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An electromagnetic way to derive basic relativistic transformations
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We derive the relativistic velocity addition law, the transformations of electromagnetic fields and
space-time intervals by examining the drift velocities in a crossed electromagnetic field configuration.
The postulate of light velocity invariance is not taken as a priori, but is derived as the universal
upper limit of drift velocities. The key is that a physical drift motion of either an electric charge or
a magnetic charge remains a drift motion by any inertial reference frame transformations. Such a
simple fact is incompatible with the Galilean velocity addition. This derivation provides a way to
introduce relativity via elementary electromagnetism.

As is well known that the discovery of relativity
was motivated by examining how the electromagnetic
laws transform in different inertial frames'. As Ein-
stein recalled in his autobiography, he was considering a
Gedanken experiment of chasing light: If one could travel
at the light velocity, the electromagnetic wave would be-
come a static field configuration, which is incompatible
with the Maxwell equations®>. Nevertheless, relativity
is often taught in Mechanics in General Physics*®. The
derivation of Lorentz transformation of space-time co-
ordinates is typically based on two postulates: I) The
relativity principle and IT) the invariance of the light ve-
locity. The former is a generalization of the Galilean
transformation from mechanical laws to all physical laws
including electromagnetic ones, which is natural. Nev-
ertheless, although the light velocity invariance origins
from the invariance of the Maxwell equations, it looks
mysterious and unnatural.

Significant progresses have appeared in deriving rela-
tivity without light in literature® . Without loss of gen-
erality, consider the space-time transformation in 1+1
dimensions. Based on assumptions such as the homo-
geneity, smoothness, and isotropy of space time, it can
be derived that only the Lorentz, Galilean, and rotation-
like transformations are possible. They correspond to the
hyperbolic, parabolic, and elliptic subgroups of SL(2, R),
respectively. Only the Lorentz and Galilean transforma-
tions meet the requirement of causality. If instantaneous
interactions are further abandoned, then Lorentz trans-
formation is the only choice.

There have also been signficant efforts in elucidating
the intimate relation between relativity and electromag-
netism in general physics instructions. The excellent
textbook by E. M. Purcell, i.e., Berkely Physics Course,
Vol II, formulated magnetism as the relativistic conse-
quence of electricity. Impressively, the magnetic field
given by Ampere’s law is consistent with the result by
applying the inertial frame transformation to an electro-
static field as it should be. Since magnetism is our daily
life experience, this is convincing for beginning students
to accept relativity heartily.

In this article, we provide a new pedagogical way to

re-derive relativistic transformations via elementary elec-
tromagnetism without the Maxwell equations. Even the
simple phenomenon of the drift velocity in a crossed elec-
tric and magnetic field configuration, which is typically
a high school textbook problem, is incompatible with
the Galilean space-time transformation. The postulate
of light velocity invariance is not taken for granted, but
is derived as the upper limit of drift velocities. Simply
by examining the transformations of drift velocities in
inertial reference frames, the transformation laws of elec-
tromagnetic fields and the addition law of velocities ap-
pear naturally, which are in contradiction to the Galilean
transform. This would stimulate one to re-examine the
space-time coordinate transformation, which yields the
Lorentz transformation. This is a logically natural way
to start learning relativistic physics.

We warm up by reviewing elementary electromag-
netism. Consider a crossed field configuration in an iner-
tial reference frame F' as shown in Fig. 1. Without loss
of generality, it is assumed that

B=25B.z2, E=E;7. (1)
For a charged particle g, its electric force and magnetic
force (Lorentz force) are expressed by

F,=q(E+> xB). 2)

The theory of electromagnetism actually allows the ex-
istence of magnetic monopoles''''2, although it remains
elusive in experimental detections'®. For a monopole car-
rying a magnetic charge g, its magnetic force and electric
force are expressed!* by

F,=g(B-~xE), (3)

where the electric force becomes the Lorentz one. Com-
pared to Eq. 2, the electric Lorentz force exhibits an
opposite sign, whose physical meaning is explained in
Appendix A.

We use the Gaussian unit enjoying the advantage that
electricity and magnetism are formulated in a symmetric
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FIG. 1. Transformations of a crossed electric and magnetic
field configuration. In the frame F', the magnetic field B is
along the z-direction, and the electric field E is along the y-
direction. vq, along the z-direction is the drift velocity of a
charge (vq) or a monopole (vy) defined in Eq. 5 and Eq. 6,
respectively. The frame F’ is moving relative to frame F at
the velocity of v" along the z-direction.

way. If in the SI unit, the force formulae are
Fq:q(E+VXB)?
v
FgZQ(B—MOGOVXE)zg(B—C—2 ><E). (4)

So far, ¢ is just a quantity carrying the unit of velocity.
Based on Eq. 2 and Eq. 3, there exist drift velocities.
For the charge ¢, its charge drift velocity is

Bt 5)

at which the Lorentz force balances the electric force such
that the charged ¢ moves in a uniform velocity along a
straight line. Similarly, the monopole drift velocity for
the magnetic charge g is

%ot (6)

We define that a velocity v is “physical” if it can be
taken as the drift velocity for a charge or a monopole in a
physically realizable crossed electromagnetic field config-
uration. Otherwise, it is “unphysical”. When a charge or
a monopole takes a physical drift velocity, a co-moving
frame can be defined in which the charge or monopole
is at rest. Since velocity starts from zero continuously,
when a drift velocity approaches zero, it should be phys-
ical without question. We assume that if a velocity v is
already physical, any velocity u satisfying |u| < |v] is also
physical.

