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Entropy (II) - The statistical perspective

Clausius’ introducing entropy is purely thermodynamic. It microscopic origin
remains elusive. In comparison, internal energy has a much clearer microscop-
ic picture. Boltzmann pointed out that entropy is the logarithm of the number
of microscopic states, which bridges the thermodynamic definition and the mi-
croscopic picture of entropy.

5.1 Statistical meaning of entropy

Boltzmann provided a probability interpretation of entropy, which later be-
came widely applied in physics and information sciences. Suppose a system
has equal probability among W states, then its entropy is defined as

S/kB = ln W, (5.1)

where kB is Boltzmann constant carrying the unit of entropy. This formula is
inscribed on Boltzmann’s tombstone.

It is mysterious how Boltzmann discovered this remarkable relation of Eq.
5.1. Let me imagine a possible motivation. Consider an isothermal expansion
of an ideal gas at temperature T from the volume V0 to V1, the entropy change
reads

∆S
kB

=
Q

kBT
= −

W
kBT

= N ln
V1

V0
. (5.2)

In the volume doubles, the possible configuration space of a molecule also
doubles, then the entropy increase per molecule is kB ln 2. Based on this obser-
vation, it is reasonable to speculate Eq. (5.1).

Next we generalize the Boltzman formula of Eq. (5.1) to the case that d-
ifferent states are taken at different probabilities. Consider a system has the
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Figure 5.1 Tombstone of Ludwig Boltzmann (1844-1906) on which S =
k ln W is inscribed. Unfortunately, he committed suicide, after a long term
defending his theory. He felt tired and depressed....

probability pi lying in state i for i = 1, 2, ...n, where
∑n

i=1 pi = 1. How to
calculate the entropy?

Let us replica the system to N copies with N a very large number. This
N-copies put together is called an ensemble. In this ensemble, there are N pi

systems lying in state i if N is very very large. Hence, the configuration number
of the ensemble is

W =
N!

Πn
i=1(N pi)!

. (5.3)

Then applying the Boltzman entropy formula, we arrive at the entropy of the
ensemble as

S E

kB
= ln

N!
Πn

i=1(N pi)!
= ln N! −

n∑
i=1

ln(N pi)!. (5.4)

We need to further expand Eq. 5.4. Correct to the order of O(ln N), the fol-
lowing equation holds

ln N! ≈ N ln N − N +
1
2

ln N + O(ln N), (5.5)
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Here is a simply way to derive Eq. 5.5,

ln N! =

N∑
j=1

ln j. (5.6)

Use the trapezoid method to approximate the integral∫ M+1

M
ln xdx = (M + 1) ln(M + 1) − M ln M − 1

≈ ln M +
1

2M
+ O(1/M2)

≈
1
2

(ln M + ln(M + 1)) + O(1/M2) (5.7)

Summing over M from 1 to N − 1, we arrive at∫ N

1
ln xdx = N ln N − N + 1

=
1
2

ln 1 + ln 2 + ... + ln(N − 1) +
1
2

ln N + C, (5.8)

where C is the sum of errors of each step. Since the error of each step scales
as 1/M2, its sum converges as N → ∞, hence C is a constant. Then we arrive
at the logarithmic version of the Stirling formula correct to O(ln N).

Applying Eq. 5.5, we arrive at S E/(NkB) = −
∑

i pi ln pi. The entropy for the
system S is just S E/N, we have

S = −

n∑
i=1

pi ln pi. (5.9)

If all the states are with the equal probability, i.e., p = 1/n, then the entropy
formula is reduced back to the Boltzmann form Eq. (5.1).

5.2 Thermodynamics meets statistics

The Boltzmann’s interpretation of entropy is impressive. Nevertheless, it has
a big gap with its original thermodynamic meaning. How to bridge the micro-
scopic and macroscopic physics?

Now we introduce the concept of ensemble, which is the foundation of mod-
ern statistical mechanics. The theory of ensemble was developed by Josiah
Gibbs in 1870’s. Consider a system, and duplicate it into N identical copies.
According to different relations among the copies, Gibbs defined different
types of ensembles.



