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The microscopic mechanism of itinerant ferromagnetism is a long-standing problem due to the lack of
nonperturbative methods to handle strong magnetic fluctuations of itinerant electrons. We nonpertuba-
tively study thermodynamic properties and magnetic phase transitions of a two-dimensional multiorbital
Hubbard model exhibiting ferromagnetic ground states. Quantum Monte Carlo simulations are employed,
which are proved in a wide density region free of the sign problem usually suffered by simulations for
fermions. Both Hund’s coupling and electron itinerancy are essential for establishing the ferromagnetic
coherence. No local magnetic moments exist in the system as a priori; nevertheless, the spin channel
remains incoherent showing the Curie-Weiss-type spin magnetic susceptibility down to very low
temperatures at which the charge channel is already coherent, exhibiting a weakly temperature-dependent
compressibility. For the SU(2) invariant systems, the spin susceptibility further grows exponentially as
approaching zero temperature in two dimensions. In the paramagnetic phase close to the Curie
temperature, the momentum space Fermi distributions exhibit strong resemblance to those in the fully
polarized state. The long-range ferromagnetic ordering appears when the symmetry is reduced to the Ising
class, and the Curie temperature is accurately determined. These simulations provide helpful guidance to
searching for novel ferromagnetic materials in both strongly correlated d-orbital transition-metal oxide
layers and the p-orbital ultracold atom optical lattice systems.
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I. INTRODUCTION

Itinerant ferromagnetism (FM) is one of the central
topics of contemporary condensed-matter physics [1–23].
It has also become a research focus both experimentally
and theoretically of ultracold atom physics [24–31]. The
mechanism of itinerant FM has been a long-standing
problem. Stoner proposed the exchange interaction among
electrons with parallel spins as the driving force for
itinerant FM [1]. Along this direction, the local-density
approximation (LDA) of the density functional theory has
achieved great success [32,33]. For example, the ground-
state magnetic moments of FM metals can be calculated
accurately [34]. The implementation of correlation effects
in LDA has also been improved by the methods of LDAþ
U [35], LDAþ DMFT (dynamical mean-field theory)
[36–38], and LDAþ GP (Gutzwiller projection) [39–41].

Nevertheless, itinerant FM systems are also strongly
correlated, and their physics is typically nonperturbative.
Usually repulsive interactions need to be sufficiently strong
to overcome the kinetic energy cost of polarizing electron
spins, and thus, itinerant FM has no well-controlled weak-
coupling starting point. The Stoner criterion overlooks
correlation effects among electrons with opposite spins
[23]: Electrons can delicately organize their wave functions
to reduce repulsions and still remain unpolarized even in
the presence of strong interactions. For example, the Lieb-
Mattis theorem proves that the ground state of a rigorously
1D electron system with equal numbers of two spin
components is a spin singlet no matter how strong the
interaction [5].
It is more appropriate to start with electron orbitals to

construct lattice model Hamiltonians to address the strong
correlation aspect of itinerant FM. Exact theorems estab-
lishing FM, which are usually based on lattice models, are
indispensable to provide reference points for further inves-
tigations. Well-known examples include the Nagaoka
theorem [6,42–46], which applies to the infinite U
Hubbard models in two and above dimensions with doping
a single hole on the half filled background, and the
“flatband” FM in certain lattices with dispersionless band
structures [13,47]. Recently, Nagaoka-type FM has also
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been generalized to 3D t2g-orbital systems in the cubic
lattice with a quasi-2D band structure [48]. The Nagaoka-
type FM arises because the spin-polarized background
maximally facilitates the hole’s coherent hopping, while for
the flatband case, the kinetic energy cost of polarizing spins
is reduced to zero.
One central issue of itinerant FM is the role of orbital

degeneracy, which widely exists in FM metals. Hund’s
coupling is a prominent feature in multiorbital systems,
which favors electrons on the same site to align their spins.
In some FM systems, itinerant electrons and local moments
coexist and interact through Hund’s coupling. When
itinerant electrons are in the low-density limit, their motion
can polarize the local moments through Hund’s coupling
[4], known as the double-exchange mechanism. However,
Hund’s coupling is local physics that usually cannot
polarize itinerant electrons in the absence of local moments.
Under what precise conditions Hund’s coupling can lead
to the global FM coherence in purely itinerant systems
without local moments is still an open question.
The difficulty in achieving unambiguous FM ground

states is only one side of the strong correlation physics of
itinerant FM. The finite-temperature thermodynamic prop-
erties are another challenge [10,49–51]. At first sight, it
might not look so striking: the FM susceptibilities show
the standard mean-field Curie-Weiss (CW) law in the
off-critical region as

χðTÞ ¼ C
T − T0

; ð1Þ

where C is the Curie constant [52] and T0 is the Curie
temperature at the mean-field level. The CW law manifests
spin incoherence, which is common in the paramagnetic
state based on local moments. But it is difficult to under-
stand why the CW law remains valid in itinerant FMmetals
possessing Fermi surfaces. For example, the transport and
the charge channel properties, such as resistance and
compressibility, are metallic; i.e., they are featured by
the Fermi surface physics.
Within the itinerant picture, the Pauli magnetic suscep-

tibility augmented by the RPA yields χðTÞ ∝ 1=ðT2 − T2
0Þ,

but it is not commonly observed in experiments [10,50,51].
In fact, the CW law in FMmetals applies to a wide range of
temperatures Tf ≫ T > T0 (Tf is the Fermi temperature),
which shows spin incoherence well below Tf. The reason is
that RPA treats the paramagnetic phase as a weakly
correlated Fermi liquid state with slightly thermally broad-
ened Fermi distributions. Actually, this phase is rather
complicated: Dynamic FM domains strongly fluctuate,
which is beyond the RPA description and is difficult to
handle analytically. The paramagnetic state of itinerant FM
exhibits much higher entropy capacity than the usual
weakly correlated paramagnetic Fermi liquid state, which
significantly suppresses the genuine Curie temperature Tc,

or the renormalized one, away from the mean-field value
T0. Consequently, Tc is often significantly overestimated
by weak-coupling approaches [10,50,51].
A key question is, how can itinerant systems exhibit the

CW law and further develop FM purely based on itinerant
electrons without involving local moments such that the
charge channel remains coherent? Significant efforts have
been made, including the self-consistent renormalization
theory including spin-mode coupling [9,10,49], the direct
exchange from the Coulomb integral [11,53], spin incoher-
ence due to Hund’s coupling [54], and the orbital-selective
Mott transition [55,56]. An important progress is that
the CW law can be obtained from the combined method
of LDAþ DMFT [57] away from the critical region.
However, none of these methods are nonperturbative in
nature. and approximations are not well controlled.
Another issue is the nature of the FM phase transitions in

