
BCS – Trial wavefunction and the Bogoliubov
method
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1 Cooper’s problem

Cooper contributed a key insight for the understanding of the nature of superconduc-
tivity – pairing of electrons. Today we call these pairs Cooper pairs. The point is the
formation of bound states, hence, the nature of superconductivity is non-pertubative
if we start from the normal state. Later we will see the superconducting gap function

∆ ∝ ~ωDe−
1

N0g where ωD is the Debye frequency, N0 is the density of state at the Fermi
surface, g is the effective attractive interaction strength. Since the interaction strength
appears in the denominator of the exponent, it is an intrinsic singularity and cannot
be expanded as a power series. This is the difficulty of superconductivity – it cannot
be reached by performing perturbative solutions from the normal state.

As a starting point, Cooper considered an idealized problem of just two electrons.
Idealization plays an important role in the study of physics, which can put the com-
plicated but secondary factors aside for a moment so that we can concentrate on the
most crucial points. Assume that there is a fully-filled Fermi surface with the Fermi
wavevector kf . On top of it, add two electrons with momenta and spins as (k, ↑) and
(−k, ↓). We neglect that effect that electrons inside the Fermi surface actually can be
scattered outside, i.e., the Fermi surface is rigid and simply plays the role of blocking
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the phase space. We assume an attractive interaction between these two electrons with
the following Hamiltonian as

H = H0 + U

H0 =
∑
k

(εk − µ)c†kσckσ U = − g
V

∑
k,k′

c†k↑c
†
−k,↓c−k,↓ck,↑. (1)

The origin of the negative g is due to the electron-phonon interaction we learned before.
For simplicity, we neglect its retarded nature, and assume it is instanious. Furthemore,
we assume it is momentum independent, which corresponds to the isotropic s-wave
superconductivity.

The interaction part causes the scattering (k, ↑;−k, ↓)→ (k′ ↑;−k, ↓) maintaining
the total momentum zero. The the eigenstate states of the pair will a superposition of
these pairs

|Ψ〉 =
∑
k

α(k)c†k↑c
†
−k↓|F 〉, (2)

where |F 〉 is the reference state of fully filled Fermi sphere. It is easy to check that

H0c
†
k,↑c
†
−k,↓|F 〉 = (2εk + E0)c†k↑c

†
−k↓|F 〉,

Uc†k,↑c
†
−k,↓|F 〉 =

u

V

∑
k′

c†k′,↑c
†
−k′,↓|F 〉. (3)

Then we write down the Schrödinger equation HΨ〉 = E|Ψ〉 as

HΨ =
∑
k

α(k)(2εk − 2µ+ E0)c†k↑c
†
k,↓ −

u

V

∑
k,k′

α(k)c†k′,↑c
†
−k′,↓|F 〉

=
∑
k

(
(2εk − 2µ+ E0)α(k)− u

V

∑
k′

α(k′)
)
c†k′,↑c

†
−k′,↓|F 〉 = E

∑
k

α(k)c†k′,↑c
†
−k′,↓|F 〉,

then,

α(k) =
u/V

2(εk − µ)−∆E

∑
k′

α(k′)

1

u
=

1

V

∑
k

1

−∆E + 2(εk − µ)
, (4)

where ∆E = E − E0.

Figure 1: Pictorial representation of the
bound state solution.

We can plot the left and right hand
sides of Eq. 4. It is clear that it has a
solution with negative energy, which cor-
responds to a bound state. By changing
the summation to integral, we can ana-
lytically solve the bound state energy as

1

u
= N(0)

∫ ~ωD

0

dε
1

2ε−∆E
=
N(0)

2
ln

2~ΩD −∆E

−∆E
2

N0u
≈ ln

2~ωD
|∆E|

⇒ ∆E = −2~ωDe
2

N(0)g . (5)
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Later we will see the superconducting gap function ∆ is roughly speaking the same
order as |∆E|.

An important feature of Eq. 5 is that the bound state exists at infinitesimal value
of g. This is in contrast in the free space that a finite strength of attraction is needed to
form a bound state. This is the effect from the Fermi surface – the low energy density
of states becomes a constant, rather than vanishing as in the free space. Effectively,
Fermi surface renders the density of states to be two-dimensional like.

2 BCS trial wavefunction

We use the following BCS Hamiltonian

H =
∑
kσ

ξkσc
†
kσckσ −

1

V

∑
k1,k2,σσ′

g(k1, k2)c†k2,↑c
†
−k2,↓c−k1,↓ck1,↑, (6)

where ξk = εk − µ.