5.2 Thermodynamics meets statistics 21

(i) Microcanonical(NVE) ensemble: Every system in the ensemble must be
strictly isolated with its environment without heat and particle exchange,
i.e., the total energy (E) and the particle number (N) in each system is fixed.

(ii) Canonical (NVT) ensemble: The series of systems 1, 2, 3, ... N in the en-
semble are thermally connected. There can be heat transfer among them to
reach thermal equilibrium, sharing the same temperature T , i.e., each system
may have different energy. They should have no particle exchange, i.e., the
particle number N in each system remains fixed.

(iii) Grand canonical (µVT) ensemble: There exist both heat and particle number
exchange between different systems in the ensemble. Neither energy and
particle number are fixed in each systems. Instead, they reach thermal and
chemical equilibriums such that all the systems share the same temperature
T and the chemical potential µ.

There may also exist other types of ensembles. For example, in chemical reac-
tions the volume is often not fixed, but the pressure is fixed. You may define
Gibbs ensemble, also called, isobaric-isothermal ensemble, in which every sys-
tem has fixed pressure (P), particle number (N), and temperature (T).

Now let employ the perspective of canonical ensemble such that a system
therein is characterized by temperature T , particle number N, and volume V .
Even though the energy of each system Ei is not conserved, their total energy
remains fixed, i.e., the following constraint exists,

N∑
i=1

Ei = E0, (5.10)

where E0 is a constant.
The ensemble as an entire object is isolated from the environment. Since its

total energy is conserve, any state of the ensemble (not the state of a system)
should be treated at equal footing. Hence, the probability ρ of an ensemble
state is a constant as long as the constraint of Eq. (5.10) is satisfied,

ρ = Cδ(E − E0)ΠN
i=1Γi, (5.11)

where C is a normalization constant, ∆Γi is the number of states of the i-th
system at the energy Ei. Then according to the Boltzmann formula,

Γi(Ei) = eS i(Ei)/kB , (5.12)

in which a small broadening of energy ∆Ei is assumed.
Define the entropy of the ensemble S (E1, E2, ...EN) as

S (E1, E2, ...EN) =

N∑
i=1

S i(Ei). (5.13)
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At thermal equilibrium, we want the entropy reach the maximum. Hence, we
use the Lagragian multiplier method by introducing β,

f (E1, E2, ...EN) = S (E1, E2, ...EN) − kBβ(
N∑

i=1

Ei − E0). (5.14)

The maxima of entropy is reached at

∂S (E1, ..EN)
∂Ei

=
∂S i(Ei)
∂Ei

= kBβ. (5.15)

Hence, β is a common factor shared by all the systems at thermal equilibrium.
According to the 1st law of thermodynamics of the reversible process, T =

(∂E/∂S )V , we make the correspondence

kBβ =
1
T

=

(
∂S
∂E

)
V
, (5.16)

(Note we use the symbol E as internal energy here.).

5.3 Boltzmann distribution via canonical ensemble

Consider a canonical ensemble. The duplications of N copies of the system you
want to study, which reaches thermal equilibrium via thermal contact. Pick up
one system S for study, and treat all the others together as the heat reservoir R.
The energy of the system S is denoted as E and that of the reservoir is denoted
as ER, hence,

E + ER = E0, (5.17)

where E0 is fixed.
The system S may be in a set of states 1, 2, ..., n.... We would like to figure

out the probability for system S lying in state n with the energy ES ,n. Since the
system plus the reservoir together is an isolated big system, all the states with
the same En + ER = E0 are at equal probability. Hence, the probability of the
system S staying at state n is proportional to how many states of the reservoir
R at the energy of E0 − En. Using the Boltzmann formula, the number of states
is represented by putting entropy on the exponent, i.e.,

ρn = CeS R(E0−En)/kB , (5.18)

where C is a normalization constant. Since En is a small quantity relative to
E0, the entropy S R can be expanded as

