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In early days, solid state physics was not considered as fundamental physics but
applied. Although various classic and quantum methods were applied to solids, such
as the Drude theory of transport, Sommerfeld theory of electrons, Debye theory of
phonons, and the Bloch theory of band structure, there were no original principles
arising from this field. Superconductivity, or, superfluidity, was an outstanding prob-
lem that puzzled the entire physics community not just that of condensed matter.
The study of superconductivity distinguished condensed matter physics from “applied
physics” to some extent.

1. Wolfgang Pauli: Solid-state physics is “Schmutzphysik”, i.e., the physics of dirt.

2. P. W. Anderson – More is different (Science 1972). (I highly recommend young
students to read this wonderful philosophical paper.)

A variety of amazing and puzzling facts for superconductivity, which cannot be
understood in the framework of the single-electron theory, or, the band theory of
electrons.

1. What protects the zero resistivity? We know that in the macroscopic world, there
always exist dissipations due to friction.

2. Why does a superconductor exhibit the complete diamagnetism? Diamagnetism
is very common but typically very weak. (A frog can be magnetically levitated
alive in a strong B-field – Ig Nobel prize by Geim.)

3. The best metals are poor superconductors or non-superconducting.
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Indeed, superconductivity is not a property of one or two electrons, but emerges as
a collective behavior of a society of electrons, i.e., it is a collective behavior. New
principles emerge such as the off-diagonal long-range order, phase coherence, and the
Anderson-Higgs mechanism, which have big impacts in the entire field of physics in-
cluding both condensed matter and high energy.

1 A brief history of superconductivity

1. 1911 Onnes’ discovery of superconductivity of Hg

2. 1933 Meissner-Ochsenfeld effect

3. 1935 London equation

4. 1937 Kapitsa, Allen, Misener’s discovery of superfluid 4He

5. 1950 Ginzburg-Landau theory

6. 1957 Abrikosov’s vortex state

7. 1957 The microscopic theory – BCS

8. 1962 Josephson effect

9. 1962 Anderson-Higgs mechanism

10. 1971 3He superfluidity

11. 1986 Bednorz and Mueller’s discovery of high Tc superconductivity

12. 2006 Iron-based superconductivity

13. 2010’s Topological superconductivity, Majorana fermion

14. 2010’s Superconductivity of hydrides, H2S, LaH10

2 Zero resistivity

Superconductivity was first discovered by H. K. Onnes in 1911. Before that he achieved
the liquification of 4He, which opened a new era of low temperature physics. It was
natural for him to apply liquid He to cool materials down to an unprecedented low
temperature, and reexamine their properties. He found that a jump of resistance of
Mercury at 4.2K: Within a change of temperature of 0.01K, the resistance drops from
0.1Ω to below 10−6Ω. Not just Mercury, many metals and alloys were found become
superconducting at transition temperatures at the order of a few Kelvins.

In addition to the critical temperature Tc, there are also other evidence for a tran-
sition
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1. Superconductivity can also be suppressed by carrying currents and being applied
magnetic fields, i.e, there also exist critical current Ic and critical field Hc.

2. Specific heat discontinuity at T = Tc.

3. Superconductivity (conventional) is not sensitive to weak disorder. Perfect super-
conductivity is not a consequence of very long mean-free path, but a consequence
of a new state.

3 Diamagnetism

The zero resistance below Tc is certainly remarkable, but by itself it is not sufficient
to justify a superconductor, but rather an “ideal conductor”. Superconductors have
another property that the magnetic field cannot enter the bulk of superconductors (for
type I superconductors), which is called the Meissner effect.

Figure 1: Apply a B-field to a supercon-
ductor and a perfect conductor.

Let us first consider the process of ap-
plying a magnetic field to a normal met-
al. The Lentz law, or, the Faraday’s law,
says that eddy currents are induced to
resist the flux to enter the metal. Due
to resistance, eddy currents dissipate in-
to heat and decay, and then the magnetic
field finally enters the bulk, and the sys-
tem reaches the equilibrium of a normal
metal in a magnetic field. For both a su-
perconductor and an ideal conductor, due
to the zero resistance, the eddy currents
do not decay and keep the magnetic field outside.

Nevertheless, there exists a crucial difference between an ideal conductor and a
superconductor. Say, we begin with

1. T < Tc and zero field, and then apply the B-field. As pointed out, screening
currents develop in both cases to prevent the B-field to penetrate inside.

2. Then we increase T > Tc to the normal state, then the screening current decays
and the B-field enters the bulk.

3. Then, we cool the sample again below Tc, and we will see a sharp contrast between
an ideal conductor and a superconductor: For an ideal conductor, the B-field
still stays inside the system, while in a superconductor, the B-field is expelled to
outside.

Hence, whether the B-field is maintained or expelled depending on its history,
while in a superconductor, the Meissner state is a stable thermodynamic phase which
is reversible and independent on its history.

Actually, as pointed by J. Hirsch, the direction of the screening current in a su-
perconductor during step (II) is actually opposite with the direction you would expect
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from Faraday’s law. The dynamic process of how the screening current is generated I
think is still not completely understood.

