Lect ${ }^{12}$ Kepler problem (I)

- CM and relative coordinates: reduced mass

$$
\left\{\begin{array}{c}
\vec{F}_{1}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)=-\vec{F}_{2}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \tag{1}\\
m_{1} \ddot{\vec{r}}_{1}=\vec{F}_{1} \\
m_{2} \ddot{\vec{r}}_{2}=\vec{F}_{2}
\end{array}\right.
$$

(1) + (2) $=0 \Rightarrow \ddot{\vec{R}}=0$ with $\vec{R}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}$

Center of mass coorrolinat
$\frac{(1)}{m_{1}}-\frac{(2)}{m_{2}} \Rightarrow \quad \ddot{\vec{r}}=\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) \vec{F}_{1} \quad$ where $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$ relative coorrolinate

$$
\mu \ddot{\vec{r}}=\vec{F}_{1}(|n|)
$$

$\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \leftarrow \begin{array}{r}\text { reduced mass. } \\ \mu<m_{1}, m_{2}\end{array}$

- Separation of center of mass motion and relative motion
- For the relative motion, it's reduced to a single mass point moving in a centeral force field $\vec{F}_{1}(|r|)$. The mass is replaced by μ.

$$
\begin{aligned}
& \quad T=\frac{1}{2} m_{1} \dot{\vec{r}}_{1}^{2}+\frac{1}{2} m_{2} \dot{\vec{r}}_{2}^{2} \quad \text { plus in } \\
& =\frac{1}{2} m_{1}\left[\vec{R}^{2}+\left(\frac{m_{2}}{M}\right)^{2} \dot{r}^{2}+2 \vec{R} \cdot \vec{R} \cdot \vec{r} \frac{m_{2}}{M}\right] \vec{r} \\
& \overrightarrow{r_{2}}=\vec{R}-\frac{m_{1}}{M} \vec{r}
\end{aligned} \text { with M=m+1}+1
$$

- $E=T+U=\frac{1}{2} M \dot{R}^{2}+\underbrace{\frac{1}{2} \underbrace{\mu \dot{\vec{r}}^{2}}+U(r)}_{\text {relative motion }}$
- $\vec{L}_{C M}$ in the CM frame, i.e, the frame that \vec{R} is at rest.

$$
\begin{aligned}
\vec{L}_{\mathrm{cM}} & =\left(\overrightarrow{r_{1}}-\vec{R}\right) \times m_{1}\left(\dot{r_{1}}-\dot{\vec{R}}\right)+\left(\overrightarrow{r_{2}}-\vec{R}\right) \times m_{2}\left(\dot{\overrightarrow{r_{2}}}-\dot{\vec{R}}\right) \\
& =\frac{m_{2}}{M} \vec{r} \times m_{1} \frac{m_{2}}{M} \dot{\vec{r}}+\left(-\frac{m_{1}}{M} \vec{r}\right) \times m_{2}\left(-\frac{m_{1}}{M}\right) \dot{\vec{r}} \\
& =\frac{m_{1} m_{2}}{M}\left(\frac{m_{2}+m_{1}}{M}\right) \vec{r} \times \dot{\vec{r}}=\mu \vec{r} \times \dot{\vec{r}}=\vec{L}_{\mathrm{CM}}
\end{aligned}
$$

- Reduction to ID motion

We have reduced the 2 -body problem into a single body problem in 3D. Now let us further reduce it to $2 D$ and to ID motion. I_{n} the CM frame, $\vec{L}_{C M}$ is conserved!

The force passes the origin \rightarrow no tergue.

(Angular momentum conservation due to spatial isotropy).

$$
\frac{d}{d t} \vec{L}_{\mathrm{CM}}=0 \Rightarrow \vec{L}_{\mathrm{CM}} \equiv \text { canst vector. }
$$

$\vec{L}_{C M}$ is perpendicular to the orbital plane \Rightarrow
the motion is coplanar, say, in the $x y$-plane, and $\vec{I}_{C M}=\ell \hat{z}$.

