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Symmetry and the macroscopic dynamics of magnetic
materials

A. F. Andreev and V. I. Marchenko

Institute of Physical Problems, Academy of Sciences, USSR
Usp. Fiz. Nauk 130, 39-63 (January 1980)

A systematic exposition is given of a recently developed theory of the low-frequency spin dynamics of any
magnetic material in which the magnetic order is caused by exchange forces that considerably exceed the
relativistic interactions. The proposed approach does not use any model representations of the state of the
magnet (localized spins, sublattices, etc.)- A fundamental concept in the theory is that of approximate
exchange symmetry.
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1. INTRODUCTION

The magnetic materials known at present are charac-
terized by a great variety of magnetic structures, but
only for ferromagnets is the theoretical approach that is
usually used satisfactory. In this simplest case, the
microscopic problem of the structure of the ground
state and the spectrum of excitations can be solved ex-
actly.1·2 On the other hand, the macroscopic properties
of ferromagnets are systematically described by the
equation of Landau and Lifshitz.3

In all the more complicated cases, the microscopic
problem can be solved only for spins that are large
(classical), which they usually are not. In such a sit-
uation, a phenomenological theory, of the Landau-Lif-
shitz type, becomes particularly important. The phe-
nomenological theory usually used4·5 leads to correct
results in a number of cases, but this theory is of the
model type. In it, complicated magnetic structures are
treated as a collection of a certain number of interpen-
etrating, interacting ferromagnets, each of which is
described by a Landau-Lifshitz equation. For this
there is in general no basis. Recently a phenomeno-
logical theory has been developed that is based only on
general considerations of symmetry and does not use
any model representations of the state of the magnet;
that is, it is as general a theory as, for example,
hydrodynamics or the theory of elasticity. The theory
is applicable to any magnetic materials in which the oc-
currence of a magnetic structure is the result of the
action of exchange forces that considerably exceed the
relativistic interactions; thus it is applicable with equal
success to crystals and to disordered magnetic mater-
ials. The present paper is devoted to a systematic ex-
position of this theory.

Solution of the problem posed includes the question of
the classification of magnetic structures. The classifi-
cation that is usually used is based on introduction of
magnetic moments of sublattices or of magnetic vectors
that are linear combinations of them. Such a descrip-
tion, although it uses a model representation of local-
ized spins, gives a graphic and full description of the
structure, sufficient for explanation of the macroscopic
dynamics of a magnet and, in particular, of its behav-
ior in not too strong magnetic fields (ones that are
small in comparison with the exchange fields). But if
we have in mind precisely this last problem, then a de-
scription by means of sublattice moments is in most
cases redundant. The number of sublattices may be as
large as one pleases or, in general, infinite. But as
we shall see, every structure can be characterized by
no more than three mutually perpendicular magnetic
vectors,6 specification of which is sufficient for writing
down the macroscopic dynamic equations. These mag-
netic vectors are in many respects analogous to the
spin densities considered by Dzyaloshinsku.7 Their
introduction makes no use of localized-spin represen-
tations but is based on investigation of the symmetry of
the magnetic material. In contrast to the spin densi-
ties, which determine the change of symmetry that oc-
curs in a phase transition of the second kind from the
paramagnetic state, the magnetic vectors that we have
introduced determine the symmetry of the exchange
forces of the magnet as such, without any assumptions
about the nature and number of the phase transitions
that separate the state under consideration from the
paramagnetic.

The macroscopic dynamic properties, that is, the
properties on temporal and spatial scales that consid-
erably exceed the reciprocals of the exchange frequen-
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cies and the interatomic distance, respectively, can be
described on the basis of the following general property
of states that possess a magnetic exchange structure.
The appearance of such states is always accompanied
by the phenomenon of spontaneous breaking of the sym-
metry of exchange interactions: the Hamiltonian of ex-
change interactions is invariant with respect to an arbi-
trary rotation of all the spins through the same angle,
but no magnetic structure is invariant with respect to
all such rotations. There are always rotations that
convert the equilibrium state of the body to another
state. If the angles of rotation are the same for spins
located at different points of space, then the state ob-
tained is still as much an equilibrium state as was the
original state. If the angles of rotation are slowly
varying functions of the coordinates, then a weak non-
stationarity appears in the system. Along with small
spatial derivatives of the angles of rotation, there ap-
pear small time derivatives. Only those degrees of
freedom of the magnet that reduce locally to certain
rotations of the structure, and that are described by
rotation angles varying slowly in space and in time,
are important in a macroscopic description. Such a
description is completely analogous to the theory of
elasticity. The role of the components of the displace-
ment vector of the medium is played by the angles of
rotation of the spins; the roles of the velocity and of
the strain are played, respectively, by the time and
space derivatives of the angles of rotation. In contrast
to spatial displacements, different rotations do not in
general commute with each other. Therefore the equa-
tions of magnetic dynamics differ from elasticity theory
in that they are nonlinear even at small velocities and
strains.

The considerations set forth regarding the phenom-
enon of spontaneous breaking of symmetry in magnets
as the physical reason for the occurrence of low-fre-
quency oscillations (Goldstone bosons), and regarding
the relation between the noncommutativity of the sym-
metry group and the nonlinearity of the equations, are
well known and have been discussed by many auth-
ors.8"18 Description of the dynamics of spins by means
of angles of rotation has been used in investigation of
the properties of various magnetic materials15"18 and of
the magnetic properties of the super fluid phases of
3He.13·14 We mention in particular the papers of Hal-
perin and Hohenberg15 and of Halperin and Saslow.16

In the first part of this paper, the concept of exchange
symmetry of magnetic materials is developed, and on
the basis of it a classification of the possible types of
magnetic structures, in crystalline and in disordered
systems, is carried out. Then, for all the essentially
different cases, the nonlinear dynamical equations are
derived, with allowance for a magnetic field and for
relativistic interactions. Expressions are given for the
magnetic resonance frequencies and for the spin-wave
spectrum. We note here that the phenomenlogical ap-
proach used makes it possible to obtain certain general
results very simply thatwere obtainedinthe microscop-
ic theory only under very stringent limitations. For
example, in all (dielectric) collinear pure-exchange
magnets the longitudinal magnetic susceptibility van-

ishes at zero temperature. In the Heisenberg model of
an antiferromagnet, this assertion was proved only in
the limit of infinite spin, by expansion in inverse pow-
ers of the spin; this cannot in any case exclude an ex-
ponentially small susceptibility.

2. THE EXCHANGE SYMMETRY OF CRYSTALS

A characteristic property of magnetic materials is
the existence in them, along with a scalar charge den-
sity p(r), of a nonvanishing microscopic magnetic-mo-
ment density m(r). The symmetry properties of such
a system are described (see Ref. 19, §28) by specifica-
tion of one of 1651 magnetic space groups. These
groups contain as their elements the purely spatial
transformations (rotations, reflections, translations)
and combinations with the time-reflection transforma-
tion R with respect to which the values of p(r) and m(r)
are invariant. According to the specified magnetic
group, one can easily determine the purely spatial
symmetry of the system, if in the elements of the mag-
netic group one formally identifies the transformation
R with the identity transformation. The resulting one
of 230 space groups contains all the transformations
with respect to which the charge density, and in general
all the quantities that do not change on time reflection,
remain invariant.