3.1 London theory

Below T < Tc, we divide electrons into “normal fraction” and “superconducting frac-
tion”. For the superconducting fraction, from Newton’s 2nd law, we have

dvs

dt
=
∂vs

∂t
+ (vs · ∇)vs =

e

m
(E +

1

c
vs ×B)⇒

∂vs

∂t
− e

m
E +

1

2
∇v2s = vs ×

(
∇× vs +

e

mc
B
)
⇒

∂

∂t
(∇× vs +

e

mc
B) = ∇×

(
vs × (∇× vs +

e

mc
B)
)
. (1)

Please note that we have use d
dt

= ∂
∂t

+ vs · ∇, which is well-known in the context of
fluid mechanics.

Now let us use a stronger assumption that if at an initial time t = 0, we have

∇× vs +
eB

mc
= ∇× (vs +

e

mc
A) = 0 (2)

it will remains zero for all the time. This is the London equation proposed by Fritz and
Hentz London brothers. We often write the London equation in the Coulomb gauge,
i.e.,

vs = − e2

mc
A, with ∇ ·A = 0 =⇒ Js = −e

2ns
mc

A = − c

4πλ2L
A. (3)

where λL is a length scale satisfying

1

λ2L
=

4πnse
2

mc2
=
ω2
p

c2
, (4)

with ωp is the plasma frequency of the superfluid component of electrons. λL is called
the London penetration depth, whose physical meaning will be clarified later.

To see why this property is remarkable. Let us first consider the E&M response in
a normal metal. Consider the Fourier transform of the vector potential A(q). We can
decompose A(q) into the longitudinal part AL and the transverse part AT , such that
q ⊥ AT and q ‖ AL whose configurations are plotted in Fig. 2. In other words,

AL,i(q) =
q̂iq̂j
q2

Aj,

AT,i(q) =
(
δij −

q̂iq̂j
q2

)
Aj. (5)

Since the longitudinal AL is a pure gauge, if we apply AT to any systems, it should
not have physical observable effects, hence the response current is zero, i.e, JL(q) =
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χLJJ(q, 0)AL(q) = 0 where χJJ is the current-current susceptibility. In other words,
gauge invariance requires that

χLJJ(q, 0) = 0. (6)

On the other hand, in the long-wave length limit q → 0, longitudinal and transverse
vector fields are not easy to be distinguished. (The direction of q needs a large spacial
size of 1/q to be determined.) Hence, we would expect that the difference of the
responses between the longitudinal and transverse vector fields should vanish as q.
Indeed, in the normal state, we have

lim
q→0

χTJJ(q, ω = 0) = χLJJ(q, 0) = 0. (7)

Figure 2: Configurations of a transverse
and a longitudinal A field.

However, the superconducting state
does see the difference! We should still
have χ

‖
JJ = 0 as required by the gauge

invariance. Let us transform the London
equation into the Fourier space

q× Js(q) = −nse
2

mc
q×A(q). (8)

The above equation shows that for the
transverse vector field, we have the trans-
verse current-current susceptibility

χTJJ(q, 0) = −nse
2

mc
. (9)

Hence, in the superconducting state, we have

lim
q→0

(
χTJJ(q, 0)− χLJJ(q, 0)

)
6= 0. (10)

In other words, even in the long-wave length limit, the system can still distinguish
the transverse and longitudinal A fields, which is a consequence of long-range phase
coherence.

3.2 Penetration depth

Based on Eq. 3, we have

∇×∇× Js = −nse
2

mc
∇×B = −4πnse

2

mc2
Js =⇒ ∇(∇ · Js)−∇2Js = −λ−2L Js, (11)

where λL carrying the unit of length is called the penetration depth. Plugging the
steady state condition ∇ · Js = 0, we have

∇2Js =
Js

λ2L
, ∇2B =

B

λ2L
. (12)

Consider a superconductor with a boundary lying in the zy-plane, it is easy to solve
that B and Js decay into the bulk exponentially as e−x/λL . Hence, the measurement
of λL is a way to determine the superfluid density ns.

5



De Genne’s derivation Write down the free energy of a superconductor as

f = fs +
mns

2
vs(r)2 +

B2(r)

8π
= fs +

m

2ns
J2
s (r) +

B2(r)

8π

= fs +
λ2L
8π

(∇×B)2 +
B2(r)

8π
. (13)

Based on this, and perform the variational principle, we arrive at

∇×∇×B +
B

λ2L
= 0. (14)

3.3 Pippard non-local form – coherence length ξ

Figure 3: Pippard’s non-local form for
E&M response.

The London equation assumes Js(r) on-
ly depends on A(r) at the same spacial
point. More generally, it should depend
on A(r) in a vicinity of r. In the Coulomb
gauge, it is written as

J(r) = C

∫
dr′

(A(r′) ·R)R

R4
e
− R
ξ0 , (15)

where R = r− r′, and C is a constant. ξ0
is a length scale, called Pippard’s corre-
lation length, or, coherence length. Later
on, it can be microscopically show that

ξ0 = ~vf/(π∆), (16)

where ∆ is the zero temperature superconducting gap function. Later we will see that
ξ0 is roughly speaking the size of a Cooper pair.

