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1 Dielectric function, screening

We will use the molecule-field method to treat the long-range Coulomb interaction,
and apply it to a purely electron system first. Define χ0

e(q, ω) as the density-response
function of electron before taking into account Coulomb interaction, i.e., it is due to
density-response for the kinetic energy dispersion and Fermi liquid corrections. For
example, χ0

e(q, ω) takes the Lindhardt function for spherical Fermi surface as

χ0
e(q, ω) = −2

∫
d3k

2π

nf (ϵk)− nf (ϵk+q)

ω − (ϵk+q − ϵk) + iη
. (1)

In the long wavelength limit q → 0, it is approximated as

χ0
e(q, ω) = N0

(
1− s

2
ln |1 + s

1− s
|
)
+ i

π

2
N0θ(1− |s|), (2)

where s = ω/(vfq), N0 is the density of states at the Fermi surface, and θ(x) is the
step function which equals 1 and 0 at x > 0 and < 0, respectively. If further consider
the limit of s → 0 and take into account the Fermi liquid correction, we have

lim
q→0

lim
ω→0

χ0
e(q, ω) =

N0

1 + F s
0

, (3)

where F s
0 is the Fermi liquid parameter is the density channel.

Now we further consider the renormalization from the long-range Coulomb inter-
action. Suppose that we apply an external electric potential ϕex(q, ω) in the limit of
q → 0 and ω/q → 0. ϕex changes electric density distribution by δρel, which in turn
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also generates an induced potential ϕind via the Poisson equation −∇2ϕind = 4πδρel,
or,

ϕind(q, ω) =
4π

q2
δρel(q, ω). (4)

Then the total electric potential ϕtot = ϕex + ϕind. Since ϕtot already takes care of the
long-range nature of the Coulomb potential, we can directly use χ0

e(q, ω) to obtain the
change of electron density. Hence, this is a feedback process as shown in the Fig 1, as
captured by the following equations

δρel(q, ω) = −eχ0
el(q, ω)(eϕtot(q, ω)) = −e2χ0

el(q, ω)
(
ϕex(q, ω) + ϕind(q, ω)

}
= −e2χ0

el(q, ω)
(
ϕex(q, ω) +

4π

q2
δρel(q, ω)

)
. (5)

Hence,

δρel(q, ω) = −e2χ0
el(q, ω)

ϵe(q, ω)
ϕex, (6)

where ϵe is the dielectric function from electron-electron interactions

ϵe(q, ω) = 1 +
4πe2

q2
χ0
el(q, ω). (7)

In the static limit at q ≪ kf , it becomes the Thomas-Fermi form as

ϵTF = 1 +
k2
TF

q2
, k2

TF = 4πe2N0/(1 + F 0
s ), (8)

where the kTF is the TF screening wavevector. This renormalizes the long-range
Coulomb interaction into the short-ranged Yukawa potential with its Fourier trans-
form as

Vsc(r) =
e2

r
e−kTF r −→ Vsc(q) =

4πe2

q2 + k2
TF

. (9)

2 Phonon-dressed dielectric function

In this part, we consider the lattice ions’ contribution to the dielectric function, which
also carry charge. We neglect the lattice structure, and pretend the positive ions as
a continuum media, i.e., in the viewpoint of the Jellium model. But now the positive
charges are mobile, and then the electron-ion systems are modeled as a two-component
neutral plasma. If the conduction electrons are frozen, then the ions in metal would
exhibit a gapped plasmon frequency

Ω2
p =

4πnZ2e2

M
≈ me

M
Zω2

p, (10)
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where n is the ion density, ω2
p = 4πnee

2/me is electron plasmon frequency with ne =
Zn. Typically, Ωp is at the order of Debye frequency, say, 1013Hz, or, at the room
temperature. Actually, the phonons in metals are gapless, which is a consequence of
screening from mobie electrons, and the electron dielectric function diverges as q → ∞.
Overall, the electron-ion systems are neutral, hence, the low energy excitations should
be linear like sound waves in the same class of phonons. Below we will show how
to derive the renormalized phonon dispersion based on a 2-component plasma model.
Certainly, only the longitudinal acoustic phonons can be obtained via this effective
method. Due to the hydrodynamic nature of this method, the transverse phonon
modes cannot be obtained.