Such a symmetry characteristic of the body is exact;
but precisely for this reason, important approximate
symmetry properties are completely lost in it. The
fact is that a fundamental role is played in the proper-
ties of the majority of magnetic materials, by exchange
forces whose symmetry is higher than the symmetry of
the weak relativistic interactions. To indicate only the
exact symmetry means to lose completely information
about the higher symmetry of the exchange forces.

We neglect all relativistic interactions and consider
the exchange symmetry of the magnet. Since the ex-
change forces depend only on the relative orientations
of the spins, in the present case, besides the transfor-
mation R, there appears an infinite set of new symme-
try transformations, consisting of all rotations U of the
spin space; that is, rotations of all the spins through
the same angle. In such a situation, the aggregate or-
ientation of the spins with respect to the crystallograph-
ic axes becomes arbitrary, and we may consider that
the components of the magnetic moment m(r) behave as
scalars in all purely spatial transformations and are
components of a vector in spin space; that is, they
transform like the components of a vector only during
rotations of the spin space. The transformation R plays
the role of inversion of the spin space. The exchange
symmetry is determined6 by specification of one of the
exchange space groups, which contain all those combi-
nations of purely spatial transformations, of rotations of
the spin space U, and of the transformation Λ with re-
spect to which the values of m(r) are invariant. If we
formally identify the transformations U and R in the
elements of the exchange group with the identity trans-
formation, we get some ordinary space group G. This
is the symmetry group of the charge density and gen-
erally of all spin scalars in the system. But the values
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of m(r) are in general not invariant with respect to it.

Various generalizations of the magnetic groups, in
the set of transformations, along with the element R,
by inclusion of arbitrary spin rotations, have been
made by a number of authors.2 0 ' 2 4 Classification of
such "color" or "spin" groups has been treated, how-
ever, without relation to the exchange approximation.
The topic was therefore not an approximate, but some
exact accidental symmetry, the existence of which can
be caused (see Ref. 22) by special properties of the
Hamiltonian even in the presence of relativistic inter-
actions.

For physical applications, instead of a formal classi-
fication of the exchange space groups, it is convenient
to proceed as follows. Like any function of the coordi-
nates, each of the components of the magnetic moment
m(r) can be represented as the sum of functions that
transform according to irreducible representations of
the pure space group G introduced above. Since these
functions are in general different for the three differ-
ent components of the moment, the expansion in the
general case can be written in the form

ana.

where the functions φ\^(τ) with given a transform ac-
cording to the nth irreducible representation of the
group G, and the index a enumerates the functions be-
longing to this representation. For each representation
in formula (1) there occur, in general, three sets of
linearly independent functions, enumerated by the in-
dex a= 1, 2,3. The symmetry of the magnetic structure
is completely determined by specification of the space
group G and of the magnetic vectors MJ£'. They trans-
form as spin vectors in spin rotations and change sign
upon R transformation; and it may be considered that
they (and not the functions ψ) transform according to
the nth irreducible representation of the group G. The
quantities Mj,°> are analogous to the spin densities con-
sidered by Dzyaloshinskii.7 We emphasize, however,
that in Ref. 7 the expansion was carried out according
to representations of the symmetry group of the para-
magnetic phase; this in general differs from the space
group G.

The magnetic vectors Mj£> satisfy6 a number of
stringent conditions, which greatly restrict the number
of different magnetic structures with a prescribed space
group G. We consider the scalar products Mj^-Mj^'.
They are spin scalars; therefore in the equilibrium
state, they must be invariants relative to the group G.
On the other hand, these quantities transform according
to the direct product of the irreducible representations
η and m. Since only unitary representations can parti-
cipate in the expansion (1), the representation «x m
contains the identity only when η is equivalent to in,
complex conjugate to m. Only in this case can the sca-
lar product under consideration be nonzero. Further-
more, by virtue of the unitarity of the representations
we have

( ? , η) 6 o 6 6 n S 6 (2)

where c(a,n) are some constants. In general, instead

of c(a, n)Sab a more general set of constants c(a,b,n)
can occur in formula (2). But it is always possible to
redefine the magnetic vectors (by appropriate linear
transformation of identically transforming functions
φ^) in such a way as to reduce the formula to the form
(2).

For what follows, it is convenient, as usual, to com-
bine the complex representations η and η into a single
physcially irreducible representation, and to introduce
real magnetic vectors in place of the complex vectors
M Se = M me*· They satisfy the relations (2), in which
the indices η and m now enumerate the real physically
irreducible representations; for this reason we must
suppose that n = n. The relations (2) show that different
vectors are perpendicular to each other; those of them
that correspond to a single multidimensional represen-
tation have the same length. The maximum number of
nonvanishing vectors and the dimensionality of the cor-
responding representations are therefore equal to
three.

The magnetic vectors that transform according to
nonidentity representations obviously make no contri-
bution to the total magnetization of the body; they are
therefore antiferromagnetic vectors. If there are one,
two, or three vectors that transform according to the
identity representation, then the body possesses a non-
zero magnetization; we may suppose (this can be
achieved by appropriate orthogonal transformation and
normalization of the functions φ(α)) that one of these
vectors coincides with the magnetization (we denote
this vector by M). Then the remaining vectors of the
identity representation are antiferromagnetic.

We note also that the constants c(a, n) corresponding
to the antiferromagnetic vectors may be supposed equal
to zero or unity, i.e. that the nonvanishing antiferrcT-
magnetic vectors are unit vectors; this can always be
achieved by appropriate normalization of the functions
φ^. Below, we shall number the nonvanishing anti-
ferromagnetic vectors /„ with a single index a, which
now has the meaning simply of a serial number and
may take the values a= 1,2,3.

Thus only four essentially different cases are possi-
ble: 1) There exists a single magnetic vector that
transforms according to the identity representation,
and it coincides with the magnetization M. The body is
a ferromagnet or a collinear ferrimagnet Such a
ferrimagnet, with respect to its symmetry and macro-
scopic dynamics in not too strong magnetic fields, is
no different from a ferromagnet. 2) There is a single
vector 1 that transforms according to a nonidentity
(one-dimensional) representation. The body is a colli-
near antiferromagnet. 3) There are the vector Μ and
one antiferromagnetic vector 1 perpendicular to it,
transforming according to a one-dimensional (identity
or nonidentity) representation, or two vectors lx and
12 perpendicular to each other and to M, transforming
according to the same or different one-dimensional
representations or according to a single two-dimen-
sional. The body is a noncollinear ferrimagnet. 4)
There are two mutually perpendicular vectors ^ and
12, transforming according to the same or different
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nonideotity one-dimensional representations or ac-
cording to a single two-dimensional, or three mutually
perpendicular vectors l^ 12, and I3, transforming ac-
cording to one, two, or three nonidentity one-dimen-
sional representations or according to a nonidentity
one-dimensional and a two-dimensional, or, finally,
according to a three-dimensional representation. The
body is a noncollinear antiferromagnet