When A is very slow varying, we need return back to the London equation. Set
A ‖ ẑ, we have

J(r) = CA

∫
cos2 θ

R2
e−R/ξ0R2dR sin θdθdφ =

4π

3
Cξ0A = −nse

2

mc
A,

C = − 3

4π

nse
2

mcξ0
. (17)

Modification of λ in the dirty limit In the dirty superconductor, the mean-free
path l needs to enter the Pippard formula. It was proposed as

J(r) = C

∫
dr′

(A(r′) ·R)R

R4
e
− R
ξ0 e−

R
l , (18)

where C is still normalized as in Eq. 17. Then we have

J(r) =
1

λ2L

l

ξ0 + l
A(r)→ l

ξ0λ2L
A(r)

⇒ λ = λL(
ξ0
l

)
1
2 (λ� l, ξ0 � l). (19)
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The physical meaning is that disorder suppresses the superfluid density, which increases
the penetration depth.

Chambers formula Pippard proposed this non-local form is based on the Chambers
formula for the normal state for the AC response,

J(r, ω) =
e2vf
4π

∂n

∂ε

∫
dr′

(E(r′) ·R)R

R4
e
−iωR

vf e−
R
l . (20)

We can see clearly the analogy.

Modification of penetration in the Pippard limit (ξ0 � λL) The London
equation only applies in the limit of λL � ξ0. If in the opposite case of ξ0 � λL, i.e.,
the Pippard limit, the actual penetration depth is modified, since A is not slow varying
in the length scale of ξ0.

Consider a sample covers the half space of z > 0 with the boundary of the xy-
plane. Assume that the actual penetration depth is λ, then A is only nonzero within
a thickness of λ. This roughly speaking reduces the integral by a factor of λ/ξ0, hence,
J = −nse2λ

mcξ0
A, and by self-consistency, we have

λ−2 =
λ

ξ0
λ−2L ⇒ λ = (ξ0λ

2
L)1/3 ⇒ λ

λL
=
( ξ0
λL

)1/3
. (21)

Here are some experimental data (see the Table. I)

λL ξ0 λth λexp
Al 157 16,000 530 490 ∼ 515
Sn 355 2300 560 510
Pb 370 830 480 390

Table 1: Penetration depth in the limit of ξ0 � λ.

Temperature dependence Later on based on the microscopic theory, it can be
derived that ξ0 is nearly independent of temperature, C is temperature dependent and
vanishes at Tc. Experimentally, an empirical law is

λ2(T )

λ2(0)
=

T 4
c

T 4
c − T 4

∼ 1

1− T/Tc
as T → Tc. (22)

Hence C vanishes linearly as T → Tc.

4 Thermodynamics of superconductor

4.1 Condensation energy

The superconducting state has free energy density fs less than that of the normal state
fn. Now we relate their difference to the critical field Hc. Consider a superconducting
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cylinder with radius r0 and length L, which is put inside a big solenoid with radius
r, N turns of wire, and the current I. The magnetic field inside the solenoid can be
calculated H = 4πNI

cL
. The total energy densities of the normal and superconducting

states inside the region of the sample is

Fn = πr20L(fn +
H2

8π
), Fs = πr20Lfs. (23)

An additional work needs to be taken into account: When flux is repelled from the
sample, there generated an emf. It does work to the current I, which could be used to
lift some weight,

W =

∫
dtε(t)I =

∫
−N dΦ

dt
I = −N(Φf − Φi)I = NHπr20I = πr20L

H2

4π
. (24)

At the critical field Hc, we have Fn = Fs +W , i.e.,

fn = fs +
H2
c

8π
, (25)

hence H2
c /8π is the condensation energy.

We can also define the Gibbs function G = F −HM , and at Hc we have Gn(Hc) =
Gs(Hc). From thermodynamics, we have for the free energy and Gibb densities

df = HdM, dg = −MdH, . (26)

In the normal state, we have M ≈ 0 and B = H, where in the superconducting state,
since B = H + 4πM = 0, we have M = − H

4π
.

Hence, as applying increasing H from 0 to Hc, we have

gs(Hc)− gs(0) = −
∫ Hc

0

MdH = − 1

4π

∫ Hc

0

HdH =
1

8π
H2
c (27)

where gs(Hc) = gn(Hc) ≈ gn(0). Hence, gn(0)− gs(0) = fn − fs = H2
c

8π
.

4.2 Latent heat

Now we calculate the latent heat: Consider two close points 1 and 2 on the phase
boundary Hc(T ). From 1 to 2, we have along both the normal and superconducting
side

dGs = −SsdT −MsdH, dGn = −SndT −MndH. (28)

We arrive the

dHc

dT
= − Sn − Ss

Mn −Ms

≈ −(Sn − Ss)
4π

Hc

⇒ Sn − Ss = −Hc

4π

dHc

dT
. (29)

When the latent heat is zero, we have the 2nd order phase transition. This can occur
either at Hc = 0 or at dHc

dT
= 0. The first case is at zero field where the superconducting
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transition is of the 2nd order. Since Hc(T ) = Hc(0)(1 − (T/Tc)
2), the slope of Hc is

zero at T = 0, and the field-driven zero temperature transition is also of the 2nd order.
Generally, at other places on Hc(T ), the transition is of the 1st order.

