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Conservation Law One – Energy Conservation

(Mechanical)

In principle, once we have had Newton’s law of motion, it should be able to
determine the motion of equation by solving the 2nd order differential equa-
tions and substituting the initial conditions. Nevertheless, the perspective of
conservation laws is a major development of Newtonian mechanics whose im-
portance is at least two-fold. One side is empirical: The 2nd order differential
equations arising from Newton’s 2nd law are often difficulty to solve. If we
can find a constant of motion, the 2nd order different equations can often be
reduced to the first order one, whose solution would be much easier. The other
side is more profound, conservation laws reflect deeply the symmetry struc-
tures of a mechanical system, which are consequences of the nature of fun-
damental space time. We will learn three types of conservation laws:, energy
conservation, momentum conservation, and angular momentum conservation,
which are consequences of time homogeneity, spatial homogeneity, and spatial
isotropy, respectively.

7.1 “Dead force” and “living force (vis viva)”

Although the universe is dynamic, it would be interesting to find something
behind the dynamic phenomena that is invariant. The idealogy of “conserva-
tion” even appeared in the ancient Greece time. Thales of Miletus (about 550
BC) proposed that the basic substance that everything is made of, which he
felt should be water, is conserved. Galileo pointed out that the a body mov-
ing along a smooth curve falls from a certain height, and finally can rise to an
equal height independent of the concrete shape of the curve, which today is
understood as the conservation of mechanical energy.

Descartes (1596-1650) thought that the total quantity of motion in the u-
niverse must be a constant. Since moving objects change their velocities by
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collisions, he studied collisions to seek the conservation quantities in motion.
He proposed to use the product of mass and speed, i.e., mv, which is later on
“momentum”, as the measure of the quantity of motion. Descartes did not fig-
ure out the vector nature of momentum, nevertheless, his research pointed out
a long term direction to seek conservation laws. On the other hand, Huygen-
s (1629-1695) proposed a new conserved quantity, the sum of the product of
each mass and its velocity square, which is equivalent to the kinetic energy in
today’s language. Leibniz (1646-1716) named this quantity as “vis viva”, or,
living force, and he called Descartes’ mv as “dead force”.

Leibniz pointed out if an object with the weight mg is raised to a height of
h, as long as mgh is the same, the object acquires the same amount of vis viva.
Consider that a falling object smashes a nail: An object with the weight of mg
falling from the height 4h and an object with the weight of 4m falling from the
height h smash the nail to the same depth. Their living forces are the same, i.e.,
2mgh, but their dead force are different, the heavy object is m

√
32gh, and the

light one is m
√

8gh. The former is twice larger than the latter.
This dispute that whether the “dead force” or “living force” is more essential

was settled down by d’Alembert (1717-1783). He recognized the importance
of both, which are quantities measuring different aspects of motion. Again
consider the above example, two falling objects with the same living force
but different dead force. The heavy object has twice amount of the dead force
than the former case. Although they smash the nail to the same depth, but the
periods of time they spent are different. The light object falls from a higher
place, hence, its speed is higher, then during its collision with the nail, less
time is take to smash the nail to the same depth. Similarly, the heavy object
has larger “dead force”, which needs more time to stop, consistent with its
lower speed during the smashing or collision process.

The perspective of the conservation of vis viva was promoted by Johann
Bernoulli and Daniel Bernoulli. The father developed the virtual work princi-
ple in statics, and the son developed Bernoulli’s principle for the change of the
hydrodynamic pressure. Further developments led to the appearance of Analyt-
ic Mechanics, including the Lagrangian, and Hamiltonian formalisms, which
you will learn in the course of “Classical Mechanics”.

In the early 19th century, vis viva was recalibrate by Coriolis and Poncelet
et. al. to the modern form of
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i

miv2
i , (7.1)

which can be completely used to do work, for example, to raise a weight to a
certain height.
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7.2 Gravitational potential energy – the reversible and
irreversible weight-lifting machines

We have the impression that if a weight G is lifted to a height h, it can be used to
do work, hence, it intuitively has a certain type of energy. Later we will denote
it as the gravitational potential energy. Then how to define it? The definition
has to be universal, i.e., independent of concrete material of the object and how
it is lifted, etc.