Representations of the space groups are achieved, as
is well known (see Ref. 25, §134), with functions of the
form

where k is the wave vector and where u^ are functions
periodic in the crystal lattice. We are interested only
in one-, two-, and three-dimensional physically irre-
ducible representations. Such a representation can be
characterized by wave vectors occupying a general
position in the reciprocal cell only for crystals of the
triclinic system (in more symmetric crystals, the
combined star of vectors k and -k contains more than
three vectors). In crystals of the monoclinic system,
there can exist representations with a wave vector oc-
cupying a general position in the plane of symmetry.
Representations with a wave vector occupying a gen-
eral position on an axis of symmetry are possible for
all noncubic crystals. In all the cases enumerated, the
physically irreducible representation is necessarily
two-dimensional; the pair of corresponding antiferro-
magnetic vectors \ and 12 transforms, in translations,
like the pair of functions sink- r and cosk· r. From the
form of the expansion (1) it is clear that the magnetic-
moment density transforms in translations as

m (r) ~ li sinkT-l- 1» coaler,

that is, the corresponding structure (since ^ and ^ are
mutually perpendicular) is helicoidal. Thus we arrive
at the conclusion that in a spatially periodic crystal,
only helicoidal exchange magnetic structures incom-
mensurable with the periods of the space lattice are
possible. The occurrence of any other incommensur-
able structure necessarily destroys the spatial periodi-
city of the crystal.

Nonhelicoidal structures can be characterized only by
wave vectors corresponding to certain distinct points
of the reciprocal cell. In particular, if all the nonvan-
ishing magnetic vectors transform according to rep-
resentations with k= 0, the magnetic and spatial ele-
mentary cells coincide.

But not all the magnetic structures enumerated above,
and in principle possible, can actually occur. Many of
them do not satisfy the following stability criterion,
which is analogous to the well-known Lifshitz criterion
in the theory of phase transitions of the second kind
(see Ref. 25, §145). Namely, the existence of an ex-
pression that is invariant with respect to the group G
and of the form

where xt are the spatial coordinates, leads to insta-
bility of the corresponding structure. In fact, con-
sider a small departure from equilibrium of the form

δία =δθ(Γ)Χΐ0,

where the 50 are slowly varying functions of the coordi-
nates. Since at each point of space such a departure
reduces to a rotation of all the magnetic vectors
through the same angle, the local (that is, not contain-
ing spatial derivatives) part of the departure of the en-
ergy from the equilibrium value vanishes. The main
part of the change of energy is therefore determined
by the terms of the form (3), linear in the derivatives;
and this obviously can always take negative values.

An important remark, apropos of the stability cri-
terion, must be made in the case of helicoidal struc-
tures. If the wave vector occupies a general position
on an axis of symmetry, then the existence of invari-
ants of the form (3) implies instability of the structure
only when the invariants contain derivatives with re-
spect to coordinates perpendicular to the axis of sym-
metry. The existence of an invariant with a derivative
along the axis corresponds, for example, to a temper-
ature dependence of the period of the helicoid, just as
the existence of a linear invariant div u (where u is the
displacement vector) corresponds, in the theory of
elasticity (see Ref. 26, §6), to thermal expansion of
the lattice. Similarly, for structures with wave vec-
tors occupying a general position in a plane of sym-
metry, the "dangerous" invariants are those containing
differentiations with respect to coordinates perpendic-
ular to the plane.

It is known from the theory of phase transitions (see
Ref. 25, §145) that invariants of the form (3) are ab-
sent only for representations characterized by wave
vectors whose components are definite fractions (5,τ,
x) of the periods of the reciprocal lattice. In our case
this means that the periods of the magnetic cell may be
only 2, 3, or 4 times the periods of the spatial cell; as
in the theory of phase transitions, tripling of the mag-
netic periods in comparison with the spatial is possible
only in hexagonal space lattices, and quadrupling in
face-centered and body-centered cubic lattices. We
emphasize that this conclusion was reached here by
consideration of the symmetry of the magnet as such,
without any assumptions about the nature and number
of the phase transitions that separate the state under
consideration from the paramagnetic.

By way of example, we shall carry out the classifica-
tion of all the possible exchange magnetic structures in
body-centered tetragonal crystals, whose space sym-
metry group G is the group Cfih. The arrangement of
the basic translation vectors is shown in Fig. 1. The
defining elements of the group are the mirror rotation
S4 and the product tl of inversion I and translation by
the vector

In accordance with the general statements formulated
above, in the present case helicoidal structures are
possible with a wave vector occupying a general posi-
tion on the fourth-order axis. There are two types of
hexagonal structures, Ηχ and H2, to which correspond
moment densities of the form
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FIG. 1.

Hi. m (r) ~ 1, cos χ (ξ + η - ζ) + 1, sin κ (ξ + η - ζ),

Η,: m (r) ~ 1, sin 2π (ξ — η).sin 2πζ·οο3 κ (ξ + η — ζ)

+ 12 sin 2π (ξ — η).sin 2jiL|-sin κ (Σ - η — ζ),

where ? is an arbitrary parameter, and where ξ, η,
and ζ are oblique-angle coordinates along the basic
translation vectors: r = ξ^ + Jja2 + f â .

Furthermore, it follows from an analysis carried
out for this group in Liubarskil's book in connection
with the theory of phase transitions,27 that there are
still six nonidentity irreducible representations, with
dimensionality not exceeding three, for which invari-
ants of the form (3) are absent. Five of these are rep-
resentations with k= 0. Using for these representations
the notation adopted in the book of Landau and Lifshitz
(Ref. 28, §95), we give the corresponding expressions
for the moment density:

Au: m (r) ~ 1 (cos 2πζ — cos 2π (ξ — η)],

Bg: m (r) ~ 1 sin 2π (ξ + η - ζ),

flu: m (r) ~ 1 cos 2π (ξ + η - ζ),

Es: m (r) ~ 1, cos 2π (ξ — η) -sin 2πζ + U cos 2πζ-sin 2π (ξ — η),

£ u : m (?) ~ li sin 2πζ + I, sin 2π (ξ — η).

The sixth representation is the two-dimensional rep-
resentation Ε with k=(b1 + b2+b3)/2, whereby b2, and
b3 are the basic vectors of the reciprocal lattice:

E: m (r) ~ It sin π ( | — η) -cos ηζ + I, cos π (ξ — η) -sin πζ.

If we add to these the ferromagnetic structure with a
moment density that transforms according to the iden-
tity representation, At, then we get nine different mag-
netic structures, described by a single irreducible
representation of the space group. Also possible are
more complicated structures, described by a combina-
tion of irreducible representations. Some of these are
unstable because of the existence of invariants of the
form (3). For example, the instability of the ferrimag-
netic structure (At,Au), with moment density

m (r) ~ Μ + 1 Icos 2πζ - cos 2π (ξ - η)]

and with two mutually perpendicular vectors Μ and 1,
which transform according to the representations A,
and Au respectively, is due to the existence of the in-
variant

where z is the coordinate along a principal axis of the
crystal. The instability of the noncollinear antiferro-
magnetic structure (A/,), with three mutually perpen-
dicular vectors l^L,, and L,, of which 1L transforms
according to Au and the pair 12,13 according to the two-
dimensional representation Et, i.e., the structure with

moment density
m (r) ~ 1, [cos 2πΙ — cos 2π (ξ — η)]

— I. cos 2π ( | — η) -sin 2πζ + 13 cos 2πζ -sin 2π (ξ — η)

is due to the existence of the invariant

where χ and y are Cartesian coordinates in the basal
plane.