Let us calculate the specific heat jump at the zero field transition:

(Cn − Cs)|Tc = Tc
d(Sn − Ss)

dT
= − Tc

4π

(dHc

dT

)2
. (30)
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In the general framework of Landau’s 2nd order phase transition, an order param-
eter is used to describe an ordered state, and a free-energy is constructed based on
symmetry. And the phase transition is determined by whether the order parameter
reaches a non-zero expectation value. Many order parameters are easy to understand
and are physically observables by themselves. For example, the order parameter for
magnetism is typically the magnetic density, which can be a scale field for the Ising
type magnetism, a 2-vector field (complex field) for the XY type magnetism, or, a
3-vector field for the isotropic case.

The nature of the superconducting order parameter However, the supercon-
ducting order parameter is non-intuitive, and it is difficult to have a physical picture.
Indeed, even when it was constructed, people are not sure what it is since the micro-
scopic theory was not available at that time. The situation was analogues to when
Mendeleev discovered the periodical table without knowing quantum mechanics. Nev-
ertheless, there are some guidance.

1. It should be a complex field Ψ(r) rather than a real field, since superconductivity
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strongly couples to E&M fields. Hence, it has a phase degree of freedom. Then
its coupling to the E&M field can be added by the minimal substitution.

2. Then naturally it can be viewed as the macroscopic wavefunction for the su-
perconducting component of electrons, such that |Ψ(r)|2 ∝ ns(r). Please note
that actually this is not very precise. The superfluid density is a description of
phase stiffness of superconductivity, and |Ψ(r)|2 is directly related to the gap
function. For a fixed |Ψ(r)|2, the superfluid density ns(r) can be suppressed by
other factors, such as disorder, etc.

Ginzburg-Landau formalism at the beginning was not received much attention, but
later Gor’kov found that it can be derived from the microscopic BCS Hamiltonian, in
which the GL wavefunction is the anomalous Green’s function. The order parameter
can be understood as the macroscopic wavefunction of the center of mass motion of
Cooper pairs.

1 Ginzburg-Landau free energy

1.1 The GL equation

Assume that the superconducting electrons are described by a complex order parameter
Ψ(r) with an effective free energy density

f [Ψ,A] =
1

2m∗
|
(
− i~∇− e∗

c
A
)

Ψ|2 + α|Ψ|2 +
β

2
|Ψ|4 +

|∇ ×A|2

8π
. (1)

where α is temperature dependent, and β is temperature independent. Here e∗ =
2e,m∗ = 2m due to the pairing nature of the order parameter. Actually this was not
known when the theory was constructed.

In the vicinity of Tc, we expand

α = α0

( T
Tc
− 1
)
. (2)

In a fixed external magnetic field H, the correct thermodynamic potential to con-
sider is the Gibbs function

G =

∫
dv
(
f [Ψ,A]− 1

4π
B ·H

)
=

∫
dv
(
f [Ψ,A]− 1

4π
(∇×A) ·H

)
. (3)

Performing the variation with respect to Ψ∗, we arrive at the

− 1

2m∗
(−i~∇− e∗

c
A)2Ψ + αΨ + β|Ψ|2Ψ = 0, (4)

which is called the GL equation (I). The corresponding boundary condition is that

n̂ · (−i~∇− e∗

c
A)Ψ = 0, (5)
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which was used by Landau and Ginzburg. Later on, based on microscopic theory
calculation, the boundary condition is

n̂ · (∇− ie∗

~c
A)Ψ =

Ψ

b
, (6)

where b is a constant depending on material properties. For the superconductor-
insulator interface, b ≈ ξ2

0/a with a the lattice constant, and thus it is enormously
large even compared to ξ(T ). But for the superconductor-metal interface, b can be
short compare to ξ(T ), hence the boundary effect is very important. By multiplying
Ψ∗ to the left hand side of the equation, and take its imaginary part, it gives rise to
that the supercurrent density can only flow along the surface, i.e.,

n̂ · Js = 0. (7)

As for performing the variation with respect to A, we need to use the following
identity

∇ · (A×B) = B · (∇×A)−A · (∇×B), (8)

we have

(∇×A) · (∇× δA) = ∇ · (δA× (∇×A)) + δA · ∇ × (∇×A),

−H · ∇ × δA = −∇ · (δA×H) + δA · (∇×H) (9)

Then we have

δA ·
( 1

4π
∇×∇×A− [

−i~
2m∗

e

c
(Ψ∗∇Ψ−Ψ∇Ψ∗)− e2

m∗c2
|Ψ|2A]

)
= 0

Js =
c

4π
∇×∇×A =

−ie∗~
2m∗

(Ψ∗∇Ψ−Ψ∇Ψ∗)− e∗2

m∗c
A|Ψ|2, (10)

where we use the condition that ∇×H = 0 in the interior of a superconductor.

