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Entropy (I) - thermodynamic perspective

Entropy is an essential concept arising from thermodynamics. Later on its mi-
croscopic nature was revealed as a description of disorderness. Its importance
spread to many aspects of modern sciences including information science and
life science.

In the last lecture, we have defined the reversible and irreversible thermody-
namic processes and the Carnot cycle. Carnot proved that the efficiency of an
irreversible thermal engine does not depend on the concrete designs and work-
ing substances. It only depends on the nature of the high and low temperature
heat reservoirs, i.e., temperatures. The internal energy of a system U(P,V,N)
is a function of state, i.e, if the particle number N, volume V , pressure P, are
given, then U is determined. If the system completes a cycle and returns its
original state, its internal energy does not change, i.e.,∮

dU = 0. (4.1)

In other words, dU is a total derivative, which is similar to the potential func-
tion we learned in mechanics. Indeed, U is called a thermodynamic potential.

In contrast the heat transfer Q is a process-dependent quantity. Typically
speaking, for a closed cycle,

∮
dQ = −

∮
dW , 0. Naturally, it would be

interesting to explore whether it is possible to design a heat-related quantity as
a state function, and then its change is a total derivative.

4.1 Clausius’ theorem

In order to define a heat related total derivative, Clausius proved the following
theorem.
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Clausius’ theorem: For any cyclic process for a closed system which inter-
acts with the environment via heat transfer and work, it satisfies∮

dQ
T
6 0, (4.2)

in which the equality holds when the entire process is reversible.
Proof: Denote the cyclic process O. During different steps of the process, the
system contacts different heat reservoirs, say, R1 with temperature T1, R2 with
temperature T2, ...., respectively. At each step, the system transfers heat ∆Qi

whose signs ± mean heat absorption and release, respectively.
∆Qi’s are transferred at different temperatures Ti, hence, they cannot be

compared at an equal basis. They should be properly normalized for compar-
ison. For this purpose, let us introduce a standard heat reservoir R0 whose
temperature is defined as the temperature standard T0.

Next, we bring a Carnot thermal engine working between the R0 and each
heat reservoir Ri. The Carnot engine is run in the cycle in the following way:
Since Qi is taken out of the reservoir Ri during the cycle O, let the Carnot
engine input Qi back to Ri, such that each reservoir has zero net heat transfer.
Meanwhile Q0

i is transferred from the standard reservoir to the Carnot engine,
then

Q0
i

Q1
=

T0

T1
. (4.3)

The total amount of heat extracted from the standard reservoir is

Qtot =
∑

i

Q0
i = T0

N∑
i=1

Qi

Ti
. (4.4)

Hence, after running the cycle O followed by the series of Carnot cycles
between Ri and R0, the net effect is to extract Qtot from the standard reservoir
R0 and convert it to work. This is impossible if Qtot > 0, which would violate
the 2nd law of thermodynamics. It is ok if Qtot < 0 such that work can be
completely converted into heat. Hence,

N∑
i=1

Qi

Ti
6 0. (4.5)

Its continuous form becomes ∮
dQ
T
6 0. (4.6)

If the cycle O is reversible, we can reverse all the steps above, then∮
−

dQ
T
6 0. (4.7)
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Combine Eq. 4.6 and Eq. 4.7, the following conclusion is arrived∮
dQ
T

= 0, (4.8)

i.e., dQ/T is a total derivative for reversible processes.

4.2 Entropy as a state function

Based on Eq. 4.8, we are able to construct a new thermodynamic potential – en-
tropy S for a thermodynamic system, which was defined by Clausius in 1850s.
Considering two states “a” and “b”, we design a reversible process following
a path to connect them, then

S (b) − S (a) =

∫ b

a
dS =

∫ b

a

dQ
T
. (4.9)

As long as the process is reversible, S (b) − S (a) is path independent.
We can write down the differential form for the 1st law of thermodynamics

for a reversible process as

dU = dW + δQ = −pdV + TdS . (4.10)

If the process connecting states a and b is irreversible, Eq. (4.9) is no longer
held. Suppose we complete such an irreversible process from a to b, and then
move back from b to a following a reversible process. Overall such a cycle is
irreversible, hence,

0 >
∮

dQ
T

=

∫ b

a,irr

dQ
T

+

∫ a

b,rev

dQ
T

=

∫ b

a,irr

dQ
T

+ S (a) − S (b), (4.11)

then

S (b) − S (a) >
∫ b

a,irr

dQ
T
. (4.12)