A simple analysis of all such combinations shows that
in crystals with space group C|s, only 45 different mag-
netic exchange structures are possible. One of these
is ferromagnetic, At; 3 are collinear antiferromag-
netic, Au, Bt, and Bu; 3 are ferrimagnetic with two
magnetic vectors, (AtAr), {AtBt), and(Af £„); 7 are
ferrimagnetic with three vectors, (AtAtAt), (AtAfBj,
UtAtBu), (AtBtBf), (AtB^), (A,Et), and(A,£); 2
are helicoidal ferrimagnetic, (A,/^) and (ArHj); 8 are
antiferromagnetic with two vectors, Ef, Eu, E, (AuAj,
UuBf), (AUBU), (BeBr), aad(BuBu); 13 are antiferro-
magnetic with three vectors, {AUAUAU), (AuAuBg),
(AyAuBu), (AuB,Bt), {AUBUBU), (Β,Β,Β,), (BUBUBU),
(BtEt), UUEU), (BUEJ, (AUE), (£,£), and {BUE); and
8 are helicoidal antiferromagnetic, Hlt H2, (AuHj),
(£,/O, (B.HJ, (AUH2), (BtH2), and (BUH2).

For applications, an important problem is the deter-
mination of the number and the transformation charac-
ter of the magnetic vectors corresponding to some pre-
scribed structure, known from experiment We shall
demonstrate below the solution of this simple problem
in several characteristic examples.

In the rhombohedral magnets a-Fe2O3 and Cr2O3

(space group D3(r), the magnetic elementary cell coin-
cides with the crystallographic; that is, the magnetic
vectors transform according to representations with
k= 0. Such representations may be regarded as repre-
sentations of the point group corresponding to the crys-
tal class; that is, in the present case of the group DM.
The relative orientation of the moments of the magnetic
atoms of a single cell, located along the third-order
axis, is shown for e-Fe2O3 and for Cr2O3 in Figs. 2a
and b respectively.29 Since both structures are collin-
ear, each of them is described by a single magnetic
vector that transforms according to a one-dimensional
representation. In order to explain the exchange sym-
metry, we must consider changes of structure under
the action of spatial symmetry elements acting only on
the coordinates of the atoms, with constant orientation
of their magnetic moments. Rotation about the second-
order axis perpendicular to the plane of the figure
interchanges atoms with opposite moment directions in

a) b)

FIG. 2.
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both structures; that is, the moment density changes
sign in such a rotation. This condition is satisfied only
by the representations Av and A^ of group D3t. Inver-
sion (supplemented in the group D*t by translation along
the third-order axis by the distance between the first
and third atoms in Fig. 2a and b) changes the sign of
the moment density in Cr2O3 but does not change the
structure in a-Fe2O3. Therefore the structure corre-
sponds to the representation A2u in Cr2O3 and to rta in

In the six-sublattice noncollinear antiierromagnet
YMnOj (space group C^), the magnetic cell again coin-
cides with the crystallographic. The direction of the
moments of the atoms is shown in Fig. 3.3 0 The atoms
marked with crosses are shifted by a half period with
respect to the other atoms along the principal axis per-
pendicular to the plane of the figure. Since all the mo-
ments lie in a single plane but are not collinear, the
structure is described by two magnetic vectors. Since
the structure changes in the rotationC,, only the two-
dimensional representations £ t and E2 may correspond
to i t Of them, only Et is compatible with invariance
of the structure with respect to the rotation C2 (supple-
mented by translation by a half period).

The four-sublattice antiierromagnet UO2 has a face-
centered cubic space lattice (group Oj). The magnetic
atoms (Fig, 4) are located at the points (0,0,0),
(0,1/2,1/2), (1/2,0,1/2), and (1/2,1/2,0). Their
moments are directed31·32 along space diagonals of the
cube; that is, along the directions [111], [111], [111],
and [ΪΤΪ] respectively. The structure is described by
three magnetic vectors 1ι,12, and lg. Since the moment
density is invariant with respect to translation by
twice the elementary translation vectors a,,(a= 1,2,3)
of the space lattice (these vectors are shown by ar-
rows in Fig. 4), a representation of the space group
can be characterized only by those nonzero wave vec-
tors whose doubled values are equivalent to zero. Of
these, only the vectors

k,-(b, + b»)/2

form a star containing no more than three vectors. In
a translation by a., the expression exp(tka· r) and hence
1, do not change. But the other two magnetic vectors
change sign. Hence it is clear that the directions of
the atomic moments indicated above correspond to vec-
tors V, directed along the cube edges [100], [010], and
[001]. The elementary cell of the space lattice of UO2

contains one magnetic atom. In this case, only those
representations can be realized in which the periodic
Bloch factors may be considered equal to unity. In

, ν

FIG. 3.
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FIG. 4.

other words, only identity representations of a small
group of wave vectors are realized. Precisely such a
representation, with the star indicated above, is thus
realized in UO2.

If we take into consideration the relativistic interac-
tions that fix the orientation of the magnetic vectors
with respect to the crystallographic axes, each of the
exchange magnetic structures will be described by
some point symmetry group, determined by one of the
magnetic space groups. We emphasize that here, in
general, the purely spatial symmetry of the system is
lowered. The space group G obtained from the ex-
change group in general differs from the space group
obtained from the magnetic. The simplest example of
such a change is any ferromagnet that is cubic in the
exchange approximation.

3. THE SYMMETRY OF DISORDERED MAGNETIC
MATERIALS

This section is devoted to an analysis of the symme-
try properties of media that are spatially completely
disordered: that is, systems in which the spatial dis-
tribution of magnetic atoms is random and, on the av-
erage, homogeneous and isotropic. This has to do
either with amorphous materials containing magnetic
atoms or with dilute solutions of magnetic atoms in
nonmagnetic crystals.

A spatially disordered system may be completely or-
dered in magnetic respects. For example, complete
ferromagnetic ordering of the spins of the magnetic
atoms is possible. This example, however, is unique.
Any other magnetic order is, in an obvious way, in-
compatible with spatial disorder. The macroscopic
properties of a magnetically ordered ferromagnet are
no different from the properties of ordinary crystalline
ferromagnets and are described by the Landau-Lif-
shitz equation.

There have recently been extensive investigations33·34

of disordered systems with magnetic structures of
another type. These are, first, spin glasses, in which
not only the positions but also the spin directions of
different atoms are randomly distributed. In addition,
there are systems34 that possess a finite spontaneous
magnetization whose value at zero temperature is
nevertheless considerably below the nominal value. One
can think of the state of such a disordered ferromagnet
as the state of a spin glass in an external magnetic
field. There is a partial (spontaneous) ferromagnetic
order, superposed on a generally quite random distri-
bution of spin directions.

