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Relativity – without light

So far we have assumed the relativity principle, which was attributed to Galileo,
that all inertial frames are the equivalent. Whenever we think about a physical
law, it should be checked whether it is the same or not when looked at from a d-
ifferent reference frame. It is the most universal properties of nature that physi-
cists care most. In Galileo and Newton’s minds, time is absolute which passes
uniformly at an equal pace in all the inertial reference frames. The space-time
transformation between two different reference frames, say, the lab frame on
the ground and the moving frame of a train, obeys the Galilean transformation.
This sound very natural, and for many thousands of years, people took it for
granted. Although in legends, it often said that one day in the heaven equals
one years in the human world, nevertheless, this was not a scientific statement.
Newton’s laws of motion are consistent with the Galilean space-time transfor-
mation. So far so good.

Historically, the special relativity was developed after the establishment of
Maxwell equations. Naturally, such a fundamental achievement should also
be examined critically by reference frame transformations. Many prominent
physicists, including mathematicians, contributed to the establishment of the
special relativity, not just Einstein. Prof. Xiaofeng Jin at Fudan university pub-
lished a series of article in “Physics”, a journal of Chinese Physical Society,
elucidating the original contributions from Poincaré, the French mathemati-
cian and physicist, which was largely overlooked by the physical community.
Many revolutionary concepts were actually already proposed by Poinaré be-
fore Einstein.

Traditionally, the derivation of the relativistic space-time transformation,
i.e., the Lorentz transformation, is based on two postulates. One is the rela-
tivity principle, and other is the light velocity invariant. The latter is often crit-
icized that since it is unnatural to juxtapose a concrete velocity of light with
the fundamental principle of relativity.
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68 Relativity – without light

Nevertheless, there have been progresses in achieving relativity without light
in literature, which will be summarized in this lecture. We will try not to use
knowledge of electromagnetism. Only based on reasonable assumptions such
as the homogeneity, smoothness, and isotropy of space and time, we are able to
derive that only Lorentz, Galilean, and rotation-like transformations are pos-
sible, which corresponds to the hyperbolic, parabolic, and elliptic subgroups
of S L(2,R). Nevertheless, if we further impose the requirement of causality,
i.e., one cannot travel back to a time before he/she was born, only Lorentz and
Galilean transformations are allowed. If we further abandon the perspective
of instantaneous interactions, or, the signal prorogation velocity has an upper
limit, then Lorentz transformation is the only choice.

11.1 Space-time transformation

For simplicity, consider the case of 1+1 dimensions, i.e., the 1 spatial dimen-
sion together 1 temporal dimension. The reference frame F′ moves to the right
relative to the reference frame F at the velocity u as shown in Fig.11.1. An
event is represented by the space-time coordinate (x, t) in the frame F, and
(x′, t′) in the frame F′. When the origin of x in F and the orgin of x′ in F′

coincide, we set t = 0 in F and t′ = 0 in F′. In other words, (x′, t′) = (0, 0) if
and only if (x, t) = (0, 0).

In general, we assume that the space-time coordinates of F and F′ are related
by a linear transformation, which is represented in the matrix form(

x′

t′

)
= R

(
x
t

)
. (11.1)

R is a 2 × 2 matrix represented as,

R =

(
A B
C D

)
. (11.2)

The matrix elements A, B, C and D should only depend on the relative velocity
u, i.e., every set of (x, t) in F transforms according to the same matrix R to
(x′, t′) in F′.

R should be reversible, which means that for a given set of coordinates (x′, t′)
in F′, we should also be able to identify a point (x, y) in F. After expanding
Eq. 11.1, we arrive at

Ax + Bt = x′ (11.3)

Cx + Dt = t′.
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It can be solved as

x =
1
∆

(Dx′ − Bt′)

t =
1
∆

(−Cx′ + At′), (11.4)

where ∆ is the determinant of R defined as ∆ = det(R) = AD − BC. After be
cast into the matrix form, the inverse transformation reads(

x
t

)
= R−1

(
x′

t′

)
, (11.5)

where R−1 is the inverse matrix of R as

R−1 =
1
∆

(
D −B
−C A

)
. (11.6)

The transformations Eq. 11.1 and Eq. 11.5 not only apply for a single event,
but also applies for the difference between two space-time events. Consider two
events with coordinates (x1, t1) and (x2, t2) in F, and their coordinates (x′1, t

′
1)

and (x′2, t
′
2) in F′. It is obvious to show that(

∆x′

∆t′

)
= R

(
∆x
∆t

)
, (11.7)(

∆x
∆t

)
= R−1

(
∆x′

∆t′

)
, (11.8)

where ∆x = x2 − x1, ∆t = t2 − t1. ∆x′ and ∆t′ are defined similarly.

