HW9:	CODE NUMBER:	<i>SCORE:</i>	1
------	--------------	---------------	---

Problems 1, 2, 3 on AC circuit

Work out the following problems in Berkeley Physics Course Volume II, Problems 8.4 8.7 8.16 of Chapter 8.

Problem 4. Angular momentum of an electric charge and a monopole

In a previous lecture, we worked out the angular momentum of a dyon system – an electric charge and a magnetic monopole. Now we will show that the extra contribution of angular momentum actually comes from that of the E&M field.

Consider a monople charge g located at \mathbf{R}_m and an electric charge e located at \mathbf{R}_e . Then the magnetic field \mathbf{B} and the electric field \mathbf{E} read

$$\mathbf{B} = g \frac{\mathbf{r} - \mathbf{R}_m}{|\mathbf{r} - \mathbf{R}_m|^3}$$
$$\mathbf{E} = q \frac{\mathbf{r} - \mathbf{R}_e}{|\mathbf{r} - \mathbf{R}_e|^3}.$$
(1)

Then the field angular momentum is defined as

$$L_{em} = \int d^3 \mathbf{r} \, \mathbf{r} \times \mathbf{p},\tag{2}$$

where $\mathbf{p} = \frac{1}{4\pi c} \mathbf{E} \times \mathbf{B}$ is the momentum density of the E&M field.

1) Prove that the definition of \mathbf{L}_{em} is independent of the choice of origin.

Hint: you need to prove that $\int d^3 \mathbf{r} \mathbf{p} = 0$.

Then without of loss of generality, we put q and g along the z-axis with g located at z = a, and e located at z = -a.

2) Prove that only L_z is nonzero.

3) Calculate the value of $\mathbf{L}_{em} = \frac{qg}{c} \mathbf{\hat{r}}$, where $\mathbf{\hat{r}}$ is the unit vector pointing from q to g.

Hint: you may need to use the integral

$$\int_{-\infty}^{+\infty} dt \int_{0}^{+\infty} \frac{s^3 ds}{[(s^2 + t^2 + 1)^2 - 4t^2]^{\frac{3}{2}}} = 1.$$
 (3)