2.1 BCS Ansatz

BCS generalized a single Cooper pair to many pairs, and proposed the following wave-
function

ΨBCS(r1, ..., rN ;σ1, ...σN) = A
{
ϕ(r1, r2;σ1, σ2)ϕ(r3, r4;σ3, σ4)....ϕ(rN−1, rN ;σN−1, σN)

}
, (7)

where A is the inter-pair antisymmetrization operation, and ϕ(r1, r2;σ1, σ2) is antisym-
metric for the intrapair exchange between two electrons. For the singlet superconduc-
tor, we have

ϕ(r1, r2;σ1, σ2) =
1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)ϕ(|r1 − r2|)

=
1√
2

∑
k

χ(k)eik·(r1−r2)(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)

=
∑
k

χ(k)c†k↑c
†
−k,↓|vac〉 (8)

ϕ is an even function, hence, ϕ(k) = ϕ(−k).

Then the many-body state can be written as

ΨN = N−
1
2

(
χ(k)c†k↑c

†
−k,↓

)N
2 |vac〉, (9)

where N is a normalization factor. Such a wavefunction has a fixed particle number of
N . Since it is not easy to work with the canonical ensemble, the BCS method releases
the fixed particle number constraint by using the grand canonical ensemble. Then the
wavefunction becomes

|Ψ〉 = exp
(∑

k

χ(k)c†k↑c
†
−k,↓

)
|vac〉 = Πk exp

(
χ(k)c†↑c

†
↓

)
|vac〉

= Πk

(
1 + χ(k)c†k↑c

†
−k↓

)
|vac〉, (10)
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where all of the higher order terms vanish due to the (c†k↑)
2 = 0. The particle number

in the system is controlled by the choice of chemical potential.

The BCS trial wavefunction |Ψ〉 is no longer a Slater determinant state which is
a product of single particle state. In contrast, we decompose the many-body Hilbert
space into the product of sectors of pairs. The question is how the different pairs
communicate with each other – how do they share phase information? Let us just
consider the sector spanned by the modes of k ↑ and −k ↓. They span four states
marked as

|0〉, c†−k,↓|0〉, c†k,↑|0〉, c†k,↑c
†
−k,↓|0〉. (11)

Then

|Ψ〉 = Πk

(
|0〉+ χ(k)c†k↑c

†
−k↓|0〉

)
⇒ Πk

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉, (12)

where we set |uk|2 + |vk|2 = 1. We can set uk to be real and positive, and then vk
can be determined up to a phase vke

iφ. For the conventional superconductors, φ is
independent of k. This means that different pairs share the same phase, and this is
the global phase coherence. Then we have

|Ψ(φ)〉 = Πk

(
|uk|+ |vk|eiφc†k↑c

†
−k↓

)
|0〉, (13)

which is called the phase eigenstate. We can project out the fixed particle state via
Fourier transform as

|ΨN〉 =

∫ 2π

0

Ψ(ϕ)e−i
Nϕ
2 dϕ. (14)

In this sense, the number of Cooper pairs N/2 and the condensation phase φ are a pair
of conjugate variables.

2.2 Optimization of the BCS wavefunction

Let us calculate the ground state energy expectation value of the BCS wavefunction

E = 〈K〉+ 〈Hint〉, (15)

where

〈K〉 = 〈
∑
kσ

ξic
†
kσckσ〉 = 2

∑
k

ξk|vk|2

〈Hint〉 = − 1

2V

∑
k1,k2

g(k1, k2)〈c†kσc
†
−k,σ′c−kσ′ck,σ〉 ≈ −

1

V

∑
k1,k2

g(k1, k2)〈c†k2,↑c
†
−k2,↓〉〈c−k1,↓ck1,↑〉.

We define

Fk = u∗kvk = 〈0k↑0−k↓|c−k,↓ck,↑|1k↑1−k↓〉, (16)
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then

〈Hint〉 = − 1

V

∑
k1,k2

g(k1, k2)Fk1F
∗
k2
. (17)

and the total energy

E = 2
∑
k

ξk|vk|2 −
1

V

∑
k1,k2

g(k1, k2)u∗k1vk1uk2v
∗
k2. (18)

Using the commonly used parameterization scheme

uk = cos θk, vk = sin θk, (19)

we have

E = 2
∑
k

ξk sin2 θk −
1

4V

∑
k1,k2

g(k1, k2) sin 2θk1 sin 2θk2

=
∑
k

ξk(− cos 2θk + 1)− 1

4

∑
k1

sin 2θk1

∑
k2

g(k1, k2)