FM metals, which has been widely studied but is still under
intensive debate [8,14,16–19]. Compared to the super-
conducting phase transitions in which the fermion degree of
freedom is gapped below transition temperatures, the FM
phase transitions are more involved because systems
remain gapless across transitions due to the existence of
Fermi surfaces. The FM domain fluctuations combined
with the Landau damping from the gapless particle-hole
excitations around Fermi surfaces complicates the FM
phase transitions. Because of the strong correlation nature
of the problem, a well-controlled nonperturbative study
would be desired and it remains a big challenge.
Recently, the ground states of a multiorbital Hubbard

model have been proved fully spin polarized in the strong-
coupling regime in the 2D square and 3D cubic lattices [21]
by two of us and Lieb. It it shown that interorbital Hund’s
coupling combined with electron itinerancy in the quasi-1D
band structure drives the FM ground states. Compared to
the Nagaoka FM, this new theorem proves a stable FM
phase with nodeless ground-state wave functions over the
entire electron density region 0 < n < 2, where n is the
occupation number per site; thus, it sets up a solid starting
point for further studying the strong correlation aspect of
itinerant FM. It also opens up the possibility of performing
sign-problem-free quantum Monte Carlo (QMC) simula-
tions away from half filling by employing the bases
under which the many-body Hamiltonians satisfy the
Perron-Frobenius condition.
Although this theorem sets up only the ground-state

properties, it establishes an unambiguous FM phase as a
starting point for further studying both thermodynamic
properties and magnetic phase transitions over a wide
region of electron density. In order to handle the strong
magnetic fluctuations, QMC simulations would be the ideal
method; however, they usually suffer the notorious sign
problem for fermions and thus are, generally speaking,
inapplicable for itinerant FM. Remarkably, we prove that
for the systems in which the ground-state FM theorem
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mentioned above [21] applies, the fermion sign problem
can be eliminated in the entire electron density region. This
provides a new opportunity to study the finite-temperature
thermodynamic properties and magnetic phase transitions
in an asymptotically exact way.
In this article, we present a systematic nonperturbative

study on thermodynamic properties and magnetic phase
transitions of itinerant FM by performing sign-problem-
free QMC simulations. Our results show that itinerant FM
can indeed exhibit both spin incoherence and charge
coherence simultaneously without forming local moments.
In other words, the system exhibits the feature of the CW
metal as a combined effect of Hund’s coupling and electron
itinerancy. The model we simulate can be realized in both
d-orbital transition-metal oxide layer and p-orbital ultra-
cold atom optical lattices, which do not contain local
moments as a priori. The spin magnetic susceptibility
exhibits the CW law as a signature of spin incoherence,
while the compressibility weakly depends on temperature
as a consequence of itinerancy. The mean-field Curie
temperature T0 is extracted based on the CW law in the
off-critical region, which is much lower than the temper-
ature scale of charge coherence Tch. The filling dependence
of T0 is calculated and the maximal T0 reaches one-tenth of
the hopping integral. The Fermi distribution functions in
momentum space are calculated in the strongly correlated
paramagnetic phase. The fermion occupation numbers are
strongly suppressed from the saturated value even for wave
vectors close to the center of the Brillouin zone. When
entering the critical region, for the SU(2) symmetric
models, χðTÞ grows exponentially. The true FM long-range
order is achieved by reducing the model symmetry to the
Ising class, and the FM critical temperature Tc is deter-
mined accurately by the finite size and critical scalings.
For later convenience, we briefly introduce the FM

critical fluctuations here, which are particularly important
in two dimensions. According to the Landau-Ginzburg-
Wilson paradigm of critical phenomena, Tc is suppressed
from T0 but remains finite in 3D. As T is lowered from T0

and approaches Tc, the system crosses over from the mean-
field region to the critical region, and χðTÞ ∝ ðT − TcÞ−γ
due to non-Gaussian fluctuations and γ is the critical
exponent. In 2D, Tc remains finite if the system symmetry
is reduced to the Ising class, or the easy axis class.
However, for the isotropic class, thermal fluctuations
suppress Tc to zero according to the Mermin-Wagner
theorem [58,59]. Nevertheless, even in this case, the
mean-field T0 is still an important temperature scale below
which the FM order develops its magnitude. However, the
orientation fluctuations of the FM order suppress the
long-rang order. In other words, this region is character-
ized by fluctuating FM domains and the correlation
length increases exponentially as lowering temperatures.
Consequently, the FM susceptibility deviates from the CW
law and crosses over into an exponential growth.

The rest of this article is organized as follows. In Sec. II,
the model Hamiltonian is introduced, and the QMCmethod
for this model is proved free of the sign problem. The QMC
simulations on the thermodynamic properties in the off-
critical region is presented in Sec. III, and the momentum
space Fermi distributions are calculated in Sec. IV. The
results in the critical region are presented in Sec. V. In
Sec. VI, we discuss the physics when the conditions for the
absence of the sign problem are loosened. Simulations in
the presence of a small interchain hopping, in which the
sign problem appears but is not severe, are presented.
The experimental realizations are discussed in Sec. VII.
Conclusions are made in Sec. VIII.

II. MODEL HAMILTONIAN AND THE
ABSENCE OF THE SIGN PROBLEM

In this section, we present the model Hamiltonians,
whose ground states were proved to be ferromagnetic [21].
Furthermore, we also explain that the QMC sign problem is
absent, and thus, this model provides an ideal preliminary
to study the thermodynamic properties and magnetic
phase transitions of strongly correlated itinerant FM in a
controllable way.

A. Model Hamiltonians

We consider the case of the 2D square lattice: On each
site there are two orthogonal orbitals forming a quasi-1D
band structure. For simplicity, below we use the 2D
p-orbital system as an example, and the physics is also
valid for the dxz- and dyz-orbitals systems in 2D. The
relevance of this model to the current experiment efforts
of searching for novel itinerant FM systems is discussed
in Sec. VI. For the band structure, we keep only the
σ-bonding t∥ term; i.e., electrons in the pxðyÞ orbital move
only longitudinally along the x (y) direction, respectively.
The following Hamiltonian is defined in the square
lattice as

Hkin;∥ ¼ −t∥
X
~r;σ

fp†
xσð~rþ êxÞpxσð~rÞ þ p†

yσð~rþ êyÞ

× pyσð~rÞ þ H:c:g − μ
X
~r

nð~rÞ; ð2Þ

in which we neglect the small transverse bonding t⊥
term. For realistic p-orbital systems, the sign of t∥ is
negative due to the odd parity of p-orbital Wannier wave
functions. Nevertheless, for the bipartite lattice, such as
the square lattice, the sign of t∥ can be flipped by a
gauge transformation. Without loss of generality, t∥ is
scaled to 1 below, which serves as the unit for all other
quantities carrying energy unit in this article.
The interaction part Hint contains the standard multi-

orbital Hubbard interaction [60–63] as
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Hint ¼ U
X