We show that the at least one of charge drift veloc-
ity vy (Eq. 5) and monopole drift velocity v, (Eq. 6)
is unphysical. Contradiction would appear if both were
physical. Consider the co-moving frame Fy,. with the
charge drift velocity vg. In such a frame, the charge is
at rest, hence, both the magnetic force and the electric
force should vanish. This means that the electric field
is zero but the magnetic field does not. Otherwise, if
both of them are zero in Fy,., they should remain zero in
the lab frame. Then bring a magnetic charge g in Fj,.

It would undergo acceleration, which cannot be removed
by any inertial frame transformation. On the other hand,
in the co-moving frame F);. with a monopole at the drift
velocity vy, the monopole would be at rest, showing the
contradiction.

Since velocity v is continuous, the physical and un-
physical regions should be separated by a threshold value
veh, such that v is physical if |v| < vy, and unphysical
if [v| > vgp. It is easy to prove that vy, < c. If it were
not the case, i.e, vy, > ¢, a set of values of E, and B,
could be taken such that 1 < |B,/E,| < vy /c. A charge
would move with the drift velocity vg, and a monopole
would move with the drift velocity vy, and both would
be physical, which is impossible as shown before.

Let us check the limit of |E| < |B|. The charge drift
velocity vg < ¢, which is physical. In contrast, vy >
¢ > vy, hence, the magnetic drift velocity is unphysical.
Similarly, in the limit of |E| > |B|, the magnetic drift
velocity is physical, while the electric one is unphysical.

We can prove that it is impossible for vy, < c either.
Otherwise, vy, is non-universal, i.e., it takes different val-
ues in different inertial frames. This would be in contra-
diction to the relativity principle, since its different values
could be used to distinguish inertial frames. This can be
done by checking the transformation of v, in different
frames (Eq. 18), which will be derived later.

As a preparation, we derive the transformations of elec-
tric and magnetic fields between different inertial frames.
The key idea of reasoning would be based on the relativ-
ity principle — all inertial frames are equivalent. A physi-
cal drift motion is a uniform motion along a straight line,
hence, any inertial frame transformation does not change
this nature. In other words, if the electric and magnetic
forces are balanced in one frame, they are balanced in
any other reference frames.

Without loss of generality, the frame F’ is assumed
moving with a velocity v" along the z-axis with respect to
the frame F'. These two frames share an O(2) symmetry,
i.e, the rotation symmetry with respect to the boost axis,
i.e., the z-axis, and the reflection symmetry with respect
to any plane perpendicular to the yz-one. The longitu-
dinal components of the electric and magnetic fields, i.e.,
E, and B,, are rotationally invariant. But they trans-
form differently under the mirror reflection with respect
to the xz-plane. Hence, each of them transform to itself
without mixing. After boosting, E, can only change by
a factor A. On the other hand, this factor should be in-
dependent of the boosting direction. If we perform one
boost transformation, and then reverse the boost back to
the original frame, A\ = 1 is arrived. Since a boost can
start with an infinitesimal velocity,

A=1. (7)

A similar reasoning can be applied to B,. Hence, the
longitudinal components of E and B are invariant

E.=FE,, B,=B,. (8)

As for the transverse components, B, and E, are odd

under the reflection with respect to the xz-plane, and



even under the reflection with respect to the xy-plane.
In contrast, B, and E, transform oppositely under mir-
ror reflections with respect to these two planes. Hence,
B, and E, transform into each other under the Lorentz
boost, so does By and E,.

Now we assume the transformation between FE, and

B, as follows
E’ ab E
y | _ Yy
()-(o)(w) o

where the matrix elements only depend on the boost ve-
locity v’. We choose a configuration that E, /B, =v'/c =
B in the I frame, such that the charge drift velocity
vg =v'. In the F’ frame, the electric field should vanish,
ie., E; =0, then

LA~ 5 (10)

Similarly, a configuration that B,/E, = ' is chosen in
the F frame. In this case, the F’ frame is just the co-
moving frame of a magnetic charge with the drift velocity
vg =v’. Consequently B, = 0 in the F’, yielding that

L (11)

Now let us consider a general charge drift velocity v
in the F-frame with the corresponding electric and mag-
netic fields B, and E, such that § =v/c = E,/B,. Un-
der a Lorentz boost with velocity 8’ = v’/c, the charge
remains a drift motion. The drift velocity u in frame F’
is
E, aE,+bB, apB-p

"B, ¢E,+dB. dl-pp" (12)

ole

Similarly, we can also prepare a monopole with the
same drift velocity v in the F-frame, and choose the
crossed field configuration with B, /E, = v/c = . Again
by the same Lorentz boost, the drift velocity becomes u
in frame F’, then

u Bl

B, c¢E,+dB. _df-p
c E,

aB, +bB. al-pg"

(13)

Comparing Eq. 12 with Eq. 13, (a/d)? = 1 is arrived.
Since u/c = B in the limit of 3/ = 0, we conclude that
a/d=1.