The corresponding boundary condition is

n̂ · (δA× (∇×A)− δA×H) = 0⇒ δA ·
(

(B−H)× n̂
)

= 0

n̂× (B−H) = 0 (11)

1.2 Flux quantization

Consider a multiple-connected geometry of a ring, and the thickness of the ring is much
larger than λL. Consider a loop inside the bulk of a ring, such that the supercurrent
along the loop vanishes. The flux trapped inside such a loop is calculated as

Js(r) = 0⇒
∮
dr∇ϕ(r) =

e∗

~c

∮
drA⇒ Φ =

2nπ

e∗/~c
=
hc

2e
= 2× 10−7G.cm2 (12)
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2 Characteristic length scales

2.1 Healing length ξ(T ) and penetration depth λ(T )

Plugging in Ψ(r) =
√
ρs(r)eiϕ(r), we have

Js =
e∗~
m∗

ρs(r)
(
∇φ(r)− e∗

~c
A(r)

)
. (13)

If we set e∗ = 2e,m∗ = 2m, and ρs(r) = ns/2, the London equation is recovered. Here,
ρs is the density of superfluid Cooper pairs, hence it is half of the number of electrons.

From c
4πλ2L

= e∗,2

m∗c
ρs, we have

λ2
L(T ) =

m∗c2

4πe∗2
β

|α|
∝ |Tc − T |, (14)

where

ρs(T ) = |Ψ0|2 =
|α|
β
∝ |Tc − T |, at T → Tc. (15)

We can also define a length scale, called the healing length

ξ2(T ) =
~2

2m∗|α|
⇒ ξ(T ) ∝ |T − Tc|−

1
2 . (16)

Hence, we have the mean-field values of two critical exponents

β =
1

2
, ν =

1

2
. (17)

(Here β is a standard notation of a critical exponent for the sharp increase of order
parameter just below Tc. Please do not confuse it with the coefficient of the GL
equation.)

2.2 Thermodynamic critical field Hc

We define the thermodynamic critical field Hc as related to the condensation energy,

H2
c

8π
=

α2

2|β|
⇒ H2

c

4π
=
α2

|β|
. (18)

Then

1

λL(T )ξ(T )
=

e∗

~c

(8π|α|2

β

) 1
2

=

√
2e∗

~c
Hc

Hc(T ) =
Φ0

2π
√

2ξ(T )λ(T )
(19)
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2.3 Upper critical field Hc2

We consider a critical field at which superconductivity is completely suppressed. Such
a field is called Hc2. Later on, we will see that it actually happens when the vortex
cores touch each other. In this case, Hc2 is at the order of Φ0/ξ

2. Now we start with
GL equation. Since at Hc2, the order parameter nearly is nearly zero, we can neglect
the |Ψ|4 term, and arrive at

fs = − ~2

2m∗
Ψ∗
(
− i~∇− e∗

c
A(r)

)2

Ψ + αΨ∗Ψ. (20)

The cyclotron frequency ωc = eB
m∗c , which set up the Landau level gap ~ω. The zero

point motion energy is 1
2
~ωc. Hence, when

1

2
~ωc = |α|, ⇒ ~

2

e∗B

m∗c
= |α|, ⇒ ~2

2m∗|α|
=

~c
e∗B

B ≈ Hc2 =
hc/e∗
2πξ2

=
Φ0

2πξ2
. (21)

2.4 The GL parameter κ: type I and II

Now we can define a dimensionless quantity,

κ =
λL(T )

ξ(T )
=
( β

2π

) 1
2 m∗c

~e∗
=

λ2
L(T )

λL(T )ξ(T )

κ =
√

2Hcλ
2
L(T )/(

~c
e∗

) = 2
√

2π
Hcλ

2
L(T )

Φ0

, (22)

which is called the Ginzburg-Landau parameter. κ plays an important role in deter-
mining type I and II superconductors.

It is easy to check that

Hc2

Hc

=
√

2κ. (23)

We will have the following two situations, denoted as the type (II) and (I) supercon-
ductors, respectively.

1. Type II: If κ > 1√
2
, then Hc2 ≥ Hc. When Hc2 > H > Hc, we still have supercon-

ducting condensation, since H is not enough to kill Ψ completely. Nevertheless,
it cannot completely expel the magnetic flux either. Otherwise, the Meissener
phase will not be energetically favorable at H > Hc. Hence, magnetic flux will
partly enter the bulk, and it is called the mixed state. Later on, we will that it
corresponds to form vortices.

2. Type I: If κ < 1√
2
, then Hc > Hc2. If we lower down the magnetic field, it will first

reach Hc, then it becomes the complete Meissner phase, and it will not change
as further lowering the field.
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3 Interface

In this part, I will talk about preliminary applications of the GL formalism to spatially
inhomogeneous systems.

3.1 Interface solution

Let us solve the first GL equation for a semi-infinite sample in the absence of the
magnetic field, which cover the space of x > 0 and uniform along y and z-directions.
We renormalize f = Ψ/Ψ0, then the GL equation

ξ2(T )∇2f = −f(1− f 2) (24)

with the boundary condition

at x→ 0, f → 0

at x→∞, f → 1,
df

dx
→ 0, . (25)

Here we assume in the limit b/ξ(T )→ 0, such that the f → 0 at x→ 0 is compatible
to the boundary condition Eq. 6.