~r;a¼x;y

na;↑ð~rÞna;↓ð~rÞ þ V
X
~r

nxð~rÞnyð~rÞ

− J
X
~r

�
~Sxð~rÞ · ~Syð~rÞ − 1

4
nxð~rÞnyð~rÞ

�

þ Δ
X
~r

fp†
x↑ð~rÞp†

x↓ð~rÞpy↓ð~rÞpy↑ð~rÞ þ H:c:g; ð3Þ

where a ¼ x; y refer to the orbital index, na;σ ¼ p†
a;σpa;σ

and na ¼ na;↑ þ na;↓, and ~Sa ¼ p†
a;α~σαβpa;β is the spin

operator of the a orbital. The U and V terms describe the
intraorbital and interorbital Hubbard interactions, respec-
tively, the J term is Hund’s coupling and J > 0 represents
its FM nature, and theΔ term describes the pairing hopping
process between two orthogonal orbitals.
In order to gain an intuitive understanding of the

interaction parameters, we consider a single site problem.
There are in total six states that can be classified as a set of
spin-triplet states and three different spin-singlet states. The
triplet states are with energy V, defined as

p†
x;↑p

†
y;↑j0i;

1ffiffiffi
2

p ðp†
x;↑p

†
y;↓ þ p†

x;↓p
†
y;↑Þj0i;

p†
x;↓p

†
y;↓j0i; ð4Þ

respectively, where j0i is the vacuum state. The other three
spin-singlet states are

1ffiffiffi
2

p ðp†
x;↑p

†
y;↓ − p†

x;↓p
†
y;↑Þj0i; p†

x;↑p
†
x;↓j0i;

p†
y;↑p

†
y;↓j0i; ð5Þ

among which the first one involves both orbitals and its
energy is V þ J; the other two singlets only occupy the
same orbital with the average energy U and the hybridi-
zation matrix element between them is Δ. In the limit of
U → þ∞, the states of p†

x;↑p
†
x;↓j0i and p†

y;↑p
†
y;↓j0i are

projected out. Nevertheless, the other four doubly occupied
states are kept in the physical Fock space, including one set
of spin-triplet states and one interorbital singlet state.
The ground states of the Hamiltonians Eq. (2) plus

Eq. (3) are fully spin polarized at any generic filling n for
arbitrary values of V under the condition thatU → þ∞ and
J > 0. The detailed proof and its generalization to the 3D
cubic lattice are presented in Ref. [21]. Below, we present
an intuitive physical picture. The band structure of Eq. (2)
is quasi-1D, consisting of orthogonal rows and columns,
and electrons do not transit among different lines. In the
absence of Hund’s coupling, the intrachain physics in the
limit ofU → þ∞would then correspond to the 1D infinite-
U Hubbard model whose ground states are highly degen-
erate regardless of the spin configurations. Now, let us turn
on J > 0, and the interchain Hund’s coupling lifts the
degeneracy and selects the fully polarized state as the

unique ground state: When one electron in a row meets
another one in a column at the crossing site, their spins are
aligned to save the energy of J, which is, thus, different
from the usual case that Hund’s coupling can only polarize
electrons on the same site. Remarkably, in this case, it does
polarize electrons in the entire system [20,21]. Although
the electron band structure is quasi-1D, interactions couple
electron spins in different chains together, and thus, the FM
correlations and ordering are genuinely 2D or 3D.
For completeness, we also present the Hamiltonian of the

interchain hopping with a small value of t⊥ as

Hkin;⊥ ¼ −t⊥
X
~r;σ

fp†
xσð~rþ êyÞpxσð~rÞ

þ p†
yσð~rþ êxÞpyσð~rÞ þ H:c:g; ð6Þ

which is used in Sec. VI A. Again, in the square lattice the
sign of t⊥ can be flipped by a gauge transformation, and
without loss of generality, it is assumed to be positive. We
set t⊥ ¼ 0 in most part of this article except in Sec. VI A.

B. Absence of the QMC sign problem

Themany-bodyHamiltonianmatrix of Eq. (2) plus Eq. (3)
possesses an important sign structure in the limit of
U → þ∞ under which the ground-state FM theorem applies
[21]. In the coordinate representation, a convenient set of
many-body bases are defined by ordering fermions accord-
ing to their real-space positions along one rowby another and
then along one column by another. The periodical and
antiperiodical boundary conditions are employed for each
chain if the particle number in that chain is odd or even,
respectively, which is feasible because the particle number in
each chain is separately conserved. This particular choice of
boundary conditions should not change the bulk physics.
Under these bases and boundary conditions, in the limit of
U → þ∞, the electron hopping term and the spin-flip term
fromHund’s coupling do not change the sequence of fermion
ordering. When electrons hop across the boundary, no extra
minus sign appears either, due to the above boundary
condition. Then the many-body Hamiltonian matrix satisfies
the prerequisite of the Perron-Frobenius theorem: All the
nonzero off-diagonal matrix elements are either −t or −J
arising from the kinetic energy term and Hund’s coupling,
respectively, and thus, they are semi-negative-definite. We
do not need to consider the pair hopping process, which
is completely suppressed in the limit of U → þ∞.
Remarkably, the above sign structure of the off-diagonal
matrix elements renders the ground-state many-body wave
function nodeless, and also leads to the disappearance of the
QMC sign problem for the ground states.
For the finite-temperature thermodynamic properties, we

use the stochastic series expansion (SSE) QMC method
with the directed loop update algorithm [64–68]. This
method is usually used for boson systems and 1D fermion
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systems. In our case, although the band structure of Eq. (2)
is quasi-1D-like, the interaction Eq. (3) couples all the
chains together. In particular, the total spin of each chain is
not conserved, and thus, its magnetic properties is truly two
dimensional. Remarkably, we find for this model that the
sign problem is absent at finite temperatures in the entire
electron density region 0 < n < 2. In the SSE method, the
partition function is expanded as

Z ¼
Xþ∞

n¼0

βn

n!

X
αni

Yn
i¼1

hαni j −Hjαni−1i; ð7Þ

where H ¼ Hkin;∥ þHint; jαni i runs over the set of many-
body bases defined above and jαnni ¼ jαn0i. A negative
constant is added to the many-body Hamiltonian matrix to
make all of its diagonal matrix elements negative, and then
all the matrix elements of −H become positive. The grand
canonical ensemble is employed to ensure the ergodicity of
the particle number distribution in each chain. The param-
eters for the QMC simulations are provided in Appendix A.
The QMC sign problem does appear in the presence of

the t⊥ term, i.e., Eq. (6), because electrons become mobile
in a two-dimensional manner. Nevertheless, the QMC
simulations can still be performed when the sign problem
is not so severe, which we present in Sec. VI A.