Then we use the equation of motion in the polar system

$$
\left\{\begin{array}{l}
F_{r}=\mu\left(\ddot{r}-r \dot{\phi}^{2}\right) \\
F_{\phi}=\mu(r \ddot{\phi}+2 \dot{r} \dot{\phi})=\frac{1}{r} \mu \frac{d}{d t}\left(r^{2} \dot{\phi}\right)
\end{array}\right.
$$

$F_{\phi}=0 \Rightarrow \frac{d}{d t}\left[\mu r^{2} \dot{\phi}\right]=0 \leftarrow$ This is Kepler's and law.
Actually $\vec{L}_{C M}=l \hat{z}=\mu r \hat{r} \times \vec{v}=\mu r \hat{r} \times\left[\dot{r} \hat{r}+r \frac{d \hat{r}}{d \phi} \dot{\phi}\right]$

$$
=\mu r^{2} \dot{\phi}[\hat{r} \times \hat{\varphi}]=\mu r^{2} \dot{\phi} \hat{z}
$$

$$
\begin{aligned}
& \Rightarrow \mu r^{2} \dot{\phi}=l \Rightarrow \dot{\phi}=\frac{l}{\mu r^{2}} \Rightarrow r \dot{\phi}^{2}=\frac{l^{2}}{\mu^{2} r^{3}} \\
& \Rightarrow \quad F_{r}=\mu \ddot{r}-\frac{l^{2}}{\mu r^{3}} \Rightarrow \mu \ddot{r}=F_{r}+\frac{l^{2}}{\mu r^{3}}
\end{aligned}
$$

- Effective ID motion

Similarly, we can apply our previous knowledge on ID motion to reduce it t_{0} int differential $E g$.

$$
E=\frac{1}{2} \mu \dot{r}^{2}+u(r)+\frac{l^{2}}{2 \mu r^{2}} \quad \text { where } u(r)=-\int_{r_{0}}^{r} F_{r} d r
$$

$$
E=\frac{1}{2} \mu \dot{r}^{2}+U_{e}{ }_{f}(u r)
$$

The effect of angular mometum is included by $\frac{l^{2}}{2 \mu r^{2}} \triangleq V_{f} c^{(r)}$

For Kepler problem $U(r)=-\frac{G m_{1} m_{2}}{r}=-\frac{\gamma}{r}$ (where $\gamma=G m_{1} m_{2}$,

$$
u_{e f f}(r)=-\frac{r}{r}+\frac{l^{2}}{2 \mu r^{2}}
$$

(1) $E<0$: bound cubital at $E_{\min }$, the radial motion is at rest \rightarrow circular motion

(2) $E=0$ and $E>0$ unbounded orbitals

What's special of $1 / r^{2}$ - force field? - closed orbital at $E<0$
(1) The period of radial motion (bounce) is the same as angular period ϕ from $0 \sim 360^{\circ}$.

(2) for general central force, the orbit may not be closed! The elliptise may precess. The angular period is n't the same as the radial period.

- Solve the equation of orbit

$$
\left\{\begin{aligned}
\mu \ddot{r} & =F_{r}+\frac{l^{2}}{\mu r^{3}} \\
\dot{\phi} & =\frac{l}{\mu r^{2}}
\end{aligned} \quad \rightarrow \text { Solve } r(\phi)\right.
$$