In order to classify the possible types of such partial
ordering, we consider exchange symmetry on the
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macroscopic level. The macroscopic symmetry of a
medium with a microscopic moment density m(r) can
be described by specifying the multipole moments35·6

substituting the expressions for the moments in terms
of Θ, we get

Mik = (r))

where the brackets denote macroscopic averaging. The
exchange symmetry group of the medium consists of
all the combinations of spatial and spin rotations, in-
version, and the transformation R with respect to which
the nonvanishing multipole moments are invariant. The
purely spatial symmetry group, as before, is obtained
from the exchange group by identifying the spin-rota-
tion elements and the element R, in it, with the identity
transformation. For spatially isotropic disordered
systems, the group G must be the group of spatial ro-
tations (and inversion). Since the multipole moments
M,M{,Mift, transform according to irreducible rep-
resentations of this group, the results of the preceding
section are fully applicable to them. In the equilibrium
state, no more than three moments can differ from
zero; different moments are perpendicular to each
other; and those among them that belong to a single
multidimensional representation have the same length.
It is clear that there are only three possibilities17: 1)
all moments are zero; 2) the single ferromagnetic mo-
ment Μ is nonzero; 3) there are three nonvanishing
moments Mjt equal in absolute value and mutually per-
pendicular. The first possibility corresponds to a spin
glass, the second to a disordered ferromagnet, the
third to a disordered antiferromagnet in which the
quantities M( play the role of antiferromagnetic vec-
tors.

When relativistic effects are taken into account in a
disordered ferromagnet, the spatial isotropy is de-
stroyed. A preferred direction of magnetization ap-
pears.

When relativistic effects are taken into account in a
disordered antiferromagnet, there should occur some
definite orientation of the triplet of mutually perpen-
dicular spin vectors Mt = {Mfa} with respect to coordi-
nate space. We shall designate the components of the
spin vectors in the exchange case by indices α, β. When
relativistic effects are considered, the difference be-
tween them and the spatial vector indices i,Tz disap-
pears. Among all orientations, one is especially dis-
tinguished that is described, on suitable normalization,
by moments Mia=6ia. A medium with such moments
is, in an obvious way, isotropic even when relativistic
interactions are taken into account. Its point symmetry
group (magnetic class) is the group SO(3) x IR. Any
other orientation can be obtained from those discussed
above by some rotation of all the spins through an angle
0(0 < θ < π) about an axis determined by a unit vector n.
As a result the moments acquire the following values:

Mia + (1 — COS 0) l (If,-^

where em is the unit antisymmetric tensor.

The anisotropy energy Ua, dependent on the angle θ
and determined by averaging of the Hamiltonian of the
relativistic interactions, is in the present case a linear
combination of two invariants: M{aMai and (Maa)

2. On

r; = -'•;-- (4)

where φ = tg(0/2) and where A and Β are anisotropy
constants proportional to the square of the ratio of the
velocity of the electrons to the velocity of light. Here
and below, we have in mind amorphous systems in the
consideration of relativistic effects in disordered mag-
nets. In dilute solutions of magnetic atoms in crystals,
it would be necessary to allow for the anisotropy of the
crystal matrix. If A> 0, the energy is least when <p = 0
(Θ =0) or when φ =•<*> (θ=η), depending on the sign of B.
If .4 < 0 and Β > A/2, the minimum is attained at the fi-
nite value

•i-j/ Ι Λ |
Ι -ι \-ym ·

in the case A < 0 and B<A/2, again at φ = ·*>.

Thus there are three possible types of states of a
disordered antiferromagnet. In addition to the isotrop-
ic structure discussed above (φ = 0), structures are
also possible with an exact spatial symmetry of the
type of the symmetry of nematic liquid crystals. The
unit vector η along the axis of rotation plays the role of
the director; the states η and -n are different for finite
φ and identical for φ-<*>.

Since the spin is a pseudovector and changes sign
under the time-reflection operation R, a disordered
antiferromagnet with moments Mai is always noninvar-
iant with respect to/ and R separately but is invariant
with respect to the product IR. If such a structure ex-
ists in a dielectric, then a magnetoelectric effect
should occur (appearance of a magnetization propor-
tional to the external electric field), as is observed,
for example, in the crystalline antiferromagnet

4. COLLINEAR STRUCTURES

We shall carry out the derivation of the dynamical
equations on the basis of the Lagrangian formalism.
This approach is the most convenient for our purposes
and has been applied in the investigation of magnetic
properties by many authors.12·14·17·36"38 We shall neg-
lect dissipation; therefore the equations derived below
are, strictly speaking, applicable only at zero temper-
ature. But since the equations are nonlinear, use of
standard quantization procedures enables one to inves-
tigate the interaction of thermal spin waves on the
basis of these equations, and to obtain dynamical equa-
tions with allowance for dissipation in the spin-wave
range of low temperatures.

We consider a collinear antiferromagnet: that is, a
structure determined by a single magnetic vector 1
that transforms according to some nonidentity one-di-
mensional representation. Such a structure is charac-
terized by the fact that the spontaneous destruction of
the isotropy of spin space is not complete in it. The
structure is invariant with respect to spin rotations
about an axis parallel to the vector 1. There are only
two independent angles of rotation about an axis per-
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pendicular to 1 that change the state of the system. In
accordance with what was said in the introduction,
these two angles, as functions of the coordinates and of
time, must be treated as independent functions in a
macroscopic description. It is convenient to introduce
the unit vector 1(*, i) itself in place of them.

The potential energy U due to the inhomogeneity of
the system is quadratic in the spatial derivatives of the
vector 1:

tf.tdF*-. « a ( 5 )

J 2 8 * , 8x*

where aik is a constant symmetric tensor, invariant
with respect to the crystal class of the space group G
and satisfying the condition of positive definiteness of
the potential energy. For the antiferromagnets con-
sidered in Ch. 1, a-Fe2O3 and Cr2O3, it has two inde-
pendent positive components, αχ=α,, and a2= axx= am.

The kinetic energy Γ is quadratic in the time deriva-
tives,

r-jdV-i-iK (6)

where b is a positive constant.

The Lagrangian function L, which determines the dy-
namics of the antiferromagnet in the absence of a mag-
netic field and of relativistic interactions, is thus

The variation of the action W, considered as a function
of the coordinates I3 8·3 9·1 7 is determined by the formu-
las

6W= · δ β ,

where it has been taken into account that an arbitrary
variation of the vector 1 is an infinitely small rotation
δ1= δβ x 1 through an angle 60. The derivative 6W/W
of the action with respect to the spin-rotation angle is
the spin angular momentum, from which, by multipli-
cation by the gyromagnetic ratio y, we find the mag-
netic moment of unit volume

Μ =γδ1χΐ

In certain antiferromagnets, for example in Cr2O3, in
which 1 transforms according to a representation that
enters into the composition of a vector representation,
there is an invariant

It is, as is easily seen, the sum of the total time de-
rivative and a certain divergence. Therefore introduc-
tion of it into the Lagrangian function does not change
the equations of motion, but does change the action and
therefore also the expression for the moment. Instead
of the formula given above, we get

Μ = γ*1χ1 + μι-|Γ, (8)

where μ, are some exchange constants. In the pres-
ence of an external magnetic field that is small in
comparison with the exchange field, the right side of
formula (8) contains an additional term, dependent on
the magnetic susceptibility χ β β of the antiferromagnet,

The corresponding additional term in the Lagrangian
function is easily determined by use of the fact that the
derivative 9L/8H is the magnetic moment M:

¥£ S r« do)
here and everywhere below, we understand by L the
density of the Lagrangian function, and we omit terms
that have no effect on the equations of motion.