Figure 1: Random phase approximation of
dielectric function as a feedback effect of
molecular field theory.

Next step, we use the molecular field
method again to include the additional
channel from ions and its long-range
Coulomb potential. We define χ0

ion(k, ω)
as the density-density response function
before taking into account the Coulomb
interaction, which is due to the short
range interactions among ions. Suppose
an external perturbation ϕex(r, t) is ap-
plied to the systems, and the density fluc-
tuations of electrons and ions are defined
as δρel and δρion. Then the electron and ion responses are coupled as

δρel = −eχ0
el(eϕtot) = −e2χ0

el(ϕex + ϕind),

δρion = −Zeχ0
ion(Ze)ϕtot = −Z2e2χ0

el(ϕex + ϕind),

∇2ϕind = −4π(δρel + δρion), (11)

where ρel, ρion are charge densities. Transform into the Fourier space, we arrive at

δρel(q, ω) = −e2χ0
el(q, ω)

[
ϕex −

4π

q2
(δρel(q, ω) + δρion(q, ω))

]
δρion(q, ω) = −(Ze)2χ0

ion(q, ω)
[
ϕex −

4π

q2
(δρel(q, ω) + δρion(q, ω))

]
, (12)

and then we have

δρel(q, ω) = −e2χ0
el(q, ω)

ϕex(q, ω)

ϵ(q, ω)
,

δρion(q, ω) = −(Ze)2χ0
ion(q, ω)

ϕex(q, ω)

ϵ(q, ω)
, (13)

where the dielectric function becomes

ϵep(q, ω) = 1 +
4πe2

q2

(
χ0
el(q, ω) + Z2χ0

ion(q, ω)
)
. (14)

The first term in the parenthesis is the contribution from electrons at the RPA level,
which equals k2

TF/q
2 in the static limit under the Thomas-Fermi approxiation, and the

2nd one is from the positive ions.
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How about the ion response? Ions are heavy, and we use the hydrodynamic method
to describe their response.

∂ρion
∂t

= −∇ · j⃗ion,
∂j⃗ion
∂t

= − n

m
∇Vex. (15)

For the ion’s Jellium model, there is no other forces than the Coulomb force, which
has been taken in the above self-consistent molecule field theory, and, hence, should
not be taken into account again. We have

−iωδρion(q, ω) = −q · J(q, ω)
−iωJ(q, ω) = − n

m
iqVex(q, ω), (16)

then we have δρion(q, ω) = nq2/(mω2)Vex(q, ω), hence,

χ0
ion(q, ω) = − nq2

Mω2
. (17)

Hence, the total express of ϵ(q, ω) is

ϵ(q, ω) = 1−
Ω2

p

ω2
+

k2
TF

q2
. (18)

3 Renormalized phonon spectra

The screening due to electrons significantly changes the phonon spectra from a gapped
plasmon type excitation to gapless sound-like excitation at q → 0. It also leads to
Peierls instability at q → 2kf .

3.1 Bohm-Staver formula

We extract the phonon dispersion from the pole of the the response function of ions,

χion(q, ω) =
−nq2/(Mω2)

1 +
k2TF

q2
− Ω2

p

ω2

≈ −nq2/(Mω2)
k2TF

q2
− Ω2

p

ω2

= − q2

k2
TF

nq2/M

ω2 − c2q2
, (19)

where ωph = cq and c = Ωp

kTF
. The sound velocity c is much smaller than the Fermi

velocity as

c

vf
=

Ωp

vfkTF

=
(4πe2Z2nion

M

1 + F s
0

4πe2N0v2f

)
. (20)

Plug in N0 =
3ne

m∗vf
and ne = nZ, we have

c

vf
= (

m∗Z(1 + F s
0 )

