q', q") is independent
of V for large enough V. By applying the same principle
with Si this time taken to coincide with S(q ), we find
that x' and y" are approximately statistically inde-
pendent if S(q") is entirely outside $2, that is, p(q', q")
approximately vanishes if

~

q' —q"
i )3R.

We can now show that (13) holds, with

(39)

For, substituting (36) and (39) into the left member of
(13) gives c'1V[(x'x")~—(x')~(x")~], which, by (38), is
less than c'Np(q', q")[(x")~(x'")~]'*.Setting q'= q" in

(36) shows that this last expression equals p(q', q")
X[(q'~ Oi~ q')(q"

I

O.i~ q")]1. Therefore, by (10) and the
properties of p(q', q") given above, (13) can be satisfied

by making y( ~

q' —q"
~ ) & np(q', q") for every q' and q".

If the distance from q' to the boundary exceeds 2R,
then (x')~ and (x")~ are (approximately) positive
constants independent of Ã and q'. For we may take
the sphere Si defined in Sec. 5 to be S(q'); then the
relative probabilities for the various configurations of
particles inside S(q')—on which alone x' depends —are
independent of E and the relative positions of S2 and
the boundary. It follows that U 'Jy(x')zd'q'=const) 0
and also, by (36), that c'N —const) 0 since (q'~o. ii q')—1V/V if q' is far from the boundary. Applying the
criterion (19) to the 4 defined in (39), we conclude
that B.E. condensation is present in liquid He at
absolute zero.

The above discussion would not lead one to expect
B.E. condensation in a solid, because the assumption
of no long-range configurational order is valid for a
Quid phase only. In fact, it can be argued that a solid
does not show B.E. condensation, at least for T=O K.
We assume that a solid at T=O'K is a perfect crystal

~ M. N. Roxenbluth and A. W. Rosenbluth, J. Chem. Phys. 22,
881 (1954).

3' H. Cramer, Mathematical Methods of Statistics (Princeton
University Press, Princeton, 1946},p. 277,
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—i.e., that there exists a set of lattice sites such that iP

is small unless one particle is near each lattice site."
In the expression (31) for the reduced density matrix,
therefore, the integrand will be appreciable only if
every one of the points x2 ~ x~ is near a separate
lattice site, while both q' and q" are near the remaining
site. When

~

q' —q"
~

is large, this last condition cannot
be fulfilled, so that (q'~ oi~ q") will tend to 0 for large

~

q' —q" ~. This indicates that the function 4 of (13)
will be 0, so that, by (20), there is no B.E. condensation
in a solid at absolute zero.

Our result that B.E. condensation occurs in liquid
He at T=O'K must now be extended to nonzero tem-
peratures. (The need for such an extension is illustrated

by the example of a two-dimensional B.E. gas, which'
shows B.E. condensation at T=O'K but not for
T&0'K.) This will be done in the next section.

'7. B.E. CONDENSATION AND THE
LAMBDA-TRANSITION

Feynman, 7 and also Matsubara, ' have studied the
lambda-transition in liquid helium by expressing the
partition function in the form

now given by

A, = (1V!ZV)
—'P ' dq', dq, "(q,'~ tr2. ..&Pe e

~

qi").

(42)

All permutations corresponding to a given partition
{m&} and also having particle No. 1 in a cycle of given
length I. contribute equal terms to the above sum,
since a suitable relabeling of the particles 2 E will
turn any one such term into any other. Collecting
together, for each {mi}and I., the (I/N)X!/g i(m i!1 &)

equal terms, we can write Ai as a sum over I. and {mi},
obtaining

Ai ——S 'Qr, i.(ml,Ai, z,{mi)). (43)

Here we have defined, for any function f=f{rni)—
depending on the set of numbers {mi), a quantity

(f)=Z'Q —Lip(m Y"&)]—'f{m&} tr(Pe e ) (44)
(m)l

where P is any permutation corresponding to the
partition {mi}.We have also defined

(qi
~

tr2. ..~Pe
~ qi )

Z= P ~(mi!E~i)j—' tr(Pe e~),
{m)l

(40) Ai, z{mi) —=

V tr(Pe e~)
(45)

where the sum is over all partitions of the number E
(that is, over all sets {mi) of non-negative integers
satisfying g i m i ——N), P is any permutation containing
mi cycles" of length f (3=1 1V), and P—:1/kT with
k—=Boltzmann's constant. Evaluating (40) with the
help of approximations for tr(Pe e~), they showed how
it could exhibit a transition, which they identified with
the lambda-transition. In the present section, we shall
show that Feynman's approximations also imply that
the criterion (4) of B.E. condensation is satisfied for
He II in equilibrium.

The statistical operator for thermal equilibrium is

= (1V!Z)- Qi Pe e~, -(41)

'6 For equilibrium at a temperature T WO'K, a few atoms will
be in interstitial positions far from their proper lattice sites. The
fraction of interstitial atoms will be e ~~~, where 8' is the energy
required to excite one atom from a lattice to an interstitial site.
This fraction tends to 0 as T tends to O'K.