From formula (10), by the same method that was
used to derive (8) from (7), we find the magnetic mo-
ment with allowance for a magnetic field:

Comparison with (9) shows that the magnetic suscepti-
bility tensor is

Χα β = Χι (δ«ί— (.!»),

where xL = y*b is the susceptibility in directions perpen-
dicular to 1. The longitudinal susceptibility is zero.
The last statement, as is easily understood, is a con-
sequence of the fact that the kinetic energy defined by
formula (6) depends only on the time derivatives of the
angles of rotation about axes perpendicular to 1 and
does not contain the angular velocity of rotation (in
spin space) about 1. Thus the vanishing of the longitu-
dinal susceptibility is an immediate consequence of the
quantum-mechanical indistinguishability principle,
known for example from the theory of diatomic mole-
cules (Ref. 28, §82), according to which an axially
symmetric body cannot rotate about the axis of sym-
metry. We emphasize that this deduction is valid only
for dielectrics in which there are no other gapless
magnetic degrees of freedom. In metals, a longitudi-
nal susceptibility is caused by the contribution of the
conduction electrons.

In order to take the relativistic interactions into ac-
count, we must introduce the anisotropy energy Ua

=\ α^Ι, , into expression (5) for the potential energy;
where, aik is the anistropy-constant tensor, which may
be considered to be symmetric and to satisfy the condi-
tion a j ( =0. Furthermore, in some antiferromagnets
the magnetic field must everywhere be supplemented by
the Dzyaloshinskii field HD=dx 1, which describes weak
ferromagnetism29; here d is a constant, independent of
the direction of the magnetic vector 1.

The final expression for the Lagrangian function can
be written in the form

(ID

where

.If α yb 1Χ ϊ α + μ, -gj- (9)

In formula (11) we have omitted terms that are total de-
rivatives with respect to the time or are quadratic in
the relativistic field HD.

The magnetization of the antiferromagnet in the gen-
eral case is

M = -^lxi+Ui^- + Xj.{H —11-H + dX!}. (12)

On varying the Lagrangian function (11) with respect to
1, with allowance for the equality 12= 1, we find the non-
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linear equations

θ ί 1 Χ ΐ = χ Ι

where

(13)

is the effective field acting on 1.

The magnetic resonance frequencies and the spin-
wave spectrum obtained from the linearized equations
(13) coincide with the results of the model-type phe-
nomenlogical theory.4·5·29 In contrast to the latter,
equations (13) give a systematic description of nonlin-
ear effects as well.

5. THE SPIN GLASS

The description of spin glasses in the theory set forth
is analogous to the theory of elasticity of ordinary
glasses.16"18 As in the theory of elasticity, a glass is
a nondissipative system at not too small frequencies,
appreciably exceeding a certain characteristic time of
dissipation of elastic stresses. We shall consider the
dynamics of a spin glass, supposing at first that this
condition is satisfied. A discussion of the general case
will be given at the end of this section.

In a spin glass, the spontaneous breaking of the iso-
tropy of the spin space is complete; therefore a macro-
scopic description must involve all three spin-rotation
angles. Let the parameters ψ" (a= 1, 2, 3) carry out
some parametrization of the group of spin rotations.
Then these parameters (pa(xitt) as functions of the co-
ordinates and the time determine those states that cor-
respond to low-frequency motions. The spin configura-
tion at the point xi at the instant t differs from the con-
figuration at the same point in the initial equilibrium
state by a general rotation <pa(x.,t).

In order to calculate the potential energy U quadratic
in the spatial derivatives of φ", we consider the rota-
tions φα(χ{) and φα(χt +dx^l = φ"(χ ?) + άφ" corresponding
to two neighboring points. Let

δθ = 2λ α (φ) dcpa

(the factor 2 is introduced for future convenience) be an
infinitely small rotation angle, determining a rotation
such that successive application of the rotations φ" and
60 gives <pa + d<p". Because of the complete randomness
of a spin glass, the only quantity on which U can depend
is

The quantity λα(φ)λΒ(φ) is, by definition, the metric
tensor gae(q>) that specifies40 the metric of the Riemann
space corresponding to the group of three-dimensional
rotations. We have

(14)

where a>0 is some constant.

where c is a constant, equal, as will be seen below, to
the velocity of spin waves.

The Lagrangian function of a spin glass, in the ab-
sence of an external magnetic field and of relativistic
interactions, is

L = T-u =,ξ, gri(,(v)[±.^-^r-^r) • (15)

The corresponding Lagrange equations have the form

" ' -«·•£•£) =0; (16)

here Γ£, are the Christoffel symbols corresponding to
the metric gaS.

We shall now introduce a specific parametrization
{<p°}= φ convenient for what follows. We set φ = αφ,
where η is the unit vector along the axis of rotation
and ψ- tgie/2); θ is the angle of rotation about n, and
0< θ< π. An arbitrary spin vector σ transforms, under
the action of the spin rotation φ, according to the for-
mula

^ (17)

The advantage of this parametrization manifests itself
in the simple law that determines the product of two
rotations. If we carry out first the rotation φι and then
φ2, we get as a result the rotation corresponding to the
parameter

The element of "length" dl of group space is easily de-
termined by means of formula (18). We have

where 6fl/2 is obtained from (18) by the substitution φ1

(la)

(20)

As a result, we find
6«C φ α φ Ρ

The equation of motion (16), in the chosen parametriz-
ation, acquires the following form:

(21)

where

The metric (20) is the metric of a sphere in four-di-
mensional Euclidean space. In fact, writing dl2 in vari-
ables θ/2, θ, and Φ, where ( ? , ? ) are the polar angle
and azimuth of the direction n, we get

The kinetic energy Τ is quadratic in the time deriva-
tives of φ". In analogy to (14) we get

which coincides (see Ref. 41, §104) with the metric of
a three-dimensional sphere of unit radius. It is there-
fore clear that the equations of motion are invariant
with respect to the six-parameter group 0(4) of four-
dimensional rotations. The infinitely small transfor-
mations of the coordinates φ that conserve the metric
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are determined by the formulas

δφ* — φ x t

\.-φ·εί

1-φκΖι+φφ·Ζι + Ζιφ,
(22)

The first of these is an infinitely small spin rotation
through angle δθ = 2ε,.

The variation of the action density W as a function of
the coordinates, in arbitrary δφ, is

On substituting (22) in this, we find the density of the
quantities that are conserved by virtue of the symme-
try 0(4):

„ bW β φ + φΧφ

(23)

The quantity S is the density of spin angular momen-
tum, which differs only by the gyromagnetic ratio y
from the magnetization

In the presence of an external magnetic field, an ad-
ditional term Μ· Η appears in the Lagrangian function
(15). On calculating, as above, S and M=yS for the
new Lagrangian function, we get

Hence it follows that the equality oy2/4c2= χ must be
satisfied, where χ is the magnetic susceptibility, which
in a spin glass is of course isotropic.