11.2 Constraints to the matrix elements

Now we determine the matrix elements step by step based on common senses.
We first explore the physical meaning of the relative velocity u. Consider a

point at rest in F′, say, its spacial origin O′. During a time interval ∆t′, it does
not move, i.e., ∆x′ = 0. But relative to F, it moves at the velocity of u relative
to F. According to Eq. (11.8),

u =
∆x
∆t

=
D∆x′ − B∆t′

−C∆x′ + A∆t′
|∆x′=0 = −

B
A
. (11.9)

Similarly, the origin O of the F frame, which is at rest in F, moves at −u
relative to F′. According to Eq. (11.7),

−u =
∆x′

∆t′
=

A∆x + B∆t
C∆x + D∆t

|∆x=0 =
B
D
. (11.10)
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Figure 11.1 Two reference frames F and F′. F′ moves at the velocity u relative
to F.

Compare above two expressions, we arrive at

A = D, B = −Au = −Du. (11.11)

Next we examine the composition of two velocities. Consider a set of three
frames F1, F2, and F′2. F2 moves at the velocity u relative to F1, and F′2 moves
at the velocity u′ relative to F1. We ask what are the relative velocity F′2 to F2,
and reversely the one of F2 to F′2?

Check the origin O′2 of F′2 moving at u′ relative to F1. Hence, the coordinates
of O′2 in F1 satisfy

xO′2,F1

tO′2,F1

= u′. (11.12)

Transform to the frame of F2, the coordinates of O′2 therein become

xO′2,F2

tO′2,F2

=
A(u)xO′2,F1 + B(u)tO′2,F1

C(u)xO′2,F1 + D(u)tO′2,F1

=
A(u)u′ + B(u)
C(u)u′ + D(u)

. (11.13)

According to Eq. (11.11), we arrive at

vF′2toF2 =
xO′2,F2

tO′2,F2

=
u′ − u

u′ C(u)
A(u) + 1

. (11.14)

Similarly, we can derive the velocity of F2 relative to F′2 just by switching u
and u′,

vF2toF′2 =
xO2,F′2

tO2,F′2

=
u − u′

uC(u′)
A(u′) + 1

. (11.15)

Followed by the common sense, vF′2toF2 = −vF′2toF2 , then uC(u′)
A(u′) =

u′C(u)
A(u) , which

yields

C(u′)
u′A(u′)

=
C(u)
uA(u)

. (11.16)
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Figure 11.2 Three reference frames F1, F2, and F′2. F2 and F′2 move at the veloc-
ities u and u′ relative to F, respectively.

Since the variables are already separated, both sides must equal to a constant
K independent on u and u′, i.e.,

C(u)
uA(u)

= K. (11.17)

It can be simply checked that K carries the dimension of the square of velocity.

11.3 Special linear group and its subgroups

The space-time transformation matrix R actually forms an algebraic structure,
called group. A group is a set of elements satisfying the following conditions:

(i) They are closed under multiplication. In other words, for two transforma-
tions R1 and R2, their product R = R2R1 remains a space-time transforma-
tion.

(ii) The existence of an identity element, i.e., R = I, which means the two frames
are the same.

(iii) Reversibility: For each transformation R, its inverse is defined as R−1.

Furthermore, R has the property of det R = 1 based on the relativity principle
proved as below.

Consider two events E1 and E2, which take place at the same place in the
Frame F with a time difference τ, i.e.,

∆x = 0,∆t = τ. (11.18)
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Then in the frame F′ which moves at the velocity u relative to F, the time
interval transforms as

T = ∆t′ = D(u)τ. (11.19)

Similarly, if two events E3 and E4 occurs at F′ at the same place ∆x′ = 0
but the time difference ∆t′ = τ. Then we expect that the corresponding time
difference in the F frame should also be T . The reason is that F moves at
the velocity −u relative to F′. A relative velocity of −u can be obtained by
performing a spacial reflection to the velocity of u, which flips the sign of
velocity and displacement but maintain time invariant. Then

T = ∆t =
A(u)
∆

τ. (11.20)

By comparing Eq. (11.19) and Eq. (11.20), since A = D, we conclude that

det R = 1. (11.21)

All the 2 × 2 matrices with det R = 1 form the group S L(2,R) – the special
linear group. Nevertheless, the space-time transformation matrix R(u) only has
one parameter, hence, it is only a one-parameter subgroup of S L(2,R). We
need to determine what kind of subgroup it is.

Since det R = 1, we express the transformation matrix as

R =
1

1 + Ku2

(
1 −u

Ku 1

)
. (11.22)

Certainly, if K = 0, the transformation simply reduces back to the case of
Galilean transformation. In this case, the transformation matrix is simply

R =

(
1 −u
0 1

)
. (11.23)

The transformation matrix has the upper triangular form, and this subgroup of
SL(2,R) is called the parabolic type.

Actually, we have more possibilities that K can be finite. In order to make
the matrix element dimensionless, we define K = ±c−2, where ± corresponds
to the possibilities of K > 0 and K < 0, respectively. We combine (x, ct) as the
space-time coordinates such that(

x′

ct′

)
= R

(
x
ct

)
, (11.24)

where R is a dimensionless matrix

R =
1√

1 ± (u/c)2

(
1 −u/c
±u/c 1

)
. (11.25)
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The case of K > 0 corresponds to a rotation-like transformation parameter-
ized as

sin θ =
u/c√

1 + (u/c)2
, cos θ =

1√
1 + (u/c)2

. (11.26)

Then the transformation matrix is represented by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (11.27)

Apparently, this forms a 2D rotational group named as S O(2), i.e., the special
orthogonal group. This is the elliptical kind subgroup.