S R(E0 − En) = S R(E0) −
∂S R

∂E
|E0 En, (5.19)
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then

ρn = Z−1e−βEn , (5.20)

where Z as a function of temperature is called the partition function,

Z(β) =
∑

n

e−βEn . (5.21)

This distribution is called the Boltzmann distribution.
Remember the entropy formula S/kB = −

∑
n ρn ln ρn derived before, and

plug in ρn = Z−1e−βEn , then we arrive at

S/kB = −
∑

n

ρn(ln Z−1 − βEn) = ln Z − β〈E〉 = ln Z − βU. (5.22)

Hence, −kBT ln Z = U − TS . This quantity is denoted as the free energy, i.e.,

F = U − TS . (5.23)

The free energy F is crucially important for a system at the thermal equilib-
rium with temperature T . Here we provide an intuitive and crude explanation.
We divide the energy E into many small steps of ∆E, and reexpress the parti-
tion function in Eq. 5.21 as

Z =
∑

∆Eg(E)e−βE =
∑

e−β[E−kBT ln(∆Eg(E))] =
∑

e−β[E−TS (E)], (5.24)

where ∆E is a small energy step, and ∆Eg(E) is the number of states within
the energy interval from E to E + ∆E.

Assume the contribution to the summation is peaked within the interval Ē ±
1
2 ∆E, where ∆E is the width of fluctuations. Ē is the mean value and roughly
speaking, it is also the most probable value. For a macroscopic system, ∆E
scales as N1/2 and Ē scales as N, then ∆E/Ē ∝ N−1/2, hence, the relative
fluctuation goes to zero. Then the most probable energy Ē place occurs when
E − kBT ln

[
∆Eg(E)

]
takes the minimal value. Since kB ln

[
∆Eg(E)

]
is just the

Boltzmann’s definition of entropy, hence, the free energy reaches minimum at
thermal equilibrium. Hence at a finite temperature, there exists a competition
between energy E and the entropy S . The interplay between them gives rise to
a variety of rich physics of transitions of states of matter.

Based on the differential form of the 1st law of thermodynaics for reversible
process,

dU = −pdV + TdS , (5.25)

the differential form of the free energy F is obtained,

dF = dU − d(TS ) = −pdV − S dT. (5.26)
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Hence, entropy can be calculated via

S = −

(
∂F
∂T

)
V

(5.27)

5.4 Free energy of an ideal gas

For a classic system such as an ideal monoatomic gas with N atoms, its states
are represented in the phase space of N-particles represented by (r1,p1; ..., rN ,pN).
For an ideal gas, the probability distribution function can be factorized into that
of each particle,

ρ(r1,p1; ..., rN ,pN) = ΠN
i=1ρ(ri,pi) = ΠN

i=1ρ(ri)ρ(pi). (5.28)

In free space, ρ(ri) = 1/V is a constant, where V is the system volume. The
single particle probability distribution function is

ρ(ri,pi) =
1
Z1

exp

−β  p2
x + p2

y + p2
z

2m

 , (5.29)

where

Z1 = V
$

dpxdpydpz exp

−β  p2
x + p2

y + p2
z

2m

 = V (2πmkBT )3/2 .(5.30)

Nevertheless, for an N-particle system, the partition function is defined as

ZN =
1

N!
Πi

∫
dpidqi

(2π~)3 e−
β

2m
∑N

i=1 p2
i . (5.31)

Here the factor of 1/N! is a quantum mechanical feature that all particles of
the same kind are indistinguishable. The factor of (2π~)3 represent the volume
of a quantum state in a single particle phase space.

It can be integrated that

ZN =
1

N!

 V
λ3

T

N

, (5.32)

where λT is called the thermal wavelength defined as

λT =
h

√
2mπkBT

. (5.33)

The free energy F is

F
N

= −
kBT
N

ln ZN = kBT
 ln N!

N
− ln

V
λ3

T

 = kBT
ln N − 1 − ln

V
λ3

T


= kBT

[
ln

(
λ3

T n
)
− 1

]
. (5.34)