We must provide a starting point for reasoning, which is similar to the pos-
tulate of Euclidean geometry, which is simply
Postulate: No perpetual machine exists.

The study of “perpetual machine” has a long history. The failure of con-
struction of the perpetual machine is significant, which leads to the discovery
of the law of energy conservation. The machines we are talking now are only
weight-lifting machines, and later on when learning thermodynamics we will
talk on thermal engines. In our context, “no perpetual machine” meanings that
it is impossible to have a net result of lifting a weight after the machine and ev-
erything in the environment are restored to their initial states. In other words,
no free lunch and no pains no gains. You must pay efforts to lift a weight.

A weight-lifting machine is sketched in Fig. 7.1: A mass of m is hung verti-
cally with a rope passing a pulley connecting to another mass M on a slope. m
and the slope is viewed as the weight-lift machine, and M is the object to lift. If
m drops at a distance of h, then M is lifted at the height h′ which is determined
by the slope angle θ, i.e.,

h′/h = sin θ. (7.2)

But for different kinds of slopes, apparently, the value of M which can be lifted
for the same of m is different.

We define “reversible” and “irreversible” weight-lifting machines. Reversible
machines means that after the machine is operated, the process can be reversed
to restore the system to initial conditions without any net changes. For exam-
ple, if the slope is slippery, i.e., no friction, it is reversible. According to its
geometric shape, we prepare the mass M such than it balances m. The weight-
lifting ratio R is defined as

R = M/m. (7.3)

We push m downward a little bit to let it just move at an infinitesimal speed.
The process can be reversed: we push M downward a little bit to make it move
back and then m rises back to its initial position. Then we give M a tiny push
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Figure 7.1 A slope as weight-lifting machine. No net weight should be lifted if
this machine and its environment are restored to the initial conditions.

to stop the motion. These pushes can be made as small as possible, hence, they
can be neglected if we are gentle enough.

On the other hand, if frictions exist, the process becomes irreversible. In or-
der for m to move downward, M is expected to be lighter than before. In this
case, the weight-lifting ratio is defined as R = M/m when m drops and pulls up
M in a uniform speed, i.e., in a balanced way. In this case, it is impossible to
reverse the motion by a tiny push. An extra force is needed to push M down-
ward since the friction switches the direction. In order to restore the machine
to the initial condition, extra work is done which finally is converted to heat by
friction.

A natural question arise: for a given slope angle, what kind of machines have
the highest ratio of R, i.e., the largest M that a mass m can raise? The answer
is the reversible ones.

Consider two weight-lifting machines: one irreversible and one reversible
whose ratios of M/m are Ri and Rr, respectively. First, run the irreversible one,
i.e., drop m at a distance of h, then Mi = mRi is raised to the height of h′. Then
two masses are shifted to the slippery slope without friction without motion in
the vertical direction (Suppose that this could be done with care and patience).
If Ri > Rr, then Mi is more than enough to go down and pull m up. Part of its
mass ∆M = (Ri − Rr)m is cut and is held at its position, and the rest part is
reduced to Mr = Rrm, which is just right to run the reversible machine in the
reverse way. Then m is restored to its original height, Mr also goes back to its
location, but an amount of ∆M is lifted for a height of h′. Then according to
our postulate, this is impossible. Hence Ri 6 Rr, i.e., for all the weight-lifting
machines, the reversible one can lift the largest weight.

How about two reversible machines? Since both of them are reversible, we
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Figure 7.2 A) An object with the height of L + h is cut two pieces from the top
and the bottom at the thickness of h. B) The top piece is shifted to right. C) The
bottom piece is shifted to right. These three configurations have the same amount
of gravitational potential energy.

can reverse either of them and perform the above reasoning. Then the ratios of
R′s of these two reversible machines have to be equal to each other.