So far we have derived the velocity addition law with-
out employing the space-time coordinate Lorentz trans-
formation,

u_ p-p

c 1-p88"
It is remarkable that the above derivation only relies on
the formula of electric and magnetic forces Eq. 2 and Eq.
3, and that a physical drift motion remains a physical
drift motion by inertial frame transformations. These
assumptions look more natural than the light velocity
invariance postulate.

(14)

Eq. 9 can be further refined by defining a quantity
L = E} — B2, which is known as the Lagrangian of the

electromagnetic field. According to above information,
we arrive at

L'=E?-B?=)\L (15)

where A = a?(1 — 8’?). L should be insensitive to the
boost direction since it involves the square of fields, then
A is an even function of #’. By a similar reasoning in
arriving at Eq. 7, we also conclude that A\ = 1, i.e.,
a=~=(1-p3%)"1Y2 Now we can refine the transform

as
E _ ,Y/ _'Y/B/ E
(5)-(2 3 (R) oo

By performing a rotation around the z-axis at 90°, we

arrive at
ELN_ (A +F E.
(5)=(5 ") (5)

With the above preparation, we prove that vy, = ¢
below. In frame F, either vy, is a realizable physical
velocity, or, as an upper limit of physical velocities. After
a Lorentz boost of velocity v’, this threshold velocity in
frame F’ becomes

/ /
Bl = Yth _ M (18)
c 1= Bwf
Due to the universality v, B;;, = B, then By = 1,
i.e., vy, = c¢. We conclude that the light velocity is also
invariant in any inertial reference frame.

Now we are able to derive the Lorentz transformation

of space-time intervals. By assuming

()= (o) (&) oo

the velocity addition law will be

u_A:r’_acAAzt—FS_aﬁ—&-g (20)
¢ cAt dl—i-gcAAﬂ”t dl+<p

Compared with Eq. 14, we conclude that a = d,b/a =
7/6,7 C/d = 7ﬂ/'

The length square of space-time interval is defined as
As? = 22 —c?At?. According to light velocity invariance,
if As? = 0, then As"2 = 0. Hence, for nonzero space-
time interval, we could have As? = AAs?, where \ is
a factor. Again by the a similar reasoning in arriving at
Eq. 7, A = 1. The Lorentz transformation is refined as

Az’ 7 A —'B Az (21)

AN A R W cAt |-
In conclusion, we provide alternative derivations of the
relativistic transformations of electromagnetic fields and
the space-time coordinates. By examining how the drift

velocities of an electric charge and a magnetic charge
transform in different inertial frames, we arrive at the



same results as those in standard textbooks. Neverthe-
less, the postulate of light velocity invariance is not as-
sumed, but actually is derived as the upper limit of the
physical drift velocities. These results clearly show that
the origin of relativity is deeply rooted in electromag-
netism. Even for such an elementary electromagnetic
phenomenon of the drift velocity, it is inconsistent with
the Galilean space-time transformation and relativity is
necessary.
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Appendix A: Lorentz force for a magnetic monopole

We justify the formula of Lorentz force for a magnetic
monopole as shown in Eq. 3. Consider a dyon system
consisting of a charge ¢ and a monopole g. Consider
the situation that the monopole g is fixed at the origin
and the electron moves around. The mechanical angular
momentum Ljs . =r X m,.Vv is not conserved.

d
—LMe:rxme—v:rx(vaB>
c

_egd (E) (A1)

Hence, the right hand side can be viewed as as the time
derivative of the field contribution to angular momentum,

Low = — 2 (5) . (A2)

Cc r

In fact, it can be shown that
1 3
Lem = - [ d&°r r x (E(r) x B(r)). (A3)
c

Such that Lo = Las,e + Lep, is conserved.

Now let us consider the situation that the electric
charge is fixed at the origin while the monopole is mov-
ing around. Again, we need to define the total angular
momentum as

Lgot = LE\d,g + L:zm, <A4)
Since r here is defined from the electric charge to the

monopole, which is opposite to the previous case, hence,
the field contribution of the angular momentum is

P (5) . (A5)

C r

Then the time derivative of the mechanical orbital angu-
lar momentum should satisfy

d d egd [T

—L = Fp,=——L =-"— (7> A

dt M,g rXx L7!]. dt em e r ( 6)
Hence, the above result is consistent with Eq. Al if

Yox X (A7)

Hence,

Fr, = —g% x E. (A8)
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