define $u=1 / r$ and we replace $\frac{d}{d t}$ by $\frac{d}{d \phi}$

$$
\begin{aligned}
& \frac{d}{d t}=\frac{d \phi}{d t} \frac{d}{d \phi}=\frac{l}{\mu r^{2}} \frac{d}{d \phi}=\frac{\ell u^{2}}{\mu} \frac{d}{d \phi} \\
& \dot{r}=\frac{l u^{2}}{\mu} \frac{d}{d \phi}\left(\frac{1}{u}\right)=-\frac{l}{\mu} \frac{d u}{d \phi} \\
& \ddot{r}=-\frac{l}{\mu} \frac{d}{d t} \frac{d u}{d \phi}=-\frac{l}{\mu} \frac{l u^{2}}{\mu} \frac{d^{2} u}{d \phi^{2}} \Rightarrow-\frac{l^{2} u^{2}}{\mu^{2}} \frac{d^{2} u}{d \phi^{2}}=\frac{1}{\mu} F_{r}+\frac{l^{2}}{\mu^{2}} u^{3} \\
& I=-\frac{\gamma}{d}=-\gamma u^{2}
\end{aligned}
$$

$$
v r \frac{d^{2} u}{d \phi^{2}}=-u(\phi)-\frac{\mu}{l^{2} u^{2}} F_{r}
$$

plug in $F_{r}=-\frac{\gamma}{r^{2}}=-\gamma u^{2}$
$\Rightarrow \frac{d^{2} u}{d \phi^{2}}=-u+\frac{\mu \gamma}{l^{2}} \leftarrow$ inhumgeneus and order linear differential E_{q}
$U=A \cos (\phi-\delta)+\frac{\mu \gamma}{l^{2}} r$ a special solution
Solution to the
homogeneous part
δ can be choose by choosing the x-axis aling the angle δ-direction i.e. major ass.

$$
\Rightarrow \frac{1}{r}=\frac{\mu \gamma}{l^{2}}[1+e \cos \phi] \text {, where } e=\frac{A l^{2}}{\mu \gamma}
$$

$$
\begin{aligned}
\Rightarrow r(\phi)=\frac{c}{1+e \cos \phi} \quad \text { with } \quad c & =\frac{l^{2}}{\mu \gamma} \\
e & =\frac{A l^{2}}{\mu \gamma}
\end{aligned}
$$

ξ conic curves/sections
p : focal parameter
e : eccentricity

$e=\frac{r}{d}$ with $d=p-r \cos \theta$

$$
\Rightarrow e d=e p-e r \cos \theta=r \Rightarrow r=\frac{e p}{1+e \cos \phi}
$$

$0<e<1$ - ellipse
$e=1$ - parabola
$e>1 \quad$ hyperbola
change to Cartisican coordinate

$$
\begin{aligned}
& r=e p-e r \cos \phi \leftarrow r \cos \phi=x \\
& x^{2}+y^{2}=(e p)^{2}+e^{2} x^{2}-2 e^{2} p x \\
&\left(1-e^{2}\right)\left[x+\frac{e^{2} p}{1-e^{2}}\right]^{2}+y^{2}=\frac{e^{2} p^{2}}{1-e^{2}}
\end{aligned}
$$

for $0<e<1 \Rightarrow \frac{\left(x+\frac{e^{2} p}{1-e^{2}}\right)^{2}}{\left(\frac{e p}{1-e^{2}}\right)^{2}}+\frac{y^{2}}{\left(\frac{e p}{\sqrt{1-e^{2}}}\right)^{2}}=1$

directrix

S Express the orbit by using conserved quantities

- Energy: using the effective potential

$$
\begin{aligned}
& u_{\text {eff }}(r)=-\frac{\gamma}{r}+\frac{l^{2}}{2 \mu r^{2}} \\
& r_{\text {min }}=\frac{c}{1+e}=\frac{l^{2}}{\mu \gamma(1+e)} \\
& \begin{aligned}
E= & \left.-\frac{\gamma}{r_{\text {min }}}+\frac{l^{2}}{2 \mu r_{\text {min }}^{2}}=\frac{1}{2 r_{\text {min }}}\left[\frac{l^{2}}{\mu r_{\text {min }}}-2 \gamma\right]=\frac{l^{2}}{2 \mu \gamma}\right]_{(1+e)}^{-1} \gamma(e-1) \\
= & \frac{\gamma^{2} \mu}{2 l^{2}}\left(e^{2}-1\right)=\frac{-\gamma}{2 a}
\end{aligned}
\end{aligned}
$$