It remains to write the additional terms in the La-
grangian function, that describe the relativistic anisot-
ropy energy £/„. The value of U, depends on the rotation
angles themselves (and not on derivatives) and must be
expressed in terms of the orthogonal matrix of spin ro-
tations Uat, which according to (17) is

Since Ut is obtained from the Hamiltonian of spin-orbit
and spin-spin interactions, which contains terms that
are linear and quadratic in the spins, Ua may contain
only combinations linear or quadratic in UaB and, furth-
ermore, invariant with respect to rotations. There are
only two such combinations:

It is clear that the anisotropy energy of a spin glass
may be written in the form

where α and β are positive anisotropy constants. It is
important to notice that these constants are proportion-
al to the fourth power of the ratio of the speed of the
electrons to the speed of light; that is, they are con-
siderably smaller than the anisotropy constants Λ and
Β of a disordered antiferromagnet that occur in formu-
la (4). In fact, in order to calculate the anisotropy en-
ergy we must replace the spin operators σ?, σ%,... of
the electrons in the Hamiltonian of the relativistic
interactions, by Uara\, UK<j%, and carry out an averag-

ing over the equilibrium state. If we neglect the rela-
tivistic interactions, then

and by virtue of the orthogonality of the rotation ma-
trix, UarUgr= δαβ. In order to obtain the dependence of
the energy on the angle of spin rotation, it is necessary
again to take account of the relativistic interactions.
Thus the constants α and β are proportional to the
square of the relativistic interactions.

We write the complete expression for the Lagrangian
function of a spin glass, with allowance for the magne-
tic field and for the relativistic interactions17:

2* Γ φ'-c'yf (φ-φ)2-α\<,φ-φ,)2~\ 2χ •.. H + HX

(25)

The linearized equations of motion in a constant field
corresponding to this Lagrangian function have the
form

• ay A (26)

whence we easily find" the frequencies of spin waves
polarized longitudinally (with respect to the magnetic
field),

and of spin waves polarized transversely,

(27)

(28)

In the case H= a= 0, these formulas reduce to the re-
sults of the paper of Halperin and Saslow.16

At sufficiently low frequencies, dissipative phenome-
na become important in spin glasses; they are analo-
gous to the dissipation of elastic stresses in ordinary
glasses or very viscous liquids. It is easy to carry out
a calculation of these phenomena qualitatively, by anal-
ogy with the well-known Maxwell theory (see Ref. 26,
§36). Equation (26) in the absence of relativistic inter-
actions can be written as the law of conservation of the
moment Μ=(2χ/γ)φ = (χ/γ)θ:

where Π, is the moment flow, here playing the role of
the elastic-stress tensor. In the high-frequency case
considered above Π, is expressed linearly in terms of
the "strain" 8β/θ*(:

π _ 2%c* ^φ _ x c ' 09

" ' ~ y dxt~ y dxt •
The last relation is generalized in the usual way to the
case of arbitrary frequencies, by introduction of a
Maxwell time τ of dissipation of elastic stresses in the
spin system:

— 3Μ (30)

Formulas (29) and (30) give the desired generalization
of the linear equations. In the limit of very low fre-
quencies, ω«1/τ, one gets the equation characteristic
of paramagnets from (29) and (30):
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The spin diffusion coefficient D is connected with the
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time τ by the relation D= c2r, which is analogous to the
Maxwell expression for the viscosity of liquids. From
this point of view, a spin glass is a paramagnet with
very large diffusion.

6. NONCOLLINEAR AND DISORDERED
ANTIFERROMAGNETS

The equations for noncollinear antiferromagnets, in-
cluding disordered ones, are analogous to the equations
for a spin glass. But the coefficients of the quadratic
forms in (15), which determine the kinetic and potential
energies, may contain, besides the metric tensor gaS,
the components of the magnetic vectors la. In an ar-
bitrary state characterized by angles φ"{.χοί), the
magnetic vectors are

l e ( * · {φ (31)

where l ^ ' a r e the constant values in the initial equilib-
rium state.

If we introduce the angular velocity 0= δθ/dt of rota-
tion in spin space and the analogous quantities Ω( = 50/
dxi that describe the variation of the angles in space,
then the kinetic and potential energies of a spin glass
are, respectively, (x/2y2)O2 and (xc

2/2y2)n2.

For an arbitrary antiferromagnet, the kinetic energy

i s

(32)

By the method described above, it is easily shown that
the quantities χα β form the magnetic susceptibility ten-
sor. We find simultaneously the terms that allow for
the magnetic field and that must be added to Τ in order
to obtain the Lagrangian function in the spatially homo-
geneous case, in the absence of relativistic interac-
tions:

= -^r x«e (Ω. (33)

The form of the tensor χαβ is determined by the ex-
change symmetry of the antiferromagnet. For exam-
ple, in UO2 and in a disordered antiferromagnet the
three mutually perpendicular magnetic vectors trans-
form according to a single three-dimensional represen-
tation, which corresponds to cubic symmetry of the
spin space. There is only one invariant Ω2 of the form
(32), so that χαβ = χδ α β . In YMnO3 there are two invari-
ants of the form (32), for which it is convenient to
choose Ω2 and (η·0)2, where n= Ix x 12. The susceptibil-
ity

X«s -- Ζχβ«ρ - (Χ.ιι - Xi) "u'H

has two independent components χ,, and χχ, in the direc-
tion η and in the plane perpendicular to it. In noncol-
linear antiferromagnets with magnetic vectors that
transform only according to one-dimensional represen-
tations, the magnetic susceptibility has three indepen-
dent components.

The potential energy in the general case has the form

»β, (34)

where the invariant tensor Λ £*β plays the role of the
elasticity-modulus tensor.

The complete Lagrangian function is the sum of the
expressions (33) and (34) and of the relativistic anisot-
ropy energy.

In YMnO3 there are six independent invariants of the
form (34) and three independent relativistic invariants,
proportional to the square of the ratio of the speed of
the electrons to the speed of light. The Lagrangian
function of YMnO

where Λ^. . . , Λβ are elastic constants and A, B, C are
anisotropy constants. In the equilibrium state of
YMnO3, the nonvanishing components of the magnetic
are Z<£>= -Z2J>= 1. The magnetic moment of YMnO3, is
determined by the formula

Μ = -^ (Ω + γΗ) + - i- ηη·(Ω + γΗ).

We give the spin-wave spectrum derived from the La-
grangian function (35) in the case when the magnetic
field is directed along the ζ axis:

«; = 2- [4 (B-C) + (Λ, + Λ2) k\ + (Λ, + Λ.) («. + *•?,)], (36)

where η= (χη -xJ/Xj.. There are three different
branches, of which one, corresponding to oscillations
of the angle of rotation about the ζ axis, is independent
of the value of the magnetic field.

When H= 0, we have

co| = X- [2 | C | + Λ,*! + (Λ, + Λ.) (fc« + kl)].

