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Kepler’s Problem

Newton once said that he stood on the shoulders of giants. Although it was said
that he was alluding Hook negatively, we could understand it in a positive way.
Scientifically, the giants for Newton are Galileo and Kepler(1571-1630AD).
Galieo’s contribution was already presented in previous lectures, and now we
proceed to study Kepler’s problem. The solution to Kepler’s problem was ac-
complished by Newton, based on which the concept of the universal gravity
came into being. This is a most influential achievement of the human mind.

6.1 Kepler’s story

Kepler summarized Tycho Brahe’s observation data and proposed three laws
of planet motions, based on which Newton identified the inverse-square law of
gravity. This was actually a quite complicated and interesting story.

At Kepler’s time, people only knew five planets except the earth: Mercury,
Venus, Mars, Jupiter, and Saturn. Kepler was inspired by the fact of the exis-
tence of 5 convex polyhedral (Platonic solids): tetrahedron, cube, octahedron,
dodecahedron, and icosahedron. He proposed that there would exist a one-to-
one correspondence between the five planets to the five Platonic solids:

Mercury↔ octahedron,Venus↔ icosahedron,

Mars↔ dodecahedron, Jupiter↔ tetrahedron,

Saturn↔ cube. (6.1)

As shown in Fig. 6.1, the sphere of the earth orbit is set as a reference. The
earth orbital sphere is circumscribed to a dodecahedron whose circumscribed
sphere is the Mars orbit. The Mars orbital sphere is circumscribed to a tetrahe-
dron whose circumscribed sphere is the Jupiter orbit. Furthermore, the Jupiter
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Figure 6.1 From Wikipediea. Kepler’s model of solar system. He suggested the
correspondences: Mercury↔ octahedron, Venus↔ icosahedron Mars↔ dodec-
ahedron, Jupiter↔ tetrahedron, Saturn↔ cube.

orbital sphere is circumscribed to a cube whose circumscribed sphere is the
Saturn orbital sphere. On the other hand, the earth orbital sphere has an in-
scribed icosahedron whose inscribed sphere is the Venus orbital sphere. The
Venus orbital sphere has an inscribed octahedron whose inscribed sphere is the
Mercury orbital sphere.

Kepler wrote his theory in a book and sent it to Tycho Brahe, who spent his
life on observing planet motion and accumulated enormous data. (He also sent
it to Galileo but Galileo did not response.) Tycho Brahe welcomed and hired
Kepler as his assistant. After Tycho Brahe’s passing way, Kepler spent 20 years
to analyze Tycho’s data and hoped to verify his model. To his disappointment,
Kepler failed to fit Mars’ orbit by a circle. Finally, he reluctantly to recognize
that planet orbits are ellipses in 1605, which is Kepler’s first law. The largest
eccentricity of planet orbits is that of Mercury, which is 0.2. Eccentricities for
others are not large: emars = 0.09, e jupiter = 0.05, esaturn = 0.05, euranus = 0.05,
eearth = 0.02, eneptune = 0.008, evenus = 0.007, and emoon = 0.05, which are
in good approximations as circles. After further studies, he published Kepler’s
2nd law, i.e., the area law, and the 3nd law which relates the radii and periods
of different orbits. Nevertheless, Kepler did not feel pride for these discoveries
since ellipse is not as perfect as circle.

Hence, Kepler discovered the laws of planet motions in a dramatic way. He
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Figure 6.2 Kepler’s 2nd law. The area that the earth-Sun line swept in a unit time
∆t is proportional to the angular momentum of the earth.

was studying the wrong problem but arrived at the correct answer. Kepler’s law
served as the motivation and foundation for Newton’s theory of gravity.

6.2 Kepler’s three laws

6.2.1 The 1st law

The planet’s orbit is a planar ellipse, and the Sun lies at one of the foci of the
ellipse.

Kepler’s first law is actually a very strong statement. Generally speaking,
a planet moves in the dimensional (3D) space, but this law states that it is
planar. A planar motion does not always form a closed orbit, but Kepler’s first
law assured that it is closed, and it is periodic. Copernicus thought that the
planet orbit should be a circle as influenced by the aesthetic philosophy of
Greeks. Nevertheless, Kepler figured out in general a planet orbit is an ellipse.
A circular orbit is a special case in that the Sun lies in the center of the circle.

6.2.2 The 2nd law

Since the general orbital of a planet is elliptical rather than circular, the planet
motion at each point in the orbit is different. To connect the planet motion
along the orbit, that is what Kepler’s 2nd law tells us.

The areas swept by the line connecting the Sun and a planet are equal in
equal time intervals.