V
sin 2θk2. (20)

If we do variation,

0 =
∂

∂θk
E = 2ξk sin 2θk − cos 2θk

1

V

∑
k′

g(k, k′) sin 2θk′ . (21)

Define the gap function

∆k =
1

2V

∑
k′

g(k, k′) sin 2θk′ , (22)

then

tan 2θk =
∆k

ξk
,⇒ cos 2θk =

ξk
Ek
, sin 2θk =

∆k

Ek
, (23)

where Ek =
√
ξ2
k + |∆k|2. Then the self-consistent condition is

∆k =
1

V

∑
k′

g(k, k′)
∆′k
2E ′k

,=

∫
dk′

(2π)3
g(k, k′)

∆′k/2√
ξ2
k′ + ∆2

k′

. (24)

which is the celebrated BCS gap equation (at T = 0).

3 The self-consistent Bogoliubov method

The above variational method is physically intuitive. Nevertheless, it is not so easy
to generalize to spatial inhomogeneous systems. It is equivalent to the Bogoliubov
mean-field theory, and later was generalized to inhomogenous systems such as vortex
and impurity problems – called the Bogoliubov-de Gennes (B-deG) formalism.
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3.1 Bogoliubov transformation

The technical part of the mean-field theory is to decompose the 4-fermion interaction
into fermion bilinears based on

O1O2 = O1〈O2〉+ 〈O1〉O2 − 〈O1〉〈O2〉+ δO1δO2 ≈ O1〈O2〉+ 〈O1〉O2 − 〈O1〉〈O2〉 (25)

where O1,2 are fermion bilinear operators, and δOi = Oi − 〈Oi〉. δO1δO2 is viewed as
a high order fluctuation term, and is neglected at the mean-field level. Following this,
we decompose the 4-fermion interaction term in Eq. 6 into∑

k

c†k↑c
†
−k,↓∆k + c−k↓ck↑∆

∗
k +

∑
k1,k2

g(k1, k2)〈c†k↑c
†
−k,↓〉〈c−k↓ck↓〉, (26)

where

∆k = − 1

V

∑
k′

g(k, k′)〈c−k′↓ck′↑〉. (27)

Then we arrive at the following decoupled mean-field Hamiltonian as

H =
∑
k

{
Hk + ξk

}
+
∑
k1,k2

g(k1, k2)〈c†k↑c
†
−k,↓〉〈c−k↓ck↓〉. (28)

with

Hk = (c†k↑, c−k↓)

(
ξk ∆k

∆∗k −ξk

)(
ck↑
c†−k,↓

)
. (29)

We would like to diagonalize Hk. For simplicity, we assume that ∆k is real, such
that the diagonalization can be performed by a 2D rotation as,(

ck↑
c†−k↓

)
=

(
u∗k −vk
v∗k uk

)(
αk↑
α†−k↓

)
⇒
(

αk↑
α†−k↓

)
=

(
uk vk
−v∗k u∗k

)(
ck↑
c†−k↓

)
(30)

then

(c†k↑, c−k↓) = (α†k↑, α−k↓)

(
uk vk
−v∗k u∗k

)
⇒ (α†k↑, α−k↓) = (c†k↑, c−k↓)

(
u∗k −vk
v∗k uk

)
(31)

Then

Hk = (α†k↑, β−k↓)

(
uk vk
−v∗k u∗k

)(
ξk ∆k

∆∗k −ξk

)(
u∗k −vk
v∗k uk

)(
αk↑
β†−k,↓

)
= (α†k↑, β−k↓)Mk

(
αk↑
β†−k,↓

)
.

where

Mk =

(
ξk(|uk|2 − |vk|2) + ∆ku

∗
kvk + ∆∗kukv

∗
k ∆ku

2
k −∆∗kv

2
k − 2ξkukvk

∆∗ku
∗2
k −∆kv

∗2
k − 2ξku

∗
kv
∗
k ξk(|uk|2 − |vk|2) + ∆ku

∗
kvk + ∆∗kukv

∗
k

)
(32)
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Consider the case that ∆k is real, so that we can uk = cos θk and vk = sin θk, we have

Mk =

(
ξk cos 2θk + ∆k sin 2θk −ξk sin 2θk + ∆k cos 2θk
−ξk sin 2θk + ∆k cos 2θk −ξk cos 2θk −∆k sin 2θk

)
(33)

Then we can diagonalize Mk by setting

tan 2θk =
∆k

ξk
,⇒ cos 2θk =

ξk
Ek
, sin 2θk =

∆k

Ek
,

u2
k = cos2 θk =

1

2

(
1 +

ξk
Ek

)
v2
k = sin2 θk =

1

2

(
1− ξk

Ek

)
. (34)

where Ek =
√
ξ2
k + |∆k|2.