When k= 0, we get three different antiferromagnetic
resonance frequencies:

"x ' " (37)
In the limit τ/- 0, the formulas (37) reduce to the reso-
nance frequencies of a spin glass obtained from (27)
and (28). When η= - 1 , i.e., when χ,, = 0, there remain
only two frequencies, which have the standard form for
collinear antiferromagnets.

In UO2, in addition to Ω2, there is one other invariant
of the form (34),

. dif,, a<tt dyx , 2 , a<fz β Φ ΐ Λ ρ , , 2 ,

where χ, y, and ζ are Cartesian coordinates along the
principal axes of the crystal, and there is one quadratic
relativistic invariant,
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The Lagrangian function of UO2 is

/ *Ρι *Ρχ βφ» \ 2 Ί

(
where A is an anistropy constant and where cx and c2

are constants with the dimensions of velocity. The
magnetic moment of UO2 is

(38)

(39)

When the magnetic field is directed along one of the
principal axes of the crystal, the frequencies of the
three spin-wave branches are determined by the formu-
las

this agrees with the results of Dzyaloshinskii and
Kukharenko.42 The magnetic resonance frequencies
(k= 0) for UO2 are no different from the case of a spin
glass.

In a disordered antiferromagnet (in the isotropic
phase, in which Μ ( β = δ(α), there is, in addition to ft2,
an invariant

of the form (34). The anisotropy energy is determined
by formula (4). The Lagrangian function has the form

where c, and c, are constants and are equal to the ve-
locities of transverse and of longitudinal spin waves.

The magnetic moment of a disordered antiferromag-
net differs from the expression (39) by the presence of
an additional term μθΜ,/Βχ, (μ= constant); this occurs,
as in formula (8), because of the existence of an invar-
iant 0 · dM{/dx{, which is a sum of total derivatives.

The linearized equations of motion of a disordered
antiferromagnet in a constant field, corresponding to
the Lagrangian function given above, have the form

- (cf - ef) V div φ+yH Χ ψ + = 0.

In general, one obtains a cubic equation for the spin-
wave frequencies. We have

where w. satisfies the equation

here tp is the angle between the directions of the mag-
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netic field and of the wave vector.

When H= 0, the frequencies of the one longitudinal
and two transverse spin waves are

When k=0, there are three different magnetic reso-
nance frequencies, the expressions for which coincide
formally with formulas (27) and (28) for the resonance
frequencies in a spin glass.

7. NONCOLLINEAR FERRIMAGNETS AND
DISORDERED FERROMAGNETS

In the determination of the Lagrangian function of
structures with nonzero spontaneous magnetization, it
is necessary, in order to avoid exceeding the limita-
tions of accuracy, to pay attention to the following
facts.17 In nonequilibrium states, the exact value of the
magnetic moment of unit volume, which in the present
chapter we shall denote byjt, in general differs from
the spontaneous moment M(x,,<), expressed by formula
(17) in terms of angles <p(xt, t) and of the equilibrium
value Mo, by terms containing derivatives. Since Μ
depends on the angles themselves, and not on deriva-
tives, the ratio between^ and Μ is noninvariant with
respect to an arbitrary small redefinition of the angles,
in which the new angles differ from the old by terms
containing derivatives. It is clear that by using this
arbitrariness, one can always achieve coincidence of
the directions of the moments Ji and M. Thus, accord-
ing to a definition of the rotation angles improved for
the nonequilibrium case, we have Ji= const M. In equi-
librium, the constant is unity.

For ordinary ferromagnets or collinear (dielectric)
ferrimagnets, the last condition is retained even in
nonequilibrium states; this is due to the quantum-me-
chanical indistinguishability principle already men-
tioned in Chap. 4. The equality constant = 1 is an ex-
pression of this principle in our case, in analogy to the
fact that, as in the theory of diatomic molecules with
nonzero electronic moment (see Ref. 28, §82), equality
is required of the projections on the molecule axis of
the total and electronic orbital moments.

In nonequilibrium states of noncollinear ferrimagnets
and of a disordered ferromagnet, the constant must be
expressed as an expansion in the small quantities ft
and ft,. This expansion, if we take account of the sym-
metry with respect to time inversion, leads to the for-
mula

~U M I **' Μ·ΏΜ (4Ω^

where χ,, i s a constant that has the meaning, a s wil l be

seen below, of susceptibility along the direction of M.

Formula (40) is applicable to ferromagnets, despite the

possibil ity that there may exist in them, along with

Μ·Ω, invariants of the form l*ft. The occurrence of

such invariants in the expansion of the constant would

break the symmetry of the derivatives 8Μ ο /8Ω β = 82zV

8Ωα8Ωβ.

In order that the m o m e n t a may be determined by
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formula (40), the Lagrangian function, in the spatially
homogeneous case in the absence of relativistic inter-
actions, must be

[M-(0+7H)f, (41)

where the magnetic field has been taken into account in
the usual manner. Allowance for it in the expression
for Λ gives

(42)

The additional terms in formula (41) that result from
spatial inhomogeneity and from relativistic interac-
tions do not differ significantly from the similar terms
in the cases, considered above, of a spin glass and of
antiferromagnets. In noncollinear ferrimagnets, they
have, as a rule, a complicated form. But the resulting
equations and spectrum of oscillations in ferrimagnets
and in a disordered ferromagnet are similar. Their
specific properties are due to the presence in formula
(41) of the first term, linear in the angular velocity.
Below, we shall demonstrate these specific properties
for the case of a disordered ferromagnet.

In this case there are only two invariants of the form
(34) with spatial derivatives: O2 and (Μ·ίϊ,)2. Since it
is possible to construct from the components of the
vector Μ a single invariant M2 that does not change in
spin rotations, the anisotropy energy of a disordered
ferromagnet, as of a spin glass, is proportional to the
fourth power of the ratio of the speed of the electrons
to the speed of light. Besides Ua

contain the invariants
, o o and UaBUBa, it may

and UaBMaMBUn. The general expression for the an-

isotropy energy contains four constants a , , . . . , a 4 :

cc,^-f a. \v<f\*-\- <**>' + α^Ινφ] *
Ά, (l + (f!)2 ·

where μ=Μ/Λί.

Thus the complete Lagrangian function of a disor-
dered ferromagnet is

L =- ±Μ·<ίϊ ^ [ ^ [νΟ,ρ-Ιί: <ya,)'—Ua.

(43)
We write the linearized (with respect to the .equilibrium
state Mo II H) equations of motion in a constant field,
derived from (43):

V-U [vtf] - xn (νφ) ν -r α-,'ΜΑ2φ + (xnc- — ay.V) {νΑ2φ)ν

- (<f v) v) - 4- (a, + ctj) φ - ~ a,v (v<r),

(44)

where we have neglected the term, small in compari-

son with the first term, χ,,γΗν * φ.

From (44) we obtain the spectrum

of longitudinal spin waves of antiferromagnetic type,
and the spectrum

0), = «A* + yH +1±Γ γ (α, + a,)

of transverse spin waves characteristic of ferromag-
nets. We emphasize in closing that this approach to

disordered ferromagnets (and antiferromagnets) is
valid, as in the case of spin glasses, at not too low
frequencies. Although in this case the system posses-
ses long-range order, dissipative processes, of the
elastic-stress dissipation type, are possible in it be-
cause disorder is also present.
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