$$
a=\frac{\gamma}{-2 E}
$$

- the half-major axis " a " is only determined by the energy.
- The half Latus-rectum (cord length) $C=\frac{l^{2}}{\mu \gamma}$ is only dertmined by the angular momentum

$$
\begin{aligned}
& a=\frac{c}{1-e^{2}} \Rightarrow 1-e^{2}=\frac{c}{a}=\frac{l^{2}}{\mu \gamma} \cdot \frac{-2 E}{\gamma} \Rightarrow e=\sqrt{1+\frac{2 l^{2} E}{\mu \gamma^{2}}} \\
& \frac{b^{2}}{a^{2}}=1-e^{2} \Rightarrow \frac{b^{2}}{a}=\left(1-e^{2}\right) a=c \Rightarrow b=\sqrt{\frac{l^{2}}{-2 \mu E}}
\end{aligned}
$$

; Kepler's 3rd law

$$
\begin{aligned}
& \qquad \begin{array}{l}
d \vec{A}=\frac{1}{2} \vec{r} \times d \vec{r} \Rightarrow \\
\quad \frac{d A}{d t}
\end{array}=\frac{1}{2} \frac{l}{\mu} \quad \pi a b \\
& \text { The tolar area } \quad A=r=\frac{A}{d A / d t}=\frac{2 \pi a b \mu}{l}
\end{aligned}
$$

$$
\Rightarrow \tau^{2}=\frac{4 \pi^{2} a^{2} a^{2}\left(1-e^{2}\right) \mu^{2}}{l^{2}}=\frac{4 \pi^{2} a^{3} c \mu^{2}}{l^{2}}=\frac{4 \pi^{2} a^{3} \mu}{\gamma}
$$

plug in $c=\frac{l^{2}}{\mu \gamma}$

$$
\begin{aligned}
& \left.\Rightarrow \frac{\tau^{2}}{a^{3}}=\frac{4 \pi^{2} \mu}{\gamma}=\frac{4 \pi^{2}}{G m_{\text {sun }}}\right] \\
& \gamma=G m_{1} m_{2}=G \mu\left(m_{\text {sun }}+m_{\text {earth }}\right) \approx G \mu m_{\text {sun }}
\end{aligned}
$$

Kepler problem (II)
§ unbounded orbits: $r(\phi)=\frac{c}{1+e \cos \phi}$
(1) $e=1 \Rightarrow r(\phi=\pi) \rightarrow+\infty, \quad y^{2}=-2 c\left[x-\frac{c}{2}\right]$
(2) $e>1$:

$$
\frac{\left(x-\frac{e c}{e^{2}-1}\right)^{2}}{\left(\frac{c}{e^{2}-1}\right)^{2}}-\frac{y^{2}}{\left(\frac{c}{\sqrt{e^{2}-1}}\right)^{2}}=1
$$

$$
p=c / e
$$

perihelion $\frac{c}{1+e}$

$$
\begin{aligned}
& a=\frac{c}{e^{2}-1} \\
& \text { center }\left[\frac{e c}{e^{2}-1}, 0\right]
\end{aligned}
$$

define $\phi_{0}=\cos ^{-1} y / e \Rightarrow r$ is finite when

$$
-\left(\pi-\cos ^{-1}(/ / e)\right)<\phi<\pi-\cos ^{-1}(1 / e)
$$

§ Change orbit

change from an elliptic orbit with $\left(c_{1}, e_{1}\right)$ to another one with $\left(c_{2}, e_{2}\right)$.