III. THERMODYNAMIC QUANTITIES IN THE
OFF-CRITICAL REGION

In this section, we present the results of QMC simu-
lations on the spin magnetic susceptibility χðTÞ and the
compressibility κðTÞ in the off-critical temperature region.
χðTÞ exhibits the celebrated CW law at temperatures well
below the kinetic energy scale of the system, while κðTÞ
typically weakly depends on temperature.

A. Temperature dependence of spin susceptibility χ ðTÞ
and compressibility κðTÞ

The spin susceptibility χ and compressibility κ are two
fundamental thermodynamic properties in interacting fer-
mion systems in the spin and charge channels, respectively.
In usual paramagnetic Fermi liquid states, both χ and κ at
zero temperature exhibit the itinerant feature controlled by
the density of states at the Fermi energy. Furthermore, they
are renormalized by interaction effects characterized by the
Landau parameters F0

a and F0
s in the spin and charge

channels, respectively. At finite temperatures much lower
than the Fermi temperature, χðTÞ and κðTÞ are only weakly
temperature dependent. However, in FM metals, χðTÞ and
κðTÞ behave dramatically differently exhibiting local-
moment-like and itinerant features, respectively, which
we show from the QMC simulation results.
Because the total spin is conserved, the spin magnetic

susceptibility χ is represented by the equal-time correlation
function as

χðTÞ ¼ lim
L→þ∞

β

L2

X
~r1;~r2

hSzð~r1ÞSzð~r2Þi: ð8Þ

The QMC results of χ−1ðTÞ at V ¼ 0 are presented in
Fig. 1(a) in the off-critical region based on the finite-size
scalings shown in Appendix B. For all the values of n
presented, χ exhibits the CW law in the off-critical region.
The values of T0 extracted from the linear form χ−1ðTÞ
range from 0.01 to 0.1, which means that spin remains
incoherent at temperatures well below t∥ (scaled to 1).
It is not surprising that χðTÞ should asymptotically scale

as 1=T in the high-temperature limit T ≫ Tf, where Tf is
the Fermi temperature, because in this limit, the spin
channel is completely incoherent. Nevertheless, the spin
incoherence persists into a much lower temperature scale
T0 below Tf. Although T0 is a mean-field energy scale and
is not the actual temperature for the onset of long-range
order, it remains an important quantity. Physically, it
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1.0
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FIG. 1. (a) χ−1ðTÞ exhibits the CW law at different values of n.
The inset shows interceptions corresponding to the mean-field
value of Curie temperature T0. (b) The compressibility κðTÞ at
different values of n. The dashed lines represent κðTÞ of 1D
spinless fermions at the same densities for comparison. Values of
n in (a) and (b) are represented by the same legend. V ¼ 0 and
J ¼ 2 for both figures. The error bars of the QMC data are
smaller than the symbols.
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roughly equals the energy cost of flipping an individual
electron spin in the ground state. Because of non-Gaussian
fluctuations, the actual FM critical temperature Tc signifi-
cantly deviates from T0 defined in Eq. (1). In the current
SU(2) invariant case, actually Tc ¼ 0, due to the Mermin-
Wagner theorem [58].
The compressibility κðTÞ reflects the coherence in the

charge channel. Because the total particle number is a
conserved quantity, it is also defined as an equal-time
correlation function as

κðTÞ ¼ lim
L→þ∞

β

L2

X
~r1;~r2

hnð~r1Þnð~r2Þi: ð9Þ

The QMC results of κðTÞ at V ¼ 0 are presented in
Fig. 1(b). Again, κ is proportional to 1=T in the high-
temperature incoherent regime, as shown in Eq. (9), and it
saturates at low temperatures in the metallic phase. The
crossover temperature scale Tch between these two regimes
is typically the chemical potential at zero temperature. In the
usual Fermi liquid state, κ is typically the density of state at
the Fermi energy renormalized by Landau parameters. In our
case, the situation is different due to the prominent FM
fluctuations. At V ¼ 0, due to the infiniteU and the 1D band
structure, Tch is roughly the Fermi temperature of spinless
fermions at the same density. For most of the values of n
presented in Fig. 1(b), Tch is at the order of t∥, and thus, κ
saturates in the temperature region presented. As for the case
of a low hole density n ¼ 1.8, Tch can be estimated around
0.1, and thus, κðTÞ does not saturate yet in the simulated
temperature region. Because of the strong FM tendency, the
interorbital interaction vanishes at V ¼ 0, and κðTÞ can be
well fitted by that of spinless fermions, as shown in Fig. 1(b).
Comparing χðTÞ and κðTÞ, the spin coherence temper-

ature T0 is much lower than the charge coherence temper-
ature Tch. These two distinct coherence temperature scales
in spin and charge channels are an important feature of FM
metals. A common phenomenological interpretation is to
divide electrons into two parts: local moments and itinerant
electrons, which are responsible for the spin and charge
channel behaviors, respectively. However, this dividing is
artificial for metals when all the electrons are itinerant with
equivalent band structures such as in our case. Based on the
QMC simulations above, we show unambiguously that the
CW law can indeed appear in strongly correlated systems
without local moment formation. A similar feature also
appears in the CW metal states [69,70] and the 1D spin
incoherent Luttinger liquids [71]. The difference is the
behavior of χ below the spin coherence temperature T0. In
the case of the CW metal, χ saturates, exhibiting the Pauli-
like behavior but strongly enhanced by interactions, and in
the 1D case, antiferromagnetic correlations develops. In our
case, as we show in Fig. 6, χ evolves into an exponential
growth as a reminiscence of the FM long-range-ordered
ground state [21].

Next, we consider the effects of a large interorbital
repulsion V to χ−1ðTÞ and κðTÞ. The ground states remain
fully spin polarized as proved in Ref. [21], and the QMC
results of χ−1ðTÞ still exhibit the CW law at all the fillings,
as shown in Fig. 2(a). The most prominent effect of V is the
suppression of κðTÞ at the commensurate filling of n ¼ 1,
as shown in Fig. 2(b), in which the system is in the Mott-
insulating state. In this case, electrons become local
moments due to the opening of the charge gap. As a
result, κðTÞ is suppressed to nearly zero at 0 < T < 0.5,
which is still small compared to the charge gap at the order
of V. In the Mott-insulating ground state at n ¼ 1, the
orbital channel can develop antiferro-orbital ordering with a
staggered occupation of px and py orbitals. The QMC
simulation results on the antiferro-orbital ordering transi-
tion are presented in Appendix C. As nmoves away from 1,
electrons become itinerant again. Nevertheless, the values
of κðTÞ at V ¼ 8 are significantly suppressed compared to
those with the same values of n and T at V ¼ 0.
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FIG. 2. (a) χ−1ðTÞ and (b) κðTÞ at a large value of V ¼ 8 in the
temperature regime of 1=6 < T < 1=2. Different values of n are
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the symbols.
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B. Density dependences of T0ðnÞ and the
Curie constant CðnÞ