Then set θk as before according to Eq. 34, we have the diagonalized form

Hk = Ek

(
α†k↑αk↑ + α†−k↓α−k↓ − 1

)
. (35)

Now we can drive the gap equation as the self-consistent condition

∆k = − 1

V

∑
k′

g(k, k′)〈c−k↓ck↑〉

=
1

V

∑
k′

g(k, k′) sin θk cos θk

{1

2
− 〈α†k↑αk↑〉+

1

2
− 〈β†−k↓β−k↓〉

}
=

1

2V

∑
k′

g(k, k′) sin 2θk tanh
βEk

2
, (36)

then we arrive the gap equation at finite temperatures

∆k =

∫
dk′

(2π)3
g(k, k′)

∆′k/2√
ξ2
k′ + ∆2

k′

tanh
β
√
ξ2
k′ + ∆2

k′

2
. (37)

3.2 The BCS vacuum

The BCS vacuum should be annihilated by αk↑ and α−k↓, i.e.,

αk↑|ΨGP 〉 = α−k↓|ΨGP 〉 = 0, (38)

We can define to meet the above requirements:

|ΦGP 〉 =
(
uk − vkc†k↑c

†
−k↓

)
|0〉. (39)

(It seems a sign difference from the variational construction – need check.) In other
words, the BCS vacuum can be viewed as a squeezed state of the particle number
vacuum. Then the single Bogoliubov excitations above the superconducting vacuum
are just the ordinary spin up and down fermions referring to the particle vacuum

α†k↑|ΦGP 〉 = c†k↑|0〉, α†−k↓|ΦGP 〉 = c†−k↓|0〉. (40)

And then the double excitation becomes

|ΦEP 〉 = α†k↑α
†
−k↓|ΦGP 〉 =

(
v∗k + u∗kc

†
k↑c
†
−k↓

)
|ΦGP 〉 (41)
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4 Solution to the gap equation

Let us consider the simplest case that |g(k, k′)| = g, i.e., ∆k is independent on k, then
Eq. 37 is simplified to

∆ = gN0

∫ ~ωD

−~ωD

dε
∆

2Ek
tanh

βEk
2
⇒ 1

gN0

=

∫ ~ωD

0

dε
1

Ek
tanh

βEk
2
. (42)

4.1 Gap function at zero temperature

First, consider the zero temperature, then by setting β → +∞ we have

1

gN0

=

∫ ~ωD

0

dε
1√

ε2 + ∆2
=

∫ ~ωD
∆

0

dx√
1 + x2

= sinh−1 ~ωD
∆

∆ =
~ωD

sinh 1
N0g

⇒ ∆ ≈ 2~ωDe−
1

N0g at gN0 � 1. (43)

4.2 Gap function around Tc

Around Tc, ∆→ 0, we have

1

gN0

=

∫ ~ωD

0

dε
tanh βcε

2

ε
=

∫ 1
2
βc~ωD

0

dx
tanhx

x
. (44)

Since tanhx/x → 1 at small values of x, and → 1/x at large values of x, we can

approximate
∫ a

0
dx tanhx

x
≈
∫ 1

0
dx +

∫ a
1
dx/x = ln a + 1 at a � 1. A more accurate

estimate shows that ∫ a

0

dx
tanhx

x
≈ ln 2.28x. (45)

Hence, we have

1

gN0

= ln 1.14βc~ωD ⇒ kBTc = 1.14~ωDe−
1

gN0 (46)

A more careful analysis shows that the gap function ∆(T ) at T → Tc behaves

∆

kBTc
∼ 3.2

(
1− T

Tc

) 1
2

(47)

The sketch of the temperature dependence of the gap function ∆(T ) based on the
BCS theory is presented in Fig 2.

4.3 Universal relation between ∆ and Tc
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Figure 2: The temperature dependence of
the gap function ∆(T ).

Compare Eq. 43 and Eq. 46, we have the
universal relation for the weak coupling
BCS superconductors that

∆(T = 0)

kBTc
≈ 1.76. (48)

This is a famous result of BCS theory, and widely used in literature for judge weak
or strong coupling superconductivity. For strong coupling superconductors, it has
significant deviations: ∆(T=0)

kBTc
≈ 2.3 and 2.6 for Hg and Pb, respectively. Certainly for

high Tc superconductors, it can reach much larger values at the order of 10.

