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Cosmic velocities

Newton’s solution to Kepler’s problem paved the way for the space age, start-
ing from thelaunch of Sputnik 1 in 1957. Below we explain the calculation of
the three cosmic velocities. The first astronaut was Yuri Gagarin (1934-1968).

10.1 1st cosmic velocity - the orbiting velocity

The first cosmic velocity is that the an object does not fall on the group but
orbiting around the earth.

Vi GMm
m— =
R R
GM
2
== 10.1
vi= g (10.1)

where m is the mass of the object, M is the earth mass, and R is the earth radius.
Since g = GM/R?, we arrive at

v = \/R_ (10.2)
and the period T is
T =2nR/v =2n+/R/g (10.3)
Plugging in R = 6400km and g ~ 10m/s?, we arrive at

vi = 8km/s, T ~ 5024s ~ 84min. (10.4)

62
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Figure 10.1 The total energy of an elliptic orbit is completely determined
by the half major axis @ as £ = —%_ The angular momentum is com-
pletely determined by the half length of the cord passing the focus & as
I =mNGMh = mh\JGM]h.

10.2 A few useful results

The total energy is completely determined by a.

1 GMm GMm
E=Ex+E,=-m* - =- ) 10.
xk+E, 2mv p 2 (10.5)
The angular momentum is completely determined by A.
GM
i:lﬁ:m?xﬁ’:m\/GMh:mhw/T. (10.6)

For all the orbits with the same energy E, they share the same half major ax-
is. But their orbital angular momentum is different. The circular orbit has the
largest orbit angular momentum. This could be understood as follows: The ki-
netic energy only depends on speed but not the direction of the velocity, hence,
if we let velocity be perpendicular to the radius, we can maximize angular mo-
mentum. This is just the circular orbit. For all the orbits with the same 4, they
share the same angular momentum, but their energies are different. The orbital
angular momentum is mrvsin#, hence, if 6 = 1/2, we can let v be smallest,
which leads to the minimum energy.



64 Cosmic velocities
10.3 2nd cosmic velocity

The 2nd cosmic velocity v, refers to the minimal velocity at which the object
can fly escaping from the earth. This means that the total energy, the sum of
the kinetic and the gravity potential energy, is zero. Hence

1 GMm
- T =0, (10.7)

[2GM
vy = R (10.8)

Its relation with the first cosmic velocity is

which shows that

vy = V2 ~ 11.2km/s. (10.9)

At 2nd cosmic veolcity, the orbit is a parabola. Since the total energy is
conserved at zero, this means that the satellite can move to infinity where E, =
0 at which its velocity goes to zero. If v > V2GM/R, the orbit is a hyperbola.
E;; = Ex + E, > 0, which means that the satellite can go to infinity with
E; = %mv”2 — GM/R. Satellites with parabolic and hyperbolic orbits fly away
and will not return to the earth.

10.4 3rd cosmic velocity

The 3rd cosmic velocity v is considerably more complicated than the 1st and
2nd ones. This is the minimal velocity at which the object can escape the solar
system.

First, we calculate the orbiting velocity of the earth. The earth-sun distance
R, = 1.5 x 10%km, and the period is 1 year. Then the orbiting velocity of the
earth around the Sun is

v, = 2nR/T ~ 30km/s. (10.10)
Then the escaping velocity respect to the Sun is
Ves = V2vg ~ 42.4km/s. (10.11)

Nevertheless, the 3rd cosmic velocity is the object velocity when launched with
respect to the earth surface, which can take the advantage of the earth orbiting
velocity.

Let us consider three steps of launching a rocket to fly away from the earth.
During these steps, the distance of the rocket with respect to the Sun changes
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very little, hence, its potential energy due to the gravity from the Sun can be
approximately as a constant. We only count the kinetic energies of the rocket,
the earth, the rocket-earth potential energy, and the chemical energy of the fuel.
The first stage is before the launch. The earth and the rocket have the same
velocity vy, and the energy stored in the chemical fuel E,. The total energy is

GM
E = —(m + MW+ Eyy — Tm (10.12)

The 2nd stage is that the rocket just acquires the 3rd cosmic velocity vz by
burning out the chemical fuel, but is still very close to the earth surface. Then

M GM.
E, = —(vo 413 + (v + &) = Tm (10.13)

where Av is the recoil of the earth. According to momentum conservation, we
have

(m+ M)vy = m(vg + v3) + M(vy + Av)
mv3 + MAv = 0. (10.14)

Then Eq. 10.13 is reduced to

1 M GM
E, = E(m + M)V% + %V% + 3AV2 - —Rm (1015)
The energy conservation E| = E; yields
m m_, m,
Eep = Z(1+ 20v3 = 03, (10.16)

which is correct to the zeroth order of m/M.
The 3rd stage is that the rocket flies away from the earth with the velocity
V2v, with respect to the Sun. The total energy at this stagger is

1 M
E; = 5m( V2v,)? + 7(% + AV, (10.17)

where AV’ is the recoil of the earth at the end of the 3rd stage. According to the
momentum conservation,

(m+ M)v, = mV2vy + M(v, + AV)
MAY = -m(V2 - 1), (10.18)

Then Eq. 10.17 is reduced to

M
E; = %(\/ﬁvo)z + ?vlz) —-m(V2 - 12, (10.19)



66 Cosmic velocities

According to energy conservation, E| = E;3

m m GMm
Evﬁ((«/ﬁ)z—z(\/i—l)—l)z Evg—T

2
vi=v2(V2-1) +43 (10.20)

Plugging in v, = 30km/s and v, = 11.2km/ s, then we arrive at

vy = V302 x 04142 + 11.22 = 16.7km/ s. (10.21)