We have

df

dx

d2f

dx2
= ξ−2f

df

dx
(1− f 2)

d

dx
(
df

dx
)2 = −ξ

−2

2

d

dx
(1− f 2)2,

df

dx
=

(1− f 2)√
2ξ(T )

⇒ df

1− f 2
=

dx√
2ξ(T )

,

f(x) = tanh
x√

2ξ(T )
. (26)

Healing length v.s. Pippard’s correlation length The physical meaning of the
healing length ξ(T ) is different from the Pippard correlation lenght ξ0. Healing length
is the length scale over which the superconducting order parameter varies. ξ0 in the
clean system describes the size of the Cooper pair, and roughly

ξ(T ) = ξ0(1− T/Tc)−
1
2 . (27)

Since Ψ(r) describes the center of mass motion of a Cooper pair, ξ0 defines the short
range length cut off of the GL theory. It makes no sense to apply the GL theory for
length scale smaller that ξ0. Roughly speaking, ξ0 can be viewed as the healing length
at T = 0. The GL theory only works in the vicinity of Tc, and it does not apply to the
zero temperature.
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3.2 Positive and negative surface energy

The boundary suppresses the superconducting order parameter, hence, this effect costs
the energy. If the system were uniform, the energy from the superconducting order
parameter is

H2
c

8π
=
α2

2β
. (28)

We assume the limit that Hc → 0 at T → Tc, such that the condensation energy is
simply

E/A =

∫ ∞
0

dx
( ~2

2m∗
|dΨ

dx
|2 + α|Ψ|2 +

β

2
|Ψ|4

)
=
α2

2β
× 2

∫ ∞
0

dx
(
ξ2(

df

dx
)2 − f 2 +

1

2
f 4
)

Compare to the condensation energy in the uniform case, we have

∆Ec
A

=
E

A
−
∫
dx
(
− H2

c

8π

)
=
H2
c

8π
δ, (29)

where δ carry the length unit defined as

δ = 2

∫ ∞
0

dx
(
ξ2(

df

dx
)2 − f 2 +

1

2
f 4 +

1

2

)
= 2

∫ ∞
0

dx(1− f 2)2

= 2

∫ ∞
0

df
(1− f 2)2

df
dx

= 2
√

2ξ(T )

∫ 1

0

df(1− f 2) =
4
√

2

3
ξ(T ). (30)

Now we consider in the case with the magnetic field H < Hc. Assume that Hc → 0,
such that we can use Eq. 30 for the condensation energy, which neglects the vector
field dependence. On the other hand, the magnetic field contribution can penetrate
within a region at the order of λ(T ). The magnetic field contribution to the Gibbs
function is

EH
A

=

∫
dx
B2

8π
− BH

4π
= −H

2

8π

∫
dx
(

1−
(

1− B

H

)2)
∼ −H

2

8π
c1λL(T ). (31)

where c1 is a numeric coefficient at the order of 1, and its actually value is not important.
Hence, the interface energy is

∆E/A =
H2
c

8π

(4
√

2

3
ξ(T )− c1

H2

H2
c

λL(T )
)

(32)

Set H = Hc, then in the limit of κ � 1, the surface energy is negative. This
means that when magnetic field enters the sample, it will fragment into many vortices.
Each vortex carries the minimum number of flux allowed by the flux quantization,
i.e., Φ0 = hc/(2e). On the other hand, if κ � 1, the surface energy is positive. It
does not favor to form vortices. The magnetic field goes into the bulk by suppressing
superconductivity. This divides the system into two different region called type (II)
and type (I) respectively. A more careful study of the surface energy shows that the
precise boundary is that κ < 1√

2
(type (I)), and κ > 1√

2
(type (II)).
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3.3 Condition for zero interface energy

Consider the GL equation,

1

2m∗

(
Π2
x + Π2

y

)
Ψ + αΨ + β|Ψ|2Ψ = 0, (33)

where

Πx = −i~∇x −
e∗

c
Ax, Πy = −i~∇y −

e∗

c
Ay (34)

Define Π± = Πx ± Πy, then we have

[Π+,Π−] = i~
e∗

c
Bz. (35)

Then the GL equation becomes

1

2m∗
Π−Π+Ψ(r) +

(~eBz(r)

2m∗c
+ α + β|Ψ|2(r)

)
Ψ(r) = 0. (36)

We seek the solution that

Π+Ψ(r) =
(
− i~(∇x + i∇y)−

e∗

c
(Ax + iAy)

)
Ψ(r) = 0,

∇yΨ− i∇xΨ =
e∗

~c
(Ax + iAy)Ψ, (37)

and this solution is called Sarma’s solution. Then

∇×B =
∂Bz

∂y
x̂− ∂Bz

∂x
ŷ =

4π

c
J =
−2iπe∗

m∗c
(Ψ∗∇Ψ−Ψ∇Ψ∗)− 4πe∗2

m∗c2
A|Ψ|2

∂Bz

∂y
=

2πe∗

m∗c
(Ψ∗ΠxΨ + ΨΠ∗xΨ

∗)