On the contrary, the case of K < 0 corresponds to a hyperbolic transforma-
tion, which can be parameterized as

sinh θ =
u/c√

1 − (u/c)2
, cosh θ =

1√
1 − (u/c)2

. (11.28)

The transformation matrix is parameterized as

R(θ) =

(
cosh θ − sinh θ
− sinh θ cosh θ

)
. (11.29)

This is a hyperbolic type subgroup, and Eq. (11.29) is just the Lorentz trans-
formation.

11.4 Consequence of causality

Except the Galileo transformation, we examine the other two possibilities – the
elliptical one and the hyperbolic one. We will use the causality to rule out the
elliptical transformation, and keep the hyperbolic one as physical.

If the elliptical transformations were the case, we could design a series of
reference frames of Fi, i = 0, 1, 2, 3, ...., such that Fi moves at the velocity of
u relative to Fi−1. We parameterize tan θ = u/c, and then the transformation
between Fn+1 and F1 is

Rn+1,1(θn) = Rn+1,n(θ)...R2,1(θ) =

(
cos nθ − sin nθ
sin nθ cos nθ

)
. (11.30)

Suppose we begin with a small angle of θ, then as n goes large, we would have
that nθ > π/2, such that cos nθ < 0.

Now consider two events E1,2 in the frame F with ∆x = 0 and ∆t = τ > 0.
E1 could be the reason and E2 the consequence, say, E1 is the birth of a baby,
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and E2 is that he/she comes to the same place after growing up. However, in
the frame of Fn+1, we have

∆t′ = τ cos nθ < 0, (11.31)

which means that in this frame the consequence occurs earlier than the reason.
This violates the causality, hence, is not allowed!!!

In contrast, the hyperbolic transformations do not have this difficulty as long
as u < c. In this case,

Rn+1,1(θn) = Rn+1,n(θ)...R2,1(θ) =

(
cosh nθ − sinh nθ
− sinh nθ cosh nθ

)
. (11.32)

Since cosh nθ is always positive, the causality is not violated as in the previous
example.

Naturally, for the hyperbolic case, the velocity c is the upper limit of the
physical velocity. Its physical meaning is unclear within the mechanics context
itself. We still cannot rule out the possibility of the Galilean transformation.

If we further abandon the perspective instantaneous interaction, then there
must exist an upper limit of velocity of the signal propagation. Then the hyper-
bolic one – the Lorentz transformation is the only choice.

11.5 light velocity invariance

In the above discussion, c behaves like the upper limit of velocity, which is
a frame independent constant. This is consistent with the relativity principle,
since if c is different in different frames, then we could distinguish different
frames according to the value of c, which is against the relativity principle.

Another statement is that the velocity c in one frame should also be trans-
formed to c in another frame, denoted as f (c) = c. If it is not the case, say,
f (c) = c′ < c, then c = f −1(c′). Since c is the maximum of f −1, consider a
small change c−∆v, there should exist f −1(c′ + ∆v1) = f −1(c′ −∆v2) = c−∆c.
It means that f (c − ∆v) would have two different values, i.e., a velocity of
c − ∆v in one frame would become undetermined in another frame, which is
unacceptable.

We can also easily figure out the law of superposition of velocities. If F1

is moving at u1 relative to F0, and a particle is moving at u2 relative to F1. A
co-moving frame F2 with that particle can be set, i.e., the particle is at rest in
F2. The parameter angles corresponding to u1,2 can be defined as

tanh θ1,2 = u1,2/c. (11.33)
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Figure 11.3 Three kinds of space-time intervals between two events according
to (∆x)2 − (c∆t)2 > 0, < 0, and = 0, respectively. They are denoted as space-
like, time-like, and light-like, respectively. For a space-like interval, ∆x does not
change sign but ∆t can, hence, there is no causality between two events. In con-
trast, causality only exists for a time-like interval, for which ∆t does not change
sign but ∆x does not.

Then the transformation of F2 relative to F0 is parameterized by the angle of
θ = θ1 + θ2. Then the velocity that F2 relative to F0 is

tanh θ =
tanh θ1 + tanh θ2

1 + tanh θ1 tanh θ2

u =
u1 + u2

1 + u1u2
c2

. (11.34)

It is also easy to prove that the Lorentz transformation maintains (∆x)2 −

(c∆t)2 = C where C is a constant. Depending C > 0, C < 0, and C = 0, we
can divide three classes of space-time intervals as space-like, time-like, and
light-like. For a time-like interval, it can be proven that the sign of ∆t never
changes under Lorentz transformations, which means causality is maintained.
For a space-like interval, the sign of ∆x never changes, but the sign ∆t can
change, which means that there is no causality between them.