'~ For the definition of a cycle, see R. P. Feynman, reference 7,
or H. Margenau and G. M. Murphy, The Jtriathematzcs of Physics
and Chemistry (D. Van Nostrand Company, Inc. , New York,
1943), p. 538.

where the sum is over all permutations P of the S
particles. Feynman's path integral~ for the density
matrix shows that the position representative of (41)
is non-negative. Therefore the corresponding reduced
density matrix, calculated according to (3), is also
non-negative, so that the quantity defined in (8) is

where P' is any permutation which corresponds to the
partition {mi} and also has particle No. 1 in a cycle
of length I,.

To use (43), we introduce two approximations due
to Feynman. ' "The first is

(qi'. . qg'~!Pe e~~qi". . qp")

EX—'"@(qi' q~')y(qi" qg")

&«xpL —(~/l ')2 (q
' —q~ ")'3, (46)

where E is a constant, X means k(2~m'kT) '*with m'=
an eRective mass, and p(xi . .x~) is a normalized
non-negative symmetric function which reduces to the
ground-state wave function when T—+O'K. (We deviate
slightly from Feynman's usage: he does not take p to
be normalized. ) Feynman's other approximation is used
in evaluating integrals over con6guration space in-
volving (46); it is to replace the factor containing p by
its value averaged over the region of integration and to
replace each factor exp) —7r(x, —x,)'/X'j by

G(x,—x;)—=p(~ x;—x;t) expL —m (x,—x;)'/X'j, (47)

where p(0) = 1 and p (r) for r) 0 is the radial distribution
function, tending to 1 as r~~.

Using these approximations in (45), we obtain

Ai, z{mz) Ai, „8z/fz, (48)
"For a critical discussion of these approximations, see G. V.

Chester, Phys. Rev. 93, 1412 (1954).
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where (with g standing, as before, for xs xi')

A i,„—= V—' @(q',g)y(q",g) d q'dq"dg, (49)

(40) and (44)j and use (53); this gives

1—A, /Ai, „.V—'Pz(fr, —bF)Qx z/Qx. (56)

Feynman' estimates that, unless I. is a small integer,

I
bz—:V i ' ' ~ g G(x&+i—x&)dxi' ' 'dxz+i, (50) where

fr, (L 'Uk+1)Sic (57)

f L

fr = ' ' G(xi xl)g G(xq xq'—i)dxi' ' 'dxz (51)
j=2

[For L=1 we interpret (51) as fi= V.$—
To 6nd the order of magnitude of A~, , we replace

p in (49) by the ground-state wave function lb (since p
is qualitatively similar to f and both are normalized).
Then, by (31) and (8), Ai, „roughly equals the value
of Ai for T=O'E'; this is finite, by (12) and the result
of Sec. 6. Feynman~ has suggested using the approxi-
mation (32) for g as well as for f; this leads, by (18)
and (35), to the rough estimate Ai „0.08.

We estimate 61. by replacing the integrals over
dxs. dxz+i in (50) by the corresponding infinite
integrals. This gives 81. b~~, which, when combined
with (48) and (43), yields

Ai/Ai, „~lV 'pl, L(mi)bi /fr, (52)

To study (52), we note that Feynman's approxima-
tions (46) and (47) also imply' tr(Pe e~) ~IO, —

Xgt(fi '). Substituting this into (40) and (44) yields

where

(L ./f. )=Q —./Q,

Q =2 II(f/I) '/~ ~

(772~}

(53)

the sum being over all partitions of the arbitrary
integer M. Equation (54) is just Mayer's expression"
for the configurational partition function of an imper-
fect gas of liI particles with cluster integrals bi fi/LV-—
Therefore if s—=Q~ i/Q~ —const is the activity of this
imperfect gas when it contains X particles, the approxi-
mation QN. z/Q~ —sz will hold provided L&&1V.

Using this approximation with (53) and (52), we
obtain

Ai/Ar, „~lV 'Q(ski)z~lV '(1—ski) '=o(1) (55)
L=1

"J.E. Mayer and M. G. Mayer, Statistics/ Mechanics (John
Wiley and Sons, Inc. , New York, 1940), pp. 277—282.

provided that sbj —const &1. Feynman's work' shows
that this condition holds above the transition tem-
perature; therefore, since Ai „——e &" and (12) holds,
there is no B.E. condensation in HeI.

This argument fails below the transition temperature,
where ski —1.To study this case, we combine (52) with
the identity 1=1V 'Pz, L(mz, ) [which follows from

40

Therefore, although the approximation Q~ I/Q~ sz
is no longer legitimate in (52), it is still legitimate in
(56), according to (57), a convergent series results even
though ski —1:

1—Ai/Ai, „—const+1V ' P UAL '=const, (58)
I=1

where the first "const" takes care of the error due to
the failure of (57) for small I. Feynman's work' shows
that the right-hand side of (58) is less than 1 below
the transition. Hence Ai/A i, „=const) 0, and, by (12),
B.E. condensation does occur in He II.