∂Bz

∂x
= −2πe∗

m∗c
(Ψ∗ΠyΨ + ΨΠ∗yΨ

∗)

∂Bz

∂y
− i∂Bz

∂x
=

2πe∗

m∗c

(
Ψ∗Π+Ψ + Ψ(Π−Ψ)∗

)
=

2πe∗

m∗c
Ψ(Π−Ψ)∗. (38)

On the other hand,

e~
2m∗c

B = −(α + βΨ∗Ψ)ẑ

e~
2m∗c

(∂Bz

∂y
− i∂Bz

∂x

)
+ βΨ∗(

∂Ψ

∂y
− i∂Ψ

∂x
) + βΨ(

∂Ψ∗

∂y
− i∂Ψ∗

∂x
) = 0

∂Bz

∂y
− i∂Bz

∂x
=

2m∗cβ

e~2
(Ψ(Π−)∗Ψ∗) (39)

In order for Eq. 38 and Eq. 39 to be consistent with each other, we need to have

2πe∗

m∗c
=

2m∗cβ

e∗~2
⇒ 2κ2 =

(m∗c
e∗~

)2β

π
= 1⇒ κ =

1√
2
. (40)
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Now consider a wall in the yz-plane. Consider the boundary condition that

x→ −∞, Ψ→ 0, B = Hcẑ

x→ +∞, Ψ→ |α|
β
, B = 0. (41)

Sarma’s solution does apply to these boundary conditions. Hence

G =

∫
dx
(
α|Ψ|2 +

β

2
|Ψ|4 +

1

2m∗

(
|ΠxΨ|2 + |ΠyΨ|2

)
+
B2

8π
− BHc

4π

=

∫
dxΨ∗(− 1

2m∗
(Π2

x + Π2
y)Ψ) + α|Ψ|2 +

β

2
|Ψ|4 +

B2

8π
− BHc

4π

=

∫
dx
(
− β

2
|Ψ|4 +

B2 − 2HcB

8π

)
(42)

Now subtract the Gibbs function of the uniform case at Hc, which is −H2
c

8π
. Then the

wall energy is

∆G =

∫
dx
(
− β

2
|Ψ|4 +

(B −Hc)
2

8π

)
. (43)

Since

B =
2m∗c

e~
(|α| − β|Ψ|2) = Hc −

2βm∗c

e~
|Ψ|2 = Hc −

√
8πβκ|Ψ|2, (44)

where we have used 2m∗c
e~ |α| = Hc at κ = 1√

2
. Then

∆G =

∫
dx(−β

2
+
β

2
)|Ψ|4 = 0. (45)

This means the vanishing of surface energy at κ = 1/
√

2, and H = Hc.

4 Vortex solution

4.1 A single vortex line

We consider in the extreme type II limit, i.e, λ� ξ, such that the vortex core radius ξ is
very small. We can neglect the cost of energy due to the suppression of superconducting
order parameter at the core. Then the free energy becomes

F =

∫
r>ξ

dv
B2

8π
+

~2ρs
2m∗

(∇φ− e∗

c
A)2 =

∫
r>ξ

dv
B2

8π
+

m∗

2ρse∗2
J2
s

=

∫
r>ξ

dv
B2

8π
+

m∗c2

32π2ρse∗2
(∇×B)2 =

∫
r>ξ

dv
1

8π

(
B2 + λ2

L(∇×B)2
)
, (46)

with λ−2
L = 4πρse∗

m∗c2
. After performing the variational principle, we arrive at

B + λ2
L∇×∇×B = B− λ2

L∇2B = Φ0ẑδ
2(r), (47)
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where the δ-function on the right hand represents the vortex core at the size of ξ. Take
a loop around the core, we have∫

dσ ·B + λ2
L

∮
∇×B · dl = Φ0. (48)

At r � λL, ∇×B = 4π/cJs(r) decays exponentially, then the loop integral is negligible,
and, hence Φ0 is the fundamental flux quanta. If ξ < r � λL, the contribution from
the first time scales as ξ2/λ2

L, then we have

∇× (B(r)ẑ) = −dB
dr
êθ =

Φ0

2πλ2
L

1

r
êθ ⇒ dB =

Φ

2πλ2
L

d ln r−1 ⇒ B =
Φ

2πλ2
L

ln(
λ

r
) + const

Figure 1: Structure of a single vortex line.
The magnetic filed and screening current
distribute within a distance at the order of
λ from the core, and the order parameter is
suppressed within a distance within ξ.

Set B = Bẑ, we use the cylindrical
coordinate,

∂2B

∂(r/λ)2
+

1

r/λ

∂B

∂(r/λ)
−B = 0, (49)

which is the zeroth order imaginary argu-
ment Bessel function. At r →∞, B → 0,
hence, we use the solution that

B(r) =
Φ0

2πλ2
L

K0(
r

λL
) (50)

where K0(x) → ln 2
x

at x → 0. Then we
also have the long distance behavior

B(r) =
Φ0

2πλ2
L

√
πλL
2r

e
− r
λL (51)

at r � λL.