3M
)
1
2 ∼ (m∗/M)

1
2 ∼ 10−2. (21)

Here we should not take Z as the actual atomic number, since the inner core electrons
screen the nuclear charge. Z remains at the order of 1 for outer shell electrons.
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Figure 2: Phonon frequency renormalization due to electron-electron interaction

3.2 Kohn’s anomaly

The static limit of the Lindhardt response function can be solved as

ϵ(q, ω = 0) = 1 +
k2
TF

q2

(1
2
+

1

4x
(1− x2) ln |1 + x

1− x
|
)
,

−→ 1 +
k2
TF

8k2
f

(
1− (1− x) ln |1− x

2
|
)

as (x → 1) (22)

where x = q
2kf

. It has an infinite negative slope at q = 2kf , leading to

∂ϵ

∂q
∼ ln |1− x| → −∞, (23)

hence, the phonon dispersion
∂ωph(q)

∂q
also has logarithmic divergence in its slope at

q = 2kf as shown in Fig. 2.

On the other hand, if there exist Fermi surface nesting at q = 2kf , then ϵ(q = 2kf , 0)
is enhanced, and in this case phonon is softened. For example, in 1D polyacetylene
polymers, ϵ(q, 0) diverges logarithmically as q → 2kf leading to the condensation of
phonons at q = 2kf , and this is the Peierls instability.

4 Effective electron-electron interaction

Taking into account the phonon dressing, the screened Coulomb interaction is qualita-
tively changed as

Veff (q, ω) =
4πe2/q2

1 +
k2TF

q2
− Ω2

p

ω2

=
4πe2

q2 + k2
TF

(
1 +

q2Ω2/ω2

q2 + k2
TF − q2Ω2/ω2

)

≈ 4πe2

q2 + k2
TF

(
1 +

Ω2
p

k2TF
q2

ω2 − Ω2
p

k2TF
q2

)
= Vsc(q)(1 +

ω2
ph(q)

ω2 − ω2
ph(q)

). (24)
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The 2nd term is due to electron-phonon interaction, which generates an attractive
interaction at ω < ωph(q).

Figure 3: The plot of retarded electron-
electron interaction renormalized by
electron-phonon interaction

Now let us use a 2nd quantization
method to formulate electron-phonon in-
teraction. Write the electron-photon in-
teraction Hamiltonian as

Heph =
∑
kq,σ

g(k, q)c†k+q,σck,σ(a
†
q + a−q).

Consider the process that in the initial
state |i⟩ of an electron pair with mo-
menta k and −k scattering to the final
state |f⟩ of another electron pair with mo-
menta k+ q and −k− q via exchanging
a phonon. There are two possible pro-
cesses of scattering: 1) The electron k
first emits a phonon of −q and its mo-
mentum changes to k+ q, then the elec-
tron −k absorbs that phonon and changes to −k− q. The intermediate state energy
is Em1 = ϵ(k+ q)+ ϵ(−k)+ℏω−q. 2) The electron −k first emits a phonon of q and its
momentum changes to −k− q, then the electron k absorbs that phonon and changes
to k+ q. The intermediate state energy is Em2 = ϵ(k)+ϵ(−k−q)+ℏω−q. The energies
of the initial and final states are Ei = ϵ(k)+ ϵ(−k) and Ef = ϵ(k+ q)+ ϵ(−k− q). The
scattering matrix elements become

⟨f |Heph|i⟩ =
∑
i=1,2

⟨f |Heph|mi⟩⟨mi|Heph|i⟩
1

2

( 1

Ei − Emi

+
1

Ef − Emi

)
=

|g(k, q)|2

2ℏ

( 1

ϵk − ϵk+q − ℏω−q

+
1

ϵ−k−q − ϵ−k − ℏω−q

+
1

ϵ−k − ϵ−k−q − ℏω−q

+
1

ϵk+q − ϵk − ℏω−q

)
= |g(k, q)|2 2ℏωq

(ϵk − ϵk+q)2 − (ℏωq)2
. (25)

By comparing with Eq. 24 and identifying ℏω = ϵk − ϵk+q, we arrive at

|g(k, q)|2 = 2πe2

q2 + k2
TF

ℏωq ≈
1

2

(∂n
∂µ

)−1

ℏωq ∝ q (26)

in the long wavelength limit.