Assume that within a time interval ∆t, the line running from the Sun to a
planet sweep the area of ∆S . Kepler’s 2nd law states that ∆S/∆T is a constant.
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Consider two special positions in a planet orbit: the apogee (the farthest
point from the Sun), and the perigee (the nearest point from the Sun). Denote
the planet displacement vectors relative to the Sun at the apogee and perigee
are ra and rb, respectively. Correspondingly, the velocities are denoted as va

and vb, then va ⊥ ra, and vb ⊥ rb.
The arc length traveled around the apogee during time ∆t is ∆s = v1∆t, and

the area swept at the apogee is ∆S = 1
2 r1∆s = 1

2 r1v1∆t. Similarly, the same
area should be swept during ∆t around the perigee ∆S = 1

2 r2v2∆t. Then

mr1v1 = mr2v2, (6.2)

where the planet mass m is multiplied. The product of linear momentum and
the displacement is actually the angular momentum, whose precise definition
will be given later. It means that the angular momentum L1 at the apogee equals
that of L2 at the perigee. Since r1 > r2, we have v1 < v2.

If the planet is at a general point in the orbit, then v and r are no longer
perpendicular. Their relative angle is denoted by θ. Then the area swept during
a small time-interval ∆t is

∆S =
1
2

rvsinθ. (6.3)

If we add a direction to the area, it becomes ∆S = 1
2 r × v. Hence it means the

angular momentum conservation,

L = mr × v, (6.4)

which does not change with time.
Angular momentum conservation is a fundamental law of nature as a con-

sequence of spatial isotropy, which will be explained later. Simply put, it is
because the gravity force passes the Sun center, therefore, it does not generate
torque to change the angular momentum.

6.2.3 Kepler’s third law

Different initial conditions can lead to different orbits. Kepler’s 3rd law con-
nects different orbits.
For different orbits, the ratio between the cube of half major axis and the peri-
od square is a constant.

For an elliptic orbit, see Fig. 6.3, the origin is set at the focus. The y-axis in-
tersects the ellipse and cuts a cord (latus rectum), whose half length is denoted
as h. The x-axis is the major axis intersecting the ellipse, whose half length is
a.
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Figure 6.3 The total energy of an elliptic orbit is completely determined
by the half major axis a as E = −GMm

2a . The angular momentum is com-
pletely determined by the half length of the cord passing the focus h as
l = m

√
GMh = mh

√
GM/h.

In fact, Kepler’s 3rd law implies the inverse-square law: Consider the special
case of a circular orbital, then a = R. A simple dimensional analysis, or, the
scaling analysis, is given below. Due to the nature of the periodical motion, the
acceleration, roughly speaking, scales as F/m ∼ v/T ∼ R/T 2. According to
Kepler’s 3rd law that T 2 ∼ R3, we arrive at

F ∼
1

R2 . (6.5)

Certainly, the above argument should not be viewed as a proof. Rather it should
be viewed as a motivation for further exploration.

6.3 Solution to Kepler’s problem by the geometric method

Kepler’s laws are phenomenological laws based on astronomical observations,
whose simplicity and beauty are already impressive. Such beautiful laws can-
not just a coincidence, which stimulated physicists including Issac Newton to
further explore the underlying law of gravity. By assuming the inverse-square
law of gravity, Newton derived Kepler’s three laws of planet motion. Although
in the modern formalism, this can be done concisely via calculus, and indeed
solving the motion under forces was the main motivation of Newton to invent
his fluxional calculus.
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Figure 6.4 A page of Newton’s principia.

Figure 6.5 The geometric proof of Kepler’s 2nd law.

Nevertheless, interestingly, in Newton’s Principia, he did not use calcu-
lus. Rather, he adopted the style of Eculid’s Elements by using the geometric
method. At that time, the mathematical foundation of calculus was not rigor-
ously established. In fact, its establishment was deferred to the 19th century.
Newton wanted to avoid the criticism of the infinitesimal analysis to hind the
recognition of his theory of gravity.

6.3.1 Proof to Kepler’s 2nd law

Assume that the gravity is a central force field, which is sufficient for the proof
to Kepler’s 2nd law. This was a very important problem historically – what
drives the planets to move around? There were people at that time believed
that planets are propelled by invisible angles’ beating wings. Hence the driving
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force should be along the tangential direction. However, we will show that
actually the force is centripetal rather than tangential.