They tagent at the prize \Rightarrow are

$$
\frac{c_{1}}{1+e_{1}}=\frac{c_{2}}{1+e_{2}}
$$

Define the thrust factor $\frac{v_{2}}{v_{1}}=\lambda$

$$
\ell_{2}=\lambda \ell_{1}
$$

$$
\begin{cases}\lambda>1 \Rightarrow & \text { forward thrust } \\ 1>\lambda>0 & \text { backward thrust }\end{cases}
$$

Since $c=\frac{l^{2}}{\mu \gamma}$

$$
\begin{aligned}
\Rightarrow c_{2}=\lambda^{2} c_{1} \quad & \Rightarrow \frac{1+e_{2}}{1+e_{1}}=\frac{c_{2}}{c_{1}}=\lambda^{2} \\
& \text { cr } e_{2}=\lambda^{2} e_{1}+\left(\lambda^{2}-1\right)
\end{aligned}
$$

(1) If $\lambda>1$, then $e_{2}>e_{1}$. The two orbits have the same prigee the orbit becomes larger and more elliptical. At $e_{2} \geq 1$, the orbit beams open \rightarrow parabal a and hyperballa.
(3) If $\lambda<1$, then $e_{2}<e_{1}$. Then the new orbit becomes smaller and less elliptical. At $e_{2}=0$, the orbit becomes circluar. how about when $l_{2}<0$, then the equation
 of orbit changes $t_{0} r(\phi)=\frac{1}{1-e_{2} \cos \phi}$ Then the prigee and apogee switch.

Changing between circular orbits.
The eccentricity of the orbit is $e_{1}=0$, and $C_{1}=R_{1}$

The eccentricity of the orbit 2 is e_{2}

$$
\left\{\begin{array}{l}
r=\frac{c_{2}}{1+e_{2} \cos \phi} \Rightarrow \frac{c_{2}}{1+e_{2}}=\frac{\lambda^{2} R_{1}}{1+e_{2}}=R_{1} \Rightarrow e_{2}=\lambda^{2}-1 \\
c_{2}=\lambda^{2} R_{1}
\end{array}\right.
$$

and the apogee $\frac{C_{2}}{1-e_{2}}=R_{3} \Rightarrow C_{2}=R_{3}\left(1-e_{2}\right)$

$$
\begin{gathered}
\lambda^{2} R_{1}=R_{3}\left(2-\lambda^{2}\right) \\
\Rightarrow \\
\lambda^{2}=\frac{2 R_{3}}{R_{1}+R_{3}} \text { or } \lambda=\sqrt{\frac{2 R_{3}}{R_{1}+R_{3}}}
\end{gathered}
$$

The ind thrust. $\rightarrow\left\{\begin{array}{l}r=C_{3}=R_{3} \\ e_{3}=0\end{array} \quad C_{3}=\lambda^{\prime 2} C_{2}\right.$

$$
\Rightarrow \lambda^{\prime 2}=\frac{c_{3}}{c_{2}}=\frac{R_{3}}{\lambda^{2} R_{1}}=\frac{R_{1}+R_{3}}{2 R_{1}} \text { or } \lambda^{\prime}=\sqrt{\frac{R_{1}+R_{3}}{2 R_{1}}}
$$

The final speed and the initial speed

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
v_{3}=v_{2, \text { app }} \lambda^{\prime} \\
\lambda v_{1}=v_{2, \text { peri }}
\end{array} \text { and } v_{2, \text { app }} \cdot R_{3}=v_{2, \text { peri }} R_{1}\right.
\end{array}\right\} \begin{aligned}
& \Rightarrow v_{3}=\lambda^{\prime} \frac{v_{2} \text { app }}{v_{2, \text { per }}} \cdot \lambda v_{1}=\lambda^{\prime} \lambda \frac{R_{1}}{R_{3}} v_{1}=\sqrt{\frac{R_{1}}{R_{3}} v_{1}}
\end{aligned}
$$

10

Cosmic velocities

Newton's solution to Kepler's problem paved the way for the space age, starting from thelaunch of Sputnik 1 in 1957. Below we explain the calculation of the three cosmic velocities. The first astronaut was Yuri Gagarin (1934-1968).