The ground-state FM survives in all the filling region
0 < n < 2, nevertheless, its robustness against thermal
fluctuations varies at different densities, which reflects
through the density dependences of T0ðnÞ and CðnÞ.
The relation T0ðnÞ is presented in Fig. 3(a) for both cases

of V ¼ 0 and V ¼ 8. The FM coherence is built up due to
the itinerancy of fermions [21]; thus, T0 approaches zero in
both limits of n → 0 (the particle vacuum) and n → 2 (the
hole vacuum). At V ¼ 0, the maximal T0 appears around
n ¼ 1, where electrons are most mobile. T0ðnÞ at V ¼ 0 is
nearly symmetric with respect to n ¼ 1, exhibiting an
approximate particle-hole symmetry. In contrast, it is
highly asymmetric at large V. In this case, T0 is strongly
suppressed at 0 < n < 1, in which both charge and spin
carriers are electrons. A large V penalizes two electrons
occupying the same site; thus, the effectiveness of Hund’s
rule is suppressed. After n passes 1, a quick increase of T0

appears because extra electrons on top of the Mott back-
ground of n ¼ 1 can move easily to build up the FM

coherence. T0 reaches the maximum roughly at the middle
point between n ¼ 1 and 2. As n → 2, T0 becomes
insensitive to V. In this region, most sites are doubly
occupied in the states of spin-1 moments, and holes are
itinerant but do not carry spin. The hole’s motion threads
spin moments along its trajectory and aligns their orienta-
tions, and this process is not much affected by V. At
V ¼ 8t∥ and J ¼ 2t∥, the maximal T0 ≈ 0.06t∥, which
appears around n ≈ 1.4. In other words, at large values of
V, there is an approximate particle-hole symmetry between
n ¼ 1–2 on the background of one electron per site.
Now, we present the results of the Curie constant C.

Assuming the local moment picture, the simple molecule
field method yields C per spin moment as 1

3
SðSþ 1Þ [10],

where S is the spin magnitude. In our case mostly itinerant,
the magnitudes of S fluctuate: C ¼ 0 for the empty site, 1

4
for the singly occupied site, and 2

3
for the doubly occupied

site in the spin-1 configuration, respectively. We plot the
normalized Curie constant C=n versus n in Fig. 3(b). C=n
approaches 1

4
as n → 0, and 1

3
as n → 2, where most sites are

spin-1 moments. Generally, C=n lies between these two
limits. At V ¼ 0, as n increases, the number of on-site
triplets smoothly increases and so does C=n. Nevertheless,
at large V, the on-site triplet formation is strongly sup-
pressed at 0 < n < 1, and thus C=n is stuck at 1

4
. After n

passes 1, C=n starts to increase nearly linearly toward 1=3.
As n → 2, V hardly affects the number of on-site triplets,
and thus, C=n also becomes insensitive to V as T0 does.

C. On-site charge fluctuations and spin moments

To further clarify the nature of our system, whether it is
itinerant or local-moment-like, we calculate the on-site
charge fluctuations and the average spin moments below.
The on-site charge fluctuations are defined as

δ ¼ hn2i i − n2; ð10Þ
where ni is the total particle number on site i. Because of
the translation symmetry, δ is independent of the site index
i, and the simulation results are plotted in Fig. 4. At V ¼ 0,
the charge fluctuations are significant in the entire filling
region except very close to the particle vacuum at n ¼ 0
and the hole vacuum at n ¼ 2. The maximum is reached at
the approximate particle-hole symmetric point of n ¼ 1.
The large on-site charge fluctuations clearly reflect the
itinerant nature of the system, which is consistent with the
compressibility results in Fig. 1(b). When the interorbital
repulsion V goes large, charge fluctuations are greatly
suppressed near the commensurate filling n ¼ 1. In this
case, the system becomes local-moment-like, which agrees
with the vanishing compressibility shown in Fig. 2(b).
Nevertheless, as moving away from n ¼ 1, the system
becomes itinerant again exhibiting significant on-site
charge fluctuations.
We also calculate the square of the z component of

the on-site spin moment hS2i;zi, which equals 1
3
h~S2i i,
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FIG. 3. (a) The density dependence of the Curie temperature
T0ðnÞ at V ¼ 0 and 8 with J ¼ 2, respectively. (b) The density
dependence of the reduced Curie constant: C=n versus n. The
lower and upper bold lines represent the limits of the spin-1

2
and

spin-1 moments, respectively. Plots are based on the results of
χðTÞ in Figs. 1(a) and 2(a).
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since the SU(2) symmetry is not broken. In order to
compare with the Curie constant C=n, we plot its values
normalized by the filling, i.e., hS2i;zi=n as presented in
Fig. 14, which is nearly the same as the Curie constant C=n

plotted in Fig. 3(b). At V ¼ 0, h~S2i i varies smoothly with n:
the probable on-site configurations include empty, singly
occupied (spin-1

2
), and doubly occupied (spin-1) states. At

V ¼ 8 and the commensurate filling n ¼ 1, h~S2i i ≈ 3
4
, which

manifests the formation of the local moment of spin-1
2
,

which is consistent with the suppressed charge fluctuations.
At 0 < n < 1, each site is nearly either empty or singly

occupied, and thus, h~S2i i ≈ 3
4
n. At 1 < n < 2, the probable

on-site configurations include the singly occupied spin-1
2

moment and doubly occupied spin-1 moment. The nature
of the variable valence of these states clearly shows the
itinerancy of the system even at large V when moving away
from n ¼ 1.

IV. MOMENTUMSPACE FERMIONOCCUPATION

An important feature of the itinerant FM is the fluctuat-
ing FM domains in real space in the paramagnetic phase
close to T0. This prominent FM fluctuation also strongly
affects the momentum space fermion occupation as shown
below. Basically, the fermion occupation functions still
resemble those in the fully polarized systems with thermal
broadening.
Because the particle number of each chain is separately

conserved, the momentum space distribution function is
essentially 1D-like. Nevertheless, each chain is not isolated
but interacts with others through multiorbital interactions,
and thus, spin is not conserved separately in each
chain. Without loss of generality, we define nFðkÞ ¼P

σhp†
x;σðkÞpx;σðkÞi for a horizontal x chain. The case

of n ¼ 1 is studied below as a representative, which is
equivalent to nx ¼ 0.5 in this x chain. Its mean-field Curie
temperature T0 ≈ 0.08, as shown in Fig. 3(a). The

simulated results of nFðkÞ are presented in Fig. 5 with
the periodical boundary condition, and a discussion on the
boundary condition is presented in Appendix B.
We define a reference wave vector as the Fermi wave

vector k0f ¼ π=2 of spinless fermions at the same density.
At a low temperature T ¼ 1=β ¼ 0.1 close to T0, as shown
in Fig. 5, nFðkÞ is only slightly larger than 1 even at
k ≪ k0f. It smoothly decays to zero with a half-width
approximately equal to k0f. nFðkÞ is rounded off compared
to that of spinless fermions at the same temperature.
Although nFðkÞ does not look much different from that
of spinless fermions, it is a consequence of strong inter-
actions because the system is in the paramagnetic state. The
system remains unpolarized with a FM correlation length ξ
at the order of 10–20, as estimated in Appendix B, and the
upper bound of nFðkÞ ¼ 2 as k → 0.
The above result implies that the phase space for thermal

fluctuations is not restricted to a small region close to �k0f,
and thus, its entropy capacity is enhanced. It is consistent
with the real-space picture of fluctuating FM domains as T
approaches T0. This is highly nonperturbative, showing the
power of the QMC simulations.