Now we calculate the free energy of a single vortex line. By using the classic
equation Eq. 47, we have

F =
λ2
L

8π

∫
r≥ξ
−B · ∇ ×∇×B + (∇×B)2

=
λ2
L

8π

∫
r≥ξ
∇ · (B×∇×B) =

λ2
L

8π

∫
r≥ξ

ds · (B×∇×B)

=
λ2
L

8π
2πξB(ξ)|∇ ×B(ξ)|L, (52)

where L is the length of the vortex line, and the integral surface is the side of a cylinder
with a small radius ξ. Plugging B(ξ) = Φ0

2πλ2
ln(λ/ξ), |∇×B(ξ)| = Φ/(2πξλ2

L), we have

F/(Lλ2
L) =

( Φ0

4πλ2
L

)2

ln
λL
ξ
.⇒ F/L =

( Φ0

4πλL

)2

ln
λL
ξ

(53)
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4.2 The lower critical field Hc1

For the type (II) case, there exist a lower and an upper critical fields, Hc1 and Hc2,
respectively. Above Hc1, vortices start to form. Consider the dilute limit, or, so that
we can neglect the interaction among vortex lines. Consider the Gibbs function per
unit length of the vortex line,

G/L = NF/L− AB̄H
4π

(54)

where N is the number of vortices, and A is the area, B̄ is the average value over the
unit cell of vortex. The advantage to introduce B̄ is that we do not need to examine
the detailed spatial distribution of B-field.

Since each vortex carry the fixed flux Φ0, B̄A/Φ0 = N . We have

g = G/(LA) = B̄
(F/L

Φ0

− H

4π

)
=

B̄

4π

( Φ0

4πλ2
L

ln
λL
ξ
−H

)
, (55)

where n is the vortex density.

Hence, we have the following two cases

1. The Meissner state: H < Hc1 = Φ0

4πλ2L
ln λL

ξ
. g is an increasing function of B,

hence, the minimum g state is with B = 0.

2. The mixed state: H > Hc1. g decreases as B increases, and this marks the onset
of the mixed state, the state with vortices.

4.3 Interaction between vortex lines

Consider two vortex lines along the z-axis located at r1 and r2. Then the magnetic
field distribution is determined by

B + λ2
L∇×∇B = Φ0(δ(r− r1)

+ δ(r− r2)) (56)

hence the solution of B(r) is a superposition

B(r) = B1(r) + B2(r),

Bi(r) =
Φ0

2πλ2
K0(
|r− ri|
λL

)ẑ. (57)

Similarly, the energy of the system is

F =
λ2
L

8π

∫
(B×∇×B) · dS =

λ2
L

8π

∫
(dS1 + dS2) · (B1 + B2)× (∇×B1 +∇×B2),(58)

where dS1,2 are cylinder with very small radius ξ around r1,2, respectively. Among the
8 terms, a few terms are non-vanishing as ξ → 0, since Bi’s are regular, Ji = c

4π
∇×B

diverges, we should combine dSi and ∇×Bi together. There will be 4 terms, and two
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of them are the self-energies of each vortex which are The following two terms describe
the interaction between vortices 1 and 2,

U12/L =
λ2
L

8π

(∫
dS2 · (h1 ×∇× h2) +

∫
dS1 · (h2 ×∇× h1)

)
=

λ2
L

8π

(
h1(r2)ẑ ·

∫
(∇× h2)× dS2 + (1↔ 2)

)
=

λ2
L

8π
h1(r2)

Φ

2πξλ2
L

2πξẑ · (êθ ×−êr)) + (1↔ 2)

=
Φ

8π
(h1(r2) + h2(r1)) =

Φ0

4π
h12 =

Φ2
0

8πλ2
L

K0(
r12

λL
) (59)

Hence, the interaction is repulsive. It diverges as ln(|λL/r12|) at short distance, while
at large distance, it decays 1/

√
r12e

−r12/λ due to screening currents.

When H = Hc1 + 0+, the vortex lines are dilute. We only need to include the
nearest neighbour vortex lines for the Gibbs function

G/L = NF/L− AB̄H
4π

+
zN

2

Φ0

2πλ2
L

K0

( d
λL

)
g =

B̄

4π

(
Hc1 −H +

z

2

Φ0

2πλ2
L

K0

( d
λL

))
=

B̄

4π

(
Hc1 −H +

z

2

Φ0

2πλ2
L

K0

(√ Φ0

B̄λ2

))
(60)

where the last term is the H-field produced from another vortices, and the distance

d ∼
√

Φ0

B
.

Figure 2: The Gibbs function of the vortex
lattice.

The effect of the vortex interaction is
exponentially small in the dilute limit.
But it becomes significant when the inter-
vortex distance becomes comparable with
the penetration depth. The sketch of the
the Gibbs function v.s. B̄ is plotted in
Fig. 2. There is a minimum of position
of B̄, which determines the length of the
vortex lattice.
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