5 Overscreening
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Figure 4: The dielectric function ϵ(ω) v.s.
ω.

An remarkable feature of the above
phonon-dressed screen Coulomb interac-
tion Veff (q, ω) is that it becomes attrac-
tive in the frequency region ω < ωph(q, ω).
How to understand this?

Let us use a simple model for ions as a
harmonic oscillator driven by its coupling
to electrons. The chemical bonding pro-
vides a frequency ω0, which does not take
into account the Coulomb potential. The
equation of motion of the ions

ẍ+ ω2
0x+ γẋ =

ZeE

M
e−iωt, (27)

where Ee−iωt is the total electric field,
and γ is the friction coefficient. Accord-
ing to the E&M theory, we have

P = (Ze)nx = χ0E, Eind = −4πP, E = E0 + Eind = E0 − 4πZenx. (28)

where P is the polarizations, Eind is the induce field due to polarization, and E0 is the
driving field. The solution of the equation of motion is

x(ω) =
ZeE

m

1

ω2
0 − ω2 − iωγ

,

χ0(ω) =
P (ω)

E(ω)
=

Zenx(ω)

E(ω)
=

n(Ze)2E

M

1

ω2
0 − ω2 − iωγ

=
1

4π

Ω2
P

ω2
0 − ω2 − iωγ

,

ϵ(ω) = 1 + 4πχ0(ω) = 1 +
Ω2

P

ω2
0 − ω2 − iωγ

,

Eind = E0 − E =
ϵ(ω)− 1

ϵ(ω)
E0. (29)

The actual excitation energy is the determined by the zero of ϵ(ω) = 0, i.e.,

ω′,2 = ω2
0 + Ω2. (30)

This can be understood by the fact that E’s dependence on x, i.e.,

ẍ+ ω2
0x+ γx =

ZeE0

M
e−iωt − 4π

(Ze)2n

M
x,=

ZeE0

M
e−iωt − Ω2x. (31)
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According to the behavior of the dielectric function ϵ, we divide the entire frequency
into three regions. The relation between E0, Eind, and E are depicted in Fig. #.

(A)Under-screening ω < ω0 in which ϵ(ω) > 1 and χ(ω) > 0. In this low frequency
region, the polarization is in phase with the total E-field – the ions can follow with the
driving. We have χ0 > 0 and ϵ > 1. Suppose that the driving field E0 is generated by
an electron. After its coupling with phonons, E is weakened compared to E0 by the
polarization field Eind. It remains parallel to E0 and thus still repels the 2nd electron.
In this region, the refraction index n(ω) =

√
ϵ(ω) > 1.

(B) Overscreening ω0 < ω < ω′ in which −∞ < ϵ(ω) < 0 and χ(ω) < 0. Since
the driving frequency ω is closer to the excitation energy, the polarization P increases
such that the polarization field Eind overcomes the driving field E0, such that E is anti-
parallel to E0, hence it becomes to attract the 2nd electron. In this region, ϵ = i

√
|ϵ|,

and E&M modes cannot propagate.

(C) Counter-screening at ω > ω′, in which 0 < ϵ(ω) < 1 and χ < 0. In this region,
the polarization P is has a π-phase difference with E0, such that the polarization field
Eind is parallel to E0. Hence, it even enhances E0. In this high frequency region,
electrons repel even stronger. The refraction index 0 < n(ω) < 1.

For the jellium model of ions, ω0 is zero. On the other hand, Ω is softened to

ωph = q/kTFΩ by the screening from electrons. Hence, we have ϵion = 1 +
ω2
ph

−ω2 . It
contributes the factor of

1

ϵion
=

ω2

ω2 − ω2
ph

(32)

in Eq. 24.
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