The deductions we have made from Feynman's
approximations can be paraphrased as follows: the
quantity (Ai, r{mi)) is very small if L«(VA)* (where
A is finite), and equals the finite quantity Ai, „ if
L»(UA)i. Hence, by (43), Ai/Ai, „equals the con-
tribution of large L values to the sum 1V 'P L(m )r;
that is, it equals the fraction of particles in large cycles.
Above the lambda-transition this fraction is negligible,
so that, by (12), there is no B.E. condensation; below
the transition this fraction is finite, so that B.E. con-
densation is present.

8. DISCUSSION

Equation (4) provides a mathematical definition of
B.E. condensation, applicable for a system of inter-
acting particles as well as for an ideal gas. Physically,
the definition means that B.E. condensation is present
whenever a finite fraction —air/1V —of the particles
occupies one single-particle quantum state, p~. The
de6nitions of e~ and q~ are given in Sec. 3 and Sec. 4,
respectively. Even for an ideal gas, our de6nition is
more general than the usual one, since here q~ is not
necessarily the lowest single-particle energy level. The
close relation between our definition of B.E. conden-
sation and London's suggested' ' "condensation in
momentum space" is illustrated in the last paragraph
of Sec. 3 above, where it is shown that under suitable
conditions p~ actually is an eigenstate of momentum.

The reasoning of Secs. 5, 6, and 7 indicates that
liquid helium II satisfies our criterion of B.E. conden-
sation. For T=O'K the only physical assumption used
is that a quantum liquid —as distinct from a solid—
lacks long-range configurational order (though the
mathematical treatment of this assumption is not yet
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completely rigorous). For T)0'K, some fairly crude
approximations, taken from Feynman's theory of the
lambda-transition, have to be introduced. This part of
the theory is therefore open to improvement —possibly
in the form of a more rigorous proof that Feynman's

implied criterion for B.E. condensation )the importance
of long cycles in the sum (40) for the partition function)
is equivalent to our criterion (4) at thermal equilibrium.
Despite these imperfections, however, our analysis
would appear to strengthen materially the case put
forward previously by London'' and Tisza' for the
importance of B.E. condensation in the theory of liquid
helium.

%e have not considered here how B.E. condensation
is related to superAuidity and to the excitation theory' '7

of liquid helium. This will be done in another paper,
where some of the results already obtained by Bogoly-
ubov" for weakly repelling S.E. particles will be ex-
tended" to the case of interacting He' atoms.
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Electron spin-spin interaction is discussed for the case of strong hyperfine broadening. The hyperfine
interaction is represented by a resonance spectrum of width Ace and the electron interactions, which are taken
to be dipolar, are treated by time-dependent perturbation theory. A characteristic relaxation time for
electron spins, &,=Aco/A~; is found, where 5 is a measure of the strength of the dipolar interaction. The
time-dependent theory suggests a modification of the Bloch equations to give a phenomenological description
of systems of this kind. Spin-spin relaxation is represented by a term which gives diffusion of spin excitation
through the resonance spectrum. Slow passage, rapid passage, and free relaxation are considered by using
the modified equations.

I. INTRODUCTION

'HE Bloch equations' have given a satisfactory de-
scription of saturation eGects involving Ii centers

in alkali halides. ' One of the reasons for this success is
that the dipolar interaction between F-center electrons
is extremely weak compared with the lattice inter-
action. ' The effects of spin-spin interaction have not
been observed in room temperature studies. Although
the interaction is quite weak, it should be detectable at
liquid helium temperatures.

The purpose of this note is to consider the form
expected for such an interaction. In the first part a
treatment of dipolar interaction is developed in terms
of time-dependent perturbation theory. The results of

*This research was supported by the U. S. Air Force through
the OfBce of Scientific Research of the Air Research and Develop-
ment Command.

t Present address: Department of Physics, University oi Cali-
fornia, Berkeley, California.

' F. Bloch, Phys. Rev. 70, 460 (1946).' A. M. Portis, Phys. Rev. 91, 1071 (1953). The identification
of T2 in this reference with the mean dipolar 6eld is in error. As
established in the present treatment, T2 should equal T& for
F centers in KCl at room temperature. This yields a corrected
value of SX10 ' sec for T1.' A. G. Redfield, Phys. Rev. 98, 1787 (1955).

this treatment are applied to a macroscopic description
of the interaction in terms of a modi6cation of the
Bloch equations. In the final section, these equations
are applied in an examination of slow passage, rapid

passage, and free relaxation.

X=+ gps,"Hp—
16m

2 pt t j 4 '(«)
~

's' «/It
3 it

gps; 3gpr;, (r;; s,)
+s 2 gps~ (2.1)

' Kip, Kittel, Levy, and Portis, Phys. Rev. 91, 1066 (1953).

II. MICROSCOPIC THEORY

%e consider a system suggested by the interaction
between P-center electrons in alkali halides. The inter-
action between electron spins is taken to be dipolar.
There is a contact-type hyperfine interaction between
electron and nuclear magnetic moments. ' For simplicity
electron spin-orbit coupling is neglected. The magnetic
Hamiltonian in an external field Ho is given by