V. LOW-TEMPERATURE CRITICAL REGION

Thus far, we have discussed the FM properties in the off-
critical region. In this section, we further study the
magnetic critical behavior through QMC. The FM order
parameter is a conserved quantity, and thus, there are no
quantum fluctuations; however, in 2D, thermal fluctuations
are so strong that long-range FM ordering cannot appear at
any finite temperatures for SU(2) symmetric models
[58,59]. Nevertheless, magnetic properties still behave
qualitatively differently in the off-critical and critical
regions. We also consider the model in the Ising class in
which true FM long-range ordering can appear and
determine the renormalized Curie temperature Tc.
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FIG. 4. The on-site particle number fluctuation δ defined in
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In spite of the quasi-1D band structure, the magnetic
properties of our model are intrinsically 2D because Hund’s
interaction couples spins of different chains together and
the total spin of each chain is not separately conserved. In
Fig. 6, we present the crossover of χ−1ðTÞ from the off-
critical region to the critical region based on the finite-size
scaling presented in Appendix B. Although there is no
distinct phase transition between the off-critical and critical
regions, the temperature dependence of χðTÞ changes
qualitatively. The clear deviation from the CW law starts
from T ∼ T0 ¼ 0.08. In the critical region, the FM order
parameter already develops a nonzero magnitude, and its
directional fluctuations are described by the O(3) nonlinear
σ model. The FM correlation length increases exponen-
tially as approaching zero temperature. χðTÞ evolves to the
exponential form fitted by χ ¼ AebðT0=TÞ [72,73], and the
result in Fig. 6 shows b ¼ 3.1� 0.3 at n ¼ 1, V ¼ 0,
and J ¼ 2.
In order to obtain the FM long-range order, we modify

Hund’s coupling of Eq. (3) to reduce its symmetry from the
SU(2) to the Ising class: We introduce J∥ and J⊥ for the
spin components in the xy plane and along the z direction,
respectively, and choose J⊥ > J∥. The z-component FM
structure factor is defined as S⊥ðT; LÞ ¼ TχðT; LÞ. For the
case presented in Fig. 7 (a), the finite size scaling of
S⊥ðT; LÞ=L2 yields the critical temperature Tc ≈ 0.134.
This result is also checked from the scaling in the critical
region in Figs. 7(b) and 7(c). S⊥L−2þη versus T is plotted
with η ¼ 1

4
from the anomalous dimension of the 2D

Ising universal class. The crossings of curves yield the
value of Tc consistent with that of the previous scaling.
Furthermore, a good data collapse is achieved by employ-
ing the scaling form

S⊥L−2þη ¼ f½ðT − TcÞL1=ν�; ð11Þ

with ν ¼ 1 of the 2D Ising class.
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FIG. 7. The FM long-range ordering of the Ising symmetric
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In Appendix D, the mean-field value T0 ≈ 0.20 is
extracted based on the extrapolation of the CW behavior.
Compared to the mean-field value T0, Tc is about 67%
of T0 as a result of the critical non-Gaussian fluctuations.
For the 2D Ising mode with only nearest-neighbor coupling
on the square lattice, the Onsager solution gives rise to
Tc ¼ 2= lnð ffiffiffi

2
p þ 1Þ ≈ 2.269, which is 57% of the Bragg-

Williams mean-field results T0 ¼ 4. Thus, the critical
fluctuation strength of the case presented in Fig. 7 is
weaker compared to that in the 2D Ising model in spite of
the effect of the transverse component J∥. This is due to the
itinerant nature of our model such that the effective FM
coupling is beyond two nearest-neighboring sites.

VI. DISCUSSIONS ON THE PHYSICS
OF FINITE t⊥ AND U

In this section, we discuss the situations when the
conditions for the absence of the sign problem are loosed,
including the presence of a small transverse hopping t⊥
term, as shown in Eq. (6), and the case of finite values ofU.

A. QMC simulations with small transverse
hopping term

The presence of the t⊥ term enables electrons moving in
the entire two-dimensional lattice; thus, the fermion sign
problem does appear. Nevertheless, the sign problem is not
severe at small values of t⊥, such that QMC simulations can
still be performed. In Fig. 8, the average of the sign is
calculated from t⊥ ¼ 0 to 0.05 at small and intermediate
sample sizes with β ¼ 6. We use the periodical boundary
condition for the entire system, which is different from the
boundary condition used in previous calculations, in order
to eliminate the sign problem when electrons hop across the
boundary. The previous boundary condition is feasible at
t⊥ ¼ 0 because the particle number in each chain is
conserved, as explained in Sec. II B. Now, under the
periodical boundary condition, even at t⊥ ¼ 0 the sign is

not positive definite: when one electron hops across the
boundary, if the fermion number in that chain is an even
number, the matrix element acquires an extra sign. This
boundary effect is more prominent at small sample sizes
(e.g., L ¼ 10) but already becomes negligible at inter-
mediate sample sizes, say, L > 20. As t⊥ deviates from 0,
the 2D motion of electrons suppresses the average sign and
it drops more rapidly at larger sample sizes.
We simulate the spin susceptibility and present its

inverse χ−1ðTÞ in Fig. 9, with t⊥ ¼ 0.02. The results at
t⊥ ¼ 0 under the periodical boundary condition are also
plotted for comparison. An intermediate sample size
(L ¼ 20) is used and the simulation is performed from
the high to intermediate temperature regions. The results at
t⊥ ¼ 0.02 are nearly the same as those at t⊥ ¼ 0, which
still exhibit the CW behavior. At the lowest temperature
simulated β ¼ 6, the average sign at t⊥ ¼ 0.02 is already
significantly below 1. Nevertheless, the difference between
χ−1ðTÞ at t⊥ ¼ 0 and 0.02 remains negligible. These results
show that the magnetic properties are not so sensitive to t⊥
when t⊥=t∥ ≪ 1.
Certainly, when t⊥ reaches the same order as t∥, the band

structure will become genuinely two dimensional. In this
case, the previous ground FM theorem does not apply, and
a quantum phase transition is likely to occur from the FM to
paramagnetic ground states. Unfortunately, the sign prob-
lem will be very severe and, thus, reliable QMC simulations
cannot be performed. It would be interesting to further
develop other analytic and numeric methods to investigate
this problem.