Now we have an important result: An isolated system has the tendency to
increase its entropy. For a thermally isolated system evolving from state a to b,
if the process is irreversible then

S b − S a >

∫ b

a,irr

dQ
T

= 0, (4.13)

which means that an isolated system has the tendency to increase entropy.
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4.3 Negative temperature

Consider two systems 1 and 2 at temperatures T1 and T2, respectively. Then
we bring them to contact together, and after some time, they reach thermal
equilibrium. The total entropy change with time t should increase

ds
dt

=
ds1

dt
+

ds2

dt
=

(
∂s1

∂E1

)
T

dE1

dt
+

(
∂s2

∂E2

)
T

dE2

dt
> 0. (4.14)

Since dE1
dt + dE2

dt = 0, we arrive at

ds
dt

=
dE1

dt

(
1
T1
−

1
T2

)
> 0. (4.15)

Assume heat flows from system 1 to 2, i.e., dE1
dt < 0, then 1

T1
< 1

T2
, i.e., T1 > T2.

Hence, heat transfer is from a high temperature system to a low temperature
system.

Actually, there is another possibility. Although the thermodynamic temper-
ature is defined as positive, if we extrapolate its definition to negative value, it
is fine to have T1 < 0, and T2 > 0. The heat flows from a negative temperature
to a positive temperature, hence, a negative temperature is actually higher than
a positive temperature.

Then what do we mean temperature can be negative? Since 1/T = ∂S/∂E,
a negative temperature means that as energy E increases the entropy S drops.
Later on, we will see that the number of microscopic states scales as es/kB ,
hence, as E increases the states of matter decreases, which is highly unusual.
Nevertheless, we will provide an example in the HW.

If both T1 < 0 and T2 < 0, by keeping dE1
dT < 0, we would arrive

1
|T1|

>
1
|T2|

, (4.16)

which means |T1| < |T2|. Hence, 0− the hottest temperature.

4.4 Why do we need to eat?

This is an interesting and deep question. An apparent answer is that our daily
life activities consume energy and food is the supply. This is certainly correct,
nevertheless, it does not touch the essence. For example, we cannot survive by
just drinking hot water even though it also contains energy.

In order to be alive, a human needs to maintain his/her body temperature
constant at T ≈ 310K. We assume that he/she is the same at the beginning of
each day, such that one-day life can be viewed as a cycle. Of course this is
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only an idealization, and no one can be immortal! Nevertheless, it is a good
approximation within a short period of time. For this one-day life cycle, the
entropy does not change since it is a function of state. The Clausius’ theorem
yields

0 =

∮
ds >

Q
T
. (4.17)

Q < 0 means that heat is released from the body into the environment. Since
∆U = W + Q = 0,

W = −Q > 0. (4.18)

This is not the mechanical work, but the one in the general sense, i.e. the energy
without entropy. It is the energy stored in chemical bonds, such as in glucose.
Chemical bonds are like elastic springs with tension, and the bonding energy
is typically at the order of 1eV. When a chemical bond is broken, energy is
release to do work.

To be more precise, let us look inside the life cycle. Our body has a natural
tendency of entropy increase. Wastes are produced during the irreversible life
process – just like that a room becomes messy as time evolves if no one cleans
it. Hence, we divide the daily entropy change in our body into two parts: 1)
The increase from the irreversibility, ∆S 1 > 0, and 2) the decrease from the
heat release 0 > ∆S 2 > Q/T . Since the total entropy change should be zero,
i.e., |∆S 1| = |∆S 2|,

W = |Q| > T |∆S 2| = T |∆S 1|. (4.19)

Even we lay flat all day without doing any work, eating is still necessary
to remove the entropy ∆S 1 from the life irreversibility. In fact, the daily basal
metabolism rate per unit body weight is roughly 25kcal/kg, hence, the daily
entropy production rate R is roughly

R =
2.5 × 104 × 4.2

310
J/(K.kg.day) = 340J/(K.kg)

= 2.4 × 1025kB/(kg.day) (4.20)

This amount of entropy needs to be removed through heat release. If only
energy conservation matters, hot water is also fine as an energy supply. Nev-
ertheless, its energy is of low quality which contains entropy. In comparison,
food provides high quality energy with little entropy.