We have used a concrete design of weight-lifting machine - the slope. Ac-
tually, if you examine the above reasoning, the following conclusion is very
general regardless of the concrete design: if a mass m is dropped at a verti-
cal distance h, if the lifting distance is h′, then the reversible machines lift the
largest weight. For all the reversible weight-lifting machines , the mass lifted
M should be same.

Then what is the value of the largest mass M? Since the design of the lift-
weighting machine is unimportant, we consider another one depicted in Fig.
7.3. Consider a cylindrical object with a uniform density and a height L + h.
Imagine we cut two pieces with the thickness of h from the top and the bottom,
respectively. The top piece can be shifted to the right and is held at the same
height as depicted in Fig. 7.3 (b). Similarly, the bottom piece is shifted, and the
rest major part is held at its original position as depicted in Fig. 7.3 (c). Now
we compare Fig. 7.3 (b) and (c), since both of them have no vertical motion
compared to Fig. 7.3 (a), they can be viewed as a small object with mass m is
lowered by a distance L which lift the bigger object with mass M at a distance
of h. Since the ratio of m/M is also h/L,

mgL + Mg(−h) = 0, (7.4)

where the gravity acceleration g is multiplied since the system is in the gravity
field.

Then we conclude that for a reversible weight-lifting machine (no friction),
if its different parts are moving in an infinitesimally slow way, i.e., adiabat-
ically, the product of the mass and the vertical distance lowered equals that
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Figure 7.3 The inscription on Simon Stevin’s (1548-1640) tombstone.

between the mass and the vertical distance lifted, hence, the following quanti-
ty, the gravitational potential is conserved

Ep =
∑

i

migzi, (7.5)

where zi is the height in the gravity field and the ground is set as z = 0. In
other words, the gravitational potential can be viewed as the sum of the force
multiplied by the distance that the force acts through.

If we apply the potential energy conservation law to in the set up of Fig. 7.1,
the ratio of R = M/m = h/h′ = 1/ sin θ. This results was already known by
Simon Stevin (1548-1620). On his tombstone a picture is inscribed: A loop of
balls are around the rectangular slope. Without of loss of generality, the shorter
sides and the hypotenuse (the longest side) exhibit the ratio of 3:4:5. The loop
is at balance, hence the number ratio of balls on the vertical edge and the slope
is 3:5. It is easy to check that the balls hung below the slope are balanced by
itself, hence, the three balls on the vertical edge balance the five balls on the
slope.

7.3 Kinetic energy

We only considered infinitesimally slow motion above, hence, only the grav-
itational potential is needed. Nevertheless, physical intuition tells us that an
object falling from a height will increase its speed. Now we will use the pos-
tulate of the impossibility of perpetual machine to study the speed of an object
after falling a height.

Now we consider a new type of machines – “kinetic-energy machine” as
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Figure 7.4 The “kinetic-energy” machines which covert the height to speed. For
reversible machines, an object acquires the same speed after descending the same
height.

depicted in Fig. 7.4: A ball falls at the same vertical distance but along different
curves. Again we divide these machines into reversible and irreversible classes.

Reversible kinetic-energy machines mean that if the motion of the ball at
the bottom is reversed but with the same speed, it will reach where it drops.
Again following similar reasonings in the previous section, we conclude that
the reversible machines exhibit the largest speeds, and all reversible machines
exhibit the same speed. Otherwise, we could lift the ball without paying any
effort.

Then we can use the straight-line slope to calculate the speed after it moves
to the bottom. The force F to pull the ball with the mass M on the slope can be
balanced by a mass m = M sin θ, hence,

a = F/M = mg/M = g sin θ. (7.6)

Then

v2 = 2al = 2gl sin θ = 2gh, (7.7)

which is independent of the slope angle. We arrive at

1
2

mv2 = mgh. (7.8)

The right-hand side is the gravitational energy drop, hence, if we interpret the
left-hand side as the gain of another type of energy – the kinetic energy, then
the total energy should be conserved. Then we define the kinetic energy as

EK =
1
2

mv2. (7.9)

During this process, we have the conservation of mechanical energy in a re-
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versible system which is defined as

EM = EK + Ep =
1
2

mv2 + mgz. (7.10)
