10.1 1st cosmic velocity - the orbiting velocity

The first cosmic velocity is that the an object does not fall on the group but orbiting around the earth.

$$
\begin{gather*}
m \frac{v_{1}^{2}}{R}=\frac{G M m}{R^{2}} \\
v_{1}^{2}=\frac{G M}{R} \tag{10.1}
\end{gather*}
$$

where m is the mass of the object, M is the earth mass, and R is the earth radius. Since $g=G M / R^{2}$, we arrive at

$$
\begin{equation*}
v_{1}=\sqrt{R g}, \tag{10.2}
\end{equation*}
$$

and the period T is

$$
\begin{equation*}
T=2 \pi R / v=2 \pi \sqrt{R / g} \tag{10.3}
\end{equation*}
$$

Plugging in $R=6400 \mathrm{~km}$ and $g \approx 10 \mathrm{~m} / \mathrm{s}^{2}$, we arrive at

$$
\begin{equation*}
v_{1} \approx 8 \mathrm{~km} / \mathrm{s}, \quad T \approx 5024 s \approx 84 \mathrm{~min} . \tag{10.4}
\end{equation*}
$$

Figure 10.1 The total energy of an elliptic orbit is completely determined by the half major axis a as $E=-\frac{G M m}{2 a}$. The angular momentum is completely determined by the half length of the cord passing the focus h as $l=m \sqrt{G M h}=m h \sqrt{G M / h}$.

10.2 A few useful results

The total energy is completely determined by a.

$$
\begin{equation*}
E=E_{K}+E_{p}=\frac{1}{2} m v^{2}-\frac{G M m}{r}=-\frac{G M m}{2 a} . \tag{10.5}
\end{equation*}
$$

The angular momentum is completely determined by h.

$$
\begin{equation*}
\vec{L}=l \hat{z}=m \vec{r} \times \vec{v}=m \sqrt{G M h}=m h \sqrt{\frac{G M}{h}} . \tag{10.6}
\end{equation*}
$$

For all the orbits with the same energy E, they share the same half major axis. But their orbital angular momentum is different. The circular orbit has the largest orbit angular momentum. This could be understood as follows: The kinetic energy only depends on speed but not the direction of the velocity, hence, if we let velocity be perpendicular to the radius, we can maximize angular momentum. This is just the circular orbit. For all the orbits with the same h, they share the same angular momentum, but their energies are different. The orbital angular momentum is $m r v \sin \theta$, hence, if $\theta=\pi / 2$, we can let v be smallest, which leads to the minimum energy.

10.3 2nd cosmic velocity

The 2 nd cosmic velocity v_{2} refers to the minimal velocity at which the object can fly escaping from the earth. This means that the total energy, the sum of the kinetic and the gravity potential energy, is zero. Hence

$$
\begin{equation*}
\frac{1}{2} m v_{2}^{2}-\frac{G M m}{R}=0 \tag{10.7}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
v_{2}=\sqrt{\frac{2 G M}{R}} \tag{10.8}
\end{equation*}
$$

Its relation with the first cosmic velocity is

$$
\begin{equation*}
v_{2}=\sqrt{2} v_{1} \approx 11.2 \mathrm{~km} / \mathrm{s} \tag{10.9}
\end{equation*}
$$

At 2 nd cosmic veolcity, the orbit is a parabola. Since the total energy is conserved at zero, this means that the satellite can move to infinity where $E_{p}=$ 0 at which its velocity goes to zero. If $v \geqslant \sqrt{2 G M / R}$, the orbit is a hyperbola. $E_{t o t}=E_{k}+E_{p}>0$, which means that the satellite can go to infinity with $E_{k}=\frac{1}{2} m v^{\prime, 2}-G M / R$. Satellites with parabolic and hyperbolic orbits fly away and will not return to the earth.