The geometric picture to prove Kepler’s 2nd law is presented in Fig. (6.5).
Suppose that the Sun is located at O and the planet starts from A. Within a
small time interval ∆t which is a first order infinitesimal, it moves to B. We
use a short line segment AB to approximate its trajectory, and the error is at
the 2nd order infinitesimal. The velocity is vAB = AB

∆t . If there was no gravity,
in the next time interval ∆t, the planet would continue its straight-line motion
toward C′, such that AB = BC′. It is obvious that

S ∆OAB = S ∆OBC′ . (6.6)

However, the gravity pulls the planet back. The attraction is along the direction
of OB, such that the planet is pulled from C′ to C, hence, C′C ‖ OB, and
vBC = BC

∆t . It is easy to show that

S ∆OBC = S ∆OBC′ , (6.7)

since they share the same base and the same height. Hence within the same
length of time interval ∆t, the areas swept by the Sun-planet line are equal,

S ∆OAB = S ∆OBC . (6.8)

This process can be further repeated: after consecutive intervals of ∆t, the plan-
et arrives at D, E, ..., then

S ∆OAB = S ∆OBC = S ∆OCD = S ∆ODE = ... (6.9)

Moreover, the above process can be easily convinced that the trajectory ABCD...
is a planar curve. This completes the proof of the Kepler’s 2nd law.

∆S/∆t can be figured out as ∆S
∆t = 1

2m
mr2∆θ

∆t = L
2m , where L is the magnitude

of the orbital angular momentum. If adding the direction to the area, we arrive
at

2m
∆S
∆t

=
1

2m
mr2∆θ

∆t
= L. (6.10)

6.3.2 Proof to Kepler’s first law

Next we prove Kepler’s first law – the trajectory is generally speaking an el-
lipse following the method presented in “Feynman’s lost lecture: the motion of
planet around the sun”.

Actually, Kepler’s 2nd law does not ensure a closed orbit. For simplicity, we



6.3 Solution to Kepler’s problem by the geometric method 29

Figure 6.6 The geometric proof of the elliptical orbit of planet motion. A)
F is the location of the Sun and A is the perigee. The angle between two
neighboring radii is fixed at ∆θ. B) The velocity vectors vA, vB, vC ... are
plotted from the origin. Their ending points span a circle with the radius v =
GMm

L , whose center is denoted as C. C) Rotate the velocity circle by 90◦. Use
the locations of O and C as the two foci, and v as the major axis length to
construct an ellipse. Such an ellipse is similar to the planet orbit.

assume it is for the moment and will justify it later. Assume that the gravity is
a central force field of the inverse-square law central,

F = −
GMm

r2 er, (6.11)

where M is the Sun mass, and m is the planet mass.
Newton realized the inverse-square law by comparing with the satellite mo-

tion – Moon’s orbit to the free fall motion the ground. This is probably the
origin of the legend of Newton’s apple. Ancient people already measured the
earth-moon distance compared to the earth radius by the method of parallax.
The results of dem/re measured by Ptolemy, Huygens, and Tcyho Brahe are
very close to each other as 59, 60, 60.5, respectively. We know that the falling
distance in one second on the ground of the earth is about 5m. How much is the
”falling distance” of the Moon in one second? If without the earth gravity, the
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Moon would fly along the tangent direction with a distance ∆x = v∆t. To pull
it back to the circular orbit, the Moon needs to fall at a distance s satisfying

v∆t
s

=
2dem

v∆t

s =
1
2

v2

dem
t2 =

1
2
ω2demt2 =

2π2

T 2 demt2. (6.12)

Plugging in the period T = 27.3days, and dem = 60 × re, we arrive at s =

1.36mm, which is about 1/3676 ≈ 1/602 of the falling distance on the earth.
This crude estimation yields quite accurately the inverse-square relation, based
on which Newton built up his confidence. He realized that the satellite motion
and the planet motion satisfies the same law in both cases the gravity exhibits
the inverse-square relation. Then the concept of ”universal gravity” came to
birth.

Now let us prove the elliptic orbit. As shown in Fig. (8.1) A, the Sun is
located at F. Start from the perigee A on the orbit, and assign points B, C, and
so on, such that ∠BFA = ∠CFB = ... = ∆θ, and ∆θ is small. The radii of these
points are denoted as rA, rB, rC , ..., respectively, and the corresponding velocity
vectors are denoted vA, vB, vC , etc, respectively.

Now let us compare ∆vBA = vB − vA, and ∆vCB = vC − vB. The time interval
spent in sweeping ∆BOA is

∆t =
S ∆BOA

∆S/∆t
=

1
2

r2
A∆θ/(L/2m) =

mr2
A∆θ

L
. (6.13)

Hence, ∆vBA can be calculated via Newton’s 2nd law as

∆vBA =
F∆t
m

= −
GMm∆θ

L
eA, (6.14)

which is along the opposite of the radial direction. Nicely, the dependence on
the radius cancels. Since ∆θ is fixed for each small triangle, ∆v has a fixed
amplitude, and its direction changes ∆θ in each step. Hence, the ending points
of the velocity vectors lie on a circle in the velocity space. According to Eq.
6.14, the tangential direction of the velocity circle actually reflects the direction
of the displacement vector in real space. This means that the motion in the
velocity space is actually the dual of that in the real space.

