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Problem 1: Doppler broadening of spectral lines

A gas of atoms, each of mass m, is maintained at the absolute temperature T
inside an enclosure. The atoms emit light which passes (in the x-direction)
through a window of the enclosure and can then be observed as a spectral
line in a spectroscope. A stationary atom would emit light at the sharply
defined frequency ν0. But, because of the Doppler effect, the frequency of
the light observed from an atom having an x-component of velocity vx is
not simply equal to the frequency ν0, but is given approximately by

ν = ν0(1 + vx
c ), (1)

where c is the velocity of light. As a result, not all of the light arriving at
the spectroscope is at the frequency ν0; instead it is characterized by some
intensity distribution I(ν)dν giving the fraction of light intensity lying in
the frequency range between ν and ν + dν.

(a) Calculate the mean frequency ν of the light observed in the spectroscope.

(b) Calculate the dispersion 〈(∆ν)2〉 = 〈(ν − 〈ν〉)2〉 in the frequency of the
light observed in the spectroscope.

(c) Show how measurements of the width ∆ν = 〈(∆ν)2〉1/2 of a spectral
line observed in the light coming from a star allow one to determine the
temperature of that star.
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Problem 2: Specific heat of an ideal gas

We have derived the Maxwell distribution for an ideal gas in class and in H-
W13. Assume the system is a monoatomic molecular gas at the temperature
T with N molecules in a box with volume V .

1) Calculate the average kinetic energy 〈ε〉 where ε = 1
2mv

2, and the isochoric
specific heat CV .

In fact, if the energy contains a quadratic term, it will contribute to the
specific heat 1

2kB per atom. This is called the equipartition theorem, which
is only valid for the classic statistical mechanics.

2) Using the result of Eq. 5 to calculate CV again, and check the consistency.
You need to calculate 〈ε2〉 by using the Maxwell distribution.
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Problem 3: The partition function and the quantum oscillator

Suppose that a system has many possible configurations, i.e., states, labeled
by i = 1, 2, ...., whose energy is εi. The system is at the temperature T . The
probability that the system lies in each configuration obey the Boltzmann
distribution, i.e., Pi = Z−1e−βεi , where β = 1/(kBT ) and

Z(β) =
∑
i

e−βεi , (2)

is called the partition function. (In Mathematics or field theory, Z is called
the generation function.) The internal energy U , which is defined as the
average value of 〈ε〉,

U(β) = Z−1
∑
i

εie
−βεi . (3)

1) Prove that

U(β) = −∂ lnZ
∂β . (4)

2) The specific heat C = dU
dT = −kBβ2 dUdβ , please find its expression in terms

of the partition function.

3) Prove that

C = 1
kBT 2 (〈ε2〉 − (〈ε〉)2. (5)

This means that specific heat measures the fluctuations of energy.

4) Consider a set of N harmonic oscillators with the frequency ω. Quantum
mechanics tells us that such a harmonic oscillator can only lie in the states
with discrete energies at (n + 1

2)~ω with n = 0, 1, 2, 3, ..... Calculate the
internal energy U of such a system, and its specific heat CV .

5) Take the limits of kBT � ~ω and kBT � ~ω of CV you calculated in 4).
Compare the results with the equipartition theorem.
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Problem 4: The Carnot cycle

In class, we have explained the Carnot cycle. The system starts from a state
A denoted by its pressure and volume (Pa, Va). Then it expands isother-
mally to the state B marked (Pb, Vb) at temperature T1. Then it expands
adiabatically to the state C with (Pc, Vc). Then it undergoes an isothermal
compression to the state D with (Pd, Vd) at temperature T2. Then it returns
to the state A by an adiabatical compression.

1) Show that the work done in this cycle equals the area enclosed by the
four segments of curves.

2) Assume that working substance is an ideal gas with γ = CP /Cv. Calculate
the work done, heat transfer, and the entropy change during each step of
A→ B, B → C, C → D, and D → A, respectively.

3) Confirm that the efficiency of the heat engine η = 1− T2
T1

.
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Problem 5: The thermodynamic temperature and entropy

One formulation of the 2nd law of thermodynamics is that it is impossible to
completely convert heat form a single reservoir to work in a cynical process
in which the system returns to the initial state. Based on this statement,
please prove the following results.

1) Consider two reservoirs 1 and 2 with temperatures T1 and T2, respec-
tively. Assume T1 > T2. Two thermal engines 1 and 2 work between these
two reservoirs. Engine 1 is reversible and 2 is irreversible. Prove that the
efficiency η1 of engine 1 is higher than the efficiency η2 of engine 2, i.e.,
η1 > η2.

2) Consider two reversible thermal engines 1 and 2. Prove that their effi-
ciencies should be equal, i.e., η1 = η2. Hence, the efficiency of a reversible
thermal engine is only determined by the temperatures of the reservoirs,
independent of the concrete working substances.

Below, we denoteQ1/Q2 = f(T1, T2), whereQ1 andQ2 are the heat transfers
with the reservoirs 1 and 2, respectively. Obviously, f(T1, T2)f(T2, T1) = 1.

3) Consider three heat reservoirs at temperatures T1 > T2 > T3. Three
thermal engines working between reservoirs 1 and 2, between 2 and 3, and
between 3 and 1, respectively. Prove that f(T1, T3) = f(T1, T2)f(T2, T3).
(Be careful, it is not so obvious as it looks! You need to present reasonings.).

Then prove that f(T1, T2) can be factorized as

f(T1, T2) = φ(T1)/φ(T2).

Explain that why φ(T ) is an ascending function of T . Then we can use this
fact as the definition of temperature, i.e, assigning T = φ(T ). This is the
definition of the thermodynamic temperature.

4) Consider a reversible thermal engine evolving its state from a to b along
two different paths 1 and 2. Prove that the following integral is interdepen-
dent from the concrete path, i.e.,∫ b

1,a

dQ
T =

∫ b

2,a

dQ
T .

According to this, we can define dS = dQ/T as a total derivative indepen-
dent of paths, such that the entropy S is a state function of matter.