5 The isotope effect

The superconducting transition temperature Tc = 1.14~ωDe−
1

N0g . ωD inversely depends

on M
− 1

2
ion due to Newton’s equation, hence, Tc ∝ M− 1

2 . Historically, this isotope effect
has been seen in a variety of superconductors such as Hg, Pb, Mg, Sn, Tl, etc. It was
the motivation of electron-phonon mechanism for superconductivity.

6 The McMillan formula

So far, we have neglected the retarded nature of the phonon renormalized effective
electron-electron interaction. In fact, such an interaction contains two parts: a screened
Coulomb interaction, and a phonon-intermediated interaction. The overall effect is that
the interaction is repulsive at ω > ωD and attractive at ω < ωD. Let us neglect the
angular dependence of gk,k′ on k · k′, but only keep their dependence on the radial part
of momentum, which is equivalent to the energy dependence

−g(k, k′) = Vc − Vph(
ξk − ξk′

~
). (49)

This not a fully treatment to the retarded nature of the frequency dependent phonon-
renormalized interaction. Rather, we approximate the interaction by its value at the
on-shell frequency, but it is still constant of frequency. Then the gap equation close to
Tc is reformatted as

∆(ξ) = −N0

∫ Λ

−Λ

dξ′
(
Vc − Vph(

ξ − ξ′

~
)
)

∆(ξ′)
tanh βcξ′

2

2ξ′
, (50)

where Λ � ~ωD is a high energy cut off. Basically, ∆(ξ) represents the gap function
from those electrons with energy ξ to the Fermi surface.

We denote

A = −N0

∫ Λ

−Λ

dξ′Vc∆(ξ′)
tanh βcξ′

2

2ξ′
, (51)
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then ∆(ξ) ≈ A at |ξ| ≥ ~ωD, where Vph(ω) is already suppressed, and ∆(ξ) is nearly
ξ-independent. Further, we define the average value of ∆ over the region of |ξ| ≤ ~ωD
is B. Then we have

B = N0V̄ph

∫ ~ωD

−~ωD

dξ′B
tanh βcξ′

2

2ξ′
+ A ≈ BN0V̄ph ln

~ωD
kBTc

+ A, (52)

where V̄ph is the average of Vph(ξ − ξ′) in the low frequency region.

On the other hand,

A = −N0

∫ Λ

−Λ

dξ′Vc∆(ξ′)
tanh βcξ′

2

2ξ′

= −N0Vc

(
B

∫ ~ωD

−~ωD

+A

∫ Λ

~ωD

+A

∫ −~ωD

−Λ

)
dξ′

tanh βcξ′

2

2ξ′

= −N0Vc

(
B ln

~ωD
kBTc

+ A ln
Λ

ωD

)
. (53)

Combine the above two equations, we have the following relation

B
(

1−N0V̄ph ln
~ωD
kBTc

)
= A

A(1 +N0Vc ln
~ωc
Λ

) = −N0Vc ln
~ωD
kBTc

B, (54)

hence,

1−N0V̄ph ln
~ωD
kBTc

= −
N0Vc ln ~ωD

kBTc

1 +N0Vc ln ~ωc

Λ

1 = N0 ln
~ωD
kBTc

(
V̄ph −

Vc

1 +N0Vc ln ~ωc

Λ

)
. (55)

Hence, we arrive at the famous McMillan formula for Tc

Tc = ~ωD exp
{
− 1

N0V̄ph − µ∗
}

(56)

where µ∗ reads

µ∗ =
N0Vc

1 +N0Vc ln Λ
ωD

. (57)

µ∗ reflect the renormalized Coulomb interaction to the superconductivity. It weakens
the electron-phonon interaction strength from N0V̄ph→ N0V̄ph− µ∗. A few remarks

1. Hence, Coulomb interaction is not sufficient to suppress superconductivity, due
to the renormalized effect in the denominator.

2. The isotope effect is weakened due to the dependence of µ∗ on ωD. Enhancing
ion mass lowers the Debye frequency ωD, which certainly lowers Tc. On the other
hand, the two energy scales of ωD and Λ of phonons and Coulomb interaction
are more separated, then the Coulomb interaction is more strongly renormalized.
Hence µ∗ is weakened which compensates partly the effect of lowering ωD.
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