The circle center generally speaking is not located at the origin O, and is
denoted as C. According to the planar geometric knowledge, the angle of ∆v
with respect to C actually equals to the angle change of ∆v during each step.
(Please note that here I mean the direction change of ∆v, not the direction
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change of v itself.) The radius of this circle is

vr =
∆v
∆θ

=
GMm

L
. (6.15)

Now it is evident that the time evolution of the velocity vector v is periodic.
Does it mean that the motion in the real space is also periodic? Generally it
is not true. Nevertheless, based on the geometric correspondence between the
real space and the velocity space motions, we conclude the answer is yes. Look
at the velocity space: As the velocity vector completes a circle and moves back
to vA and its tangent direction also comes back, it means that in real space the
planet is in the direction of FA. However, we need to determine the planet’s
location along the direction of FA. If it had not come back to the same point of
A but it still possesses the same vA, it would mean that it angular momentum
does conserve.

However, how to reconstruct the real space trajectory starting from the ve-
locity space circle remains non-trivial. Here is a trick introduced by Feynamn:
Rotate Fig. 6.6 B by 90◦ as presented in Fig. 6.6 C, and reconstruct the real-
space trajectory in the same figure. In the rotated figure, vB′ is perpendicular to
vB, which is along the tangent direction of the real space trajectory in Fig. 6.6
A. But the difficulty is how to locate the tangent point.

Let us try to locate the tangent point by construct the bisector of Ov′B, which
is parallel to vB. As vB

′ runs over around the circle, the envelop of the sweep-
ing bisector actually forms an ellipse. This ellipse can be stated even more
explicitly, whose foci are located at O and C, and the major axis length is just
the radius of the velocity circle.

How to see this? We relate it to a celebrated geometric property of ellipse:
A light ray emitted from one focus is reflected to the other. Actually we will
prove it by a geometric construction.

Let us connect Cv′B. The bisector line of vB intersect Cv′B at point B′. Con-
nect OB′ and CB′. Since O and v′B are reflectionally symmetric with respect
to vB, the light ray OB′ is reflected back to C, and B′v′B is the image of OB′.
Hence

|CB′| + |OB′| = |Cv′B| =
GMm

L
, (6.16)

hence, B′ is located on the ellipse defined above.
Actually the bisector line of vB is a tangent line to the ellipse: For any other

point P on this bisector line, the sum of the distance

|CP| + |OP| = |CP| + |v′BP| > |Cv′B|. (6.17)

Now we can build up a point-to-point mapping between the constructed el-
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lipse in Fig. 8.1 and the planet trajectory by setting up the polar coordinate.
For the real space trajectory, the origin is set at F. For the reconstructed el-
lipse, we set the origin at the focus C. Then at each polar angle θ, the tangent
lines on these two curves are parallel to each other. In the polar coordinate, the
tangential vector of a curve represented by r(θ) = rer

dr
dt

=
dr
dθ

er − reθ. (6.18)

For the above two curves, we assume that their equations are

r1 = r1(θ)er, r2 = r2(θ)er. (6.19)

Since at the same polar angle, the tangent lines on the two curves are parallel
to each other, i.e.,

1
r1

dr1

dθ
=

1
r2

dr2

dθ
, (6.20)

then we arrive at

r1(θ) = Cr2(θ), (6.21)

where C is a constant. This means that these two curves are similar to each
other. In other words, the trajectory in real space is also an ellipse.

6.4 Comment on Kepler’s 3rd law

The beauty of the geometric proof is impressive, and it also reveals the nature
of the planet motion in a profound way. Next we will use a more advanced
method of calculus for further explorations.

Kepler’s 3rd law can be shown by a scaling method. Suppose ~r(t) is a solu-
tion to

d2r(t)
dt2 = −

GM
r2 er. (6.22)

Perform a scaling transformation that

rs(t) = λ1r(λ2t). (6.23)

It is easy to show that

d2rs(t)
dt2 +

GM
rs,2 er = λ1λ

2
2

d2r(t)
dt2 + λ−2

1
GM
rs,2 er = 0, (6.24)
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on condition that

λ2
2

λ3
1

= 1. (6.25)

This means that the spacial size of the orbit and the period of the orbit exhibit

L2/T 3 = const. (6.26)

Actually, Kepler’s 3rd law is stronger than the above result. The length scale
is only related to the major axis but independent on the minor axis.