B. Effect of the finite U

As explained in Sec. II B, the many-body bases for
simulations, which are also used for the proof of FM
ground-state theorems in Ref. [21], are constructed by
ordering electrons according to their locations along one
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chain by another regardless of their spin configurations.
This set of bases is convenient to accommodate to the spin-
flip term of Hund’s coupling to be free of the sign problem;
nevertheless, finiteU does cause this problem. IfU is finite,
states with doubly occupied orbitals are allowed, and
electrons with opposite spins can exchange their locations,
which causes the sign problem. This situation is different
from the 1D single-band Hubbard model, in which finite U
does not lead to the sign problem. This is because the usual
single-band Hubbard interaction does not contain spin-flip
terms, and the many-body bases can be constructed as
direct products of states in spin-up and -down sectors
separately. We defer the QMC simulations for the multi-
orbital model with finiteU to a later publication, but briefly
analyze the physical effect below.
Basically, a large but finite U introduces an antiferro-

magnetic (AFM) energy scale of JAFM ¼ 4t2∥=U for two
electrons lying in adjacent sites in the same chain. Its effect
in the low-electron-density region is unimportant but
becomes important in the limit of n → 2 in which most
sites are occupied as spin-1 moments. In this region, the
FM energy scale T0ðnÞ is suppressed because of the low
density of mobile holes, and finally, it becomes weaker than
JAFM. Consequently, we expect a ground-state phase
transition at a critical density nc close to n ¼ 2, which
marks a transition from the FM ordering at n < nc to the
AFM ordering at nc < n < 2. Nevertheless, if U is suffi-
ciently weak, the system becomes weakly correlated and
the FM ordering could be completely suppressed even in
the presence of Hund’s coupling.

VII. EXPERIMENT REALIZATIONS

The QMC simulations presented above are not only of
academic interest but also provide new directions to explore
new FM materials in various physical systems, including
both the ultracold atom optical lattices and the strongly
correlated transition-metal oxides.
Recently, the study of itinerant FM states has become a

research focus in ultracold cold atom physics [24–31].
However, so far, it is still in debate whether the experiment
results based on the upper branches of the Feshbach
resonances have shown the existence of itinerant FM or
not. Our work suggests a new direction for the further
experimental exploration of itinerant FM in the high orbital
bands in optical lattices. Our band Hamiltonian can be
accurately implemented in the p-orbital band in the ultra-
cold atom optical lattices [74–76]. Because of the
anisotropy of p-orbital orientation, the transverse π-
bonding amplitude t⊥ is usually much smaller than the
longitudinal σ-bonding t∥. The ratio of t⊥=t∥ decreases as
increasing the optical potential depth V0. As shown in
Ref. [74], as V0=ER ¼ 15, where ER is the recoil energy of
the laser forming the optical lattice, t⊥=t∥ ≈ 5%, such that
we can neglect the t⊥ term in Eq. (2). Furthermore, the
interaction strength is also tunable in optical lattices by
simply varying laser intensities, and the strong coupling

regime can be reached. A variation study based on the
Gutzwiller projection also shows that the ground-state FM
may start from intermediate coupling strength [76]. Our
simulations on the thermodynamic properties provide
important guidance for future experiments.
Our work is also helpful for the current effort of searching

for novel FM materials in transition-metal oxides, in
particular, in systems with the t2g-orbital bands, i.e.,
dxz; dyz, and dxy bands, with the quasi-2D layered structure.
In fact, FM has been observed experimentally in the (001)
interface of 3d-orbital transition-metal oxides such as
SrTiO3=LaAlO3 [20,77–80], which has been a recent
research focus in condensed-matter physics. The dispersions
of dxz- and dyz-orbital bands are also highly anisotropic, i.e.,
the longitudinal bonding parameter t∥ is much larger than the
transverse one t⊥, as described in Eq. (2), by replacing pxðyÞ
with dxðyÞz. The on-site repulsive interaction of the 3d
electrons is particularly strong, such that the projection of
doubly occupied orbitals is a good approximation.
Even though there is an additional quasi-2D dxy-orbital

band in the SrTiO3=LaAlO3 interfaces, which is presum-
ably paramagnetic by itself, it is conceivable that the overall
system remains FM as shown in experiments, and our
results still apply qualitatively. The reason is that the quasi-
1D bands dxðyÞz do not hybridize with the quasi-2D dxy
band by the nearest-neighbor hopping due to their different
parity eigenvalues under the reflections with respect to xy,
yz, and zx planes, respectively. It is a good approximation
that the particle numbers in the dxy band and in the dxðyÞz
bands are separately conserved, and they only couple
through interactions. The coupling is ferromagnetic by
nature due to Hund’s rule. Since the quasi-1D bands by
themselves are already FM in the strong-coupling regime,
their coupling to the paramagnetic dxy band acts as using a
permanent ferromagnet to polarize a paramagnet, and it is
conceivable that overall the ferromagnetism is enhanced.

VIII. CONCLUSIONS

In summary, we nonperturbatively investigate the
thermodynamic properties of an unambiguous itinerant
FM system with multiorbital structures through the method
of the SSE QMC. The simulations are proved to be sign-
problem-free in all the electron density region, and thus,
reliable numerical results can be obtained at high numeric
accuracy. Because of the nature of asymptotic exactness of
our simulations, they provide a solid reference point for the
study of the strong correlation effects of the thermody-
namic properties of itinerant FM systems. There is a wide
temperature region T0 < T < Tch, in which the spin
channel is incoherent without local moments existing as
a priori, while the charge channel exhibits metallic behav-
ior. The spin magnetic susceptibility exhibits the CW law in
the off-critical region as a result of strong correlations.
It further crosses over to the exponential growth in the
critical region. The compressibility is weakly temperature
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dependent and saturates to its zero-temperature value. The
true FM long-range transition appears when the symmetry
class is reduced from SU(2) to Ising. The finite-size scaling
in the critical region gives rise to an accurate determination
of the FM transition temperature. Our work is also closely
related to the experimental efforts of searching for novel
FM states of matter in both ultracold atom optical lattices
and 3d transition-metal oxide materials.
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APPENDIX A: PARAMETERS FOR QMC
SIMULATIONS

We use the SSE method of QMC to simulate the
Hamiltonian Eq. (2) plus Eq. (3) in the main text with
the directed loop algorithm [64–68]. A Monte Carlo step is
defined as a diagonal vertex update followed by many
directed off-diagonal loop updates to ensure that most of
vertex legs are visited by the worm head. The simulated
system size of the square lattice is L × L with the values of
L given in each figure that depends on L. The simulations
are run in parallel on 16 cores. On each core, 1.5 × 105

warm-up steps are used, and for a typical data point, we use
105 QMC steps and perform 104 measurements. For the
simulation with the largest system size (L ¼ 80), 3.0 × 105

warm-up steps and 2.0 × 105 QMC steps are used.
In order to maintain ergodicity, the directed loop

algorithm is carried out in the grand canonical ensemble
in which the chemical potential μ is the characteristic
variable. Nevertheless, in realistic systems, it is more
natural to fix the average fermion number per site n rather
than to fix μ. For example, in a system with a fixed average
value of n, μðTÞ changes as varying the temperature T.
Therefore, in presenting the simulation results for a fixed
value of n, we carefully adjust μ to maintain n invariant.
The obtained relations of μðTÞ at various values of n
with the system size L ¼ 8 are plotted in Fig. 10. The

dependence of μ on L is weak, and thus, we use the same
set values of μðTÞ for even larger sample sizes, except the
case of V ¼ 0 and n ¼ 0.40. In this case, the finite-size
effect of μ is relatively strong, and we calculate μðTÞ at
L ¼ 10 and use it for larger sample sizes. By this method,
we can maintain the values of n invariant within the error of
Δn ¼ 0.006 for all the simulations.

APPENDIX B: MORE INFORMATION ON
THERMODYNAMIC PROPERTIES

In Figs. 11 and 12, the finite-size scaling of χðT; LÞ are
plotted with J ¼ 2 at V ¼ 0 and V ¼ 8, respectively. In
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presented in the legend. The parameter value at V ¼ 0 and J ¼ 2.
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both cases, curves are fitted with the scaling ansatz
χðL; TÞ ¼ χ0ðTÞ þ aLe−L=b to extrapolate the spin sus-
ceptibility χðTÞ for the infinite system size. For the data sets
with β < 6, we simulate lattice sizes L × L up to L ¼ 30.
In Fig. 13, we present the finite-size scaling of χðT; LÞ in

the critical region with β from 7 to 12.5 and with

parameters V ¼ 0, J ¼ 2, and n ¼ 1. The extrapolated
values of χðTÞ are used in Fig. 3(a). Let us look at the curve
with β ¼ 10, the dependence of χðT; LÞ on L converges at
large values of L. The starting of convergence takes places
at values of L at the order from 10 to 20, and thus, we
estimate the FM correlation length ξ at β ¼ 10 also in
this range.
In Fig. 14, we plot the QMC simulation results for

the on-site spin moment square normalized by filling
density hS2zi=n, which behaves nearly the same as
the Curie constants presented in Fig. 3(b). Because of
the SU(2) symmetry, the on-site spin moment square
hS2i=n ¼ 3hS2zi=n. A discussion on hS2zi=n is presented
in the Sec. III C.
Next, we discuss the momentum space distribution

nFðkÞ which is 1D-like because the particle number of
each chain is separately conserved. Because of this feature,
we make a special choice of boundary conditions to remove
the sign problem: the periodical (antiperiodical) boundary
condition for a chain if its particle number is odd (even).
Our simulation uses the grand canonical assemble, and
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thus, both configurations with even and odd particle
numbers are sampled, which can also be easily distin-
guished. For configurations with odd particle numbers, the
values of k take 2pπ=L with p ¼ 0;�1;…� ðL − 1Þ, and
for configurations with even particle numbers, the values of
k take 2pπ=L with p ¼ � 1

2
;…;�ðL − 1

2
Þ. For this reason,

we simulate nFðkÞ by separately sampling configurations
of even and odd particle numbers and present both of them
in Figs. 15(a) and 15(b), respectively. Results of the sample
sizes with L ¼ 30 and 50 are presented, which shows that
the finite-size dependence is very weak. At both sample
sizes L ¼ 30 and 50, the differences caused by using
periodical or antiperiodical boundary conditions are rather
small, and the result under the periodical boundary con-
dition is presented Fig. 1(c) in the main text.

APPENDIX C: ORBITAL ORDERING AT THE
COMMENSURATE FILLING N ¼ 1

Here, we present the QMC simulations on the orbital
ordering with a large value of the interorbital repulsion V.
Large V suppresses doubly occupied on-site states, and at
the commensurate filling n ¼ 1, the ground state is in the
Mott-insulating state. In this case, fermions become local
moments. At zero temperature, even though electron spins
are fully polarized, the orbital degree of freedom enables
the superexchange in the orbital channel [81]. The orbital
exchange is described by an antiferro-orbital Ising model

Hex ¼ Jorb
X
~r;~r0

τzð~rÞτzð~r0Þ; ðC1Þ

where Jorb ¼ t2∥=V and τz ¼ p†
xpx − p†

ypy. At low temper-
atures, due to the prominent FM tendency, the above orbital

exchange model still applies. Thus, below the temperature
scale around Jorb, the antiferro-orbital ordering, i.e., the
staggered occupation of px and py orbitals, will appear.
We define the equal-time orbital structure factor as

Sorbð~q; τÞ ¼
1

L2

X
~r1;~r2

hmorbð~r1; τÞmorbð~r2; τÞiei~q·ð~r2−~r1Þ;

ðC2Þ

where morbð~r; τÞ ¼ nxð~r; τÞ − nyð~r; τÞ is the on-site orbital
polarization. Since the orbital ordering occurs at the wave
vector ðπ; πÞ, we present the QMC simulation of the finite
scaling of Sorbðπ; πÞ=L2 in Fig. 16. It indicates that the
antiferro-orbital ordering appears at low temperatures, and
the critical temperature Torb=t∥ lies between 0.132 and
0.139.

APPENDIX D: QMC SIMULATIONS FOR THE
ISING-CLASS HAMILTONIAN

For the Ising-class Hamiltonian with the modified
Hund’s coupling with J⊥ ¼ 2J∥ ¼ 4, we extract its
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mean-field value of the Curie temperature T0 following the
method presented in the main text. The spin susceptibility
χðTÞ is obtained after the finite-size scaling for χðT; LÞ in
the off-critical region as shown in Fig. 17(a). By the linear
extrapolation of χ−1ðTÞ in the off-critical region, we obtain
T0 from the interception of χ−1ðTÞ on the temperature axis
as shown in Fig. 17(b). The scaling is performed in the
region T > 0.5 below which the deviation from the CW
behavior appears. The linear extrapolation of χ−1ðTÞ gives
rise to T0 ¼ 0.20� 0.01. The magnetic structure factors at
even lower temperatures in the critical region are presented
in Fig. 7.
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