10.4 3rd cosmic velocity

The 3 rd cosmic velocity ν_{3} is considerably more complicated than the 1 st and 2nd ones. This is the minimal velocity at which the object can escape the solar system.

First, we calculate the orbiting velocity of the earth. The earth-sun distance $R_{e}=1.5 \times 10^{8} \mathrm{~km}$, and the period is 1 year. Then the orbiting velocity of the earth around the Sun is

$$
\begin{equation*}
v_{o}=2 \pi R / T \approx 30 \mathrm{~km} / \mathrm{s} . \tag{10.10}
\end{equation*}
$$

Then the escaping velocity respect to the Sun is

$$
\begin{equation*}
v_{e s}=\sqrt{2} v_{0} \approx 42.4 \mathrm{~km} / \mathrm{s} . \tag{10.11}
\end{equation*}
$$

Nevertheless, the 3rd cosmic velocity is the object velocity when launched with respect to the earth surface, which can take the advantage of the earth orbiting velocity.

Let us consider three steps of launching a rocket to fly away from the earth. During these steps, the distance of the rocket with respect to the Sun changes
very little, hence, its potential energy due to the gravity from the Sun can be approximately as a constant. We only count the kinetic energies of the rocket, the earth, the rocket-earth potential energy, and the chemical energy of the fuel.

The first stage is before the launch. The earth and the rocket have the same velocity v_{0}, and the energy stored in the chemical fuel E_{c}. The total energy is

$$
\begin{equation*}
E_{1}=\frac{1}{2}(m+M) v_{0}^{2}+E_{c h}-\frac{G M m}{R} \tag{10.12}
\end{equation*}
$$

The 2 nd stage is that the rocket just acquires the 3 rd cosmic velocity v_{3} by burning out the chemical fuel, but is still very close to the earth surface. Then

$$
\begin{equation*}
E_{2}=\frac{m}{2}\left(v_{0}+v_{3}\right)^{2}+\frac{M}{2}\left(v_{0}+\Delta v\right)^{2}-\frac{G M m}{R} \tag{10.13}
\end{equation*}
$$

where Δv is the recoil of the earth. According to momentum conservation, we have

$$
\begin{align*}
(m+M) v_{0} & =m\left(v_{0}+v_{3}\right)+M\left(v_{0}+\Delta v\right) \\
m v_{3}+M \Delta v & =0 \tag{10.14}
\end{align*}
$$

Then Eq. 10.13 is reduced to

$$
\begin{equation*}
E_{2}=\frac{1}{2}(m+M) v_{0}^{2}+\frac{m}{2} v_{3}^{2}+\frac{M}{2} \Delta v^{2}-\frac{G M m}{R} \tag{10.15}
\end{equation*}
$$

The energy conservation $E_{1}=E_{2}$ yields

$$
\begin{equation*}
E_{c h}=\frac{m}{2}\left(1+\frac{m}{M}\right) v_{3}^{2} \approx \frac{m}{2} v_{3}^{2}, \tag{10.16}
\end{equation*}
$$

which is correct to the zeroth order of m / M.
The 3rd stage is that the rocket flies away from the earth with the velocity $\sqrt{2} v_{o}$ with respect to the Sun. The total energy at this stagger is

$$
\begin{equation*}
E_{3}=\frac{1}{2} m\left(\sqrt{2} v_{o}\right)^{2}+\frac{M}{2}\left(v_{o}+\Delta v^{\prime}\right)^{2} \tag{10.17}
\end{equation*}
$$

where Δv^{\prime} is the recoil of the earth at the end of the 3rd stage. According to the momentum conservation,

$$
\begin{align*}
(m+M) v_{o} & =m \sqrt{2} v_{0}+M\left(v_{o}+\Delta v^{\prime}\right) \\
M \Delta v^{\prime} & =-m(\sqrt{2}-1) v_{o} \tag{10.18}
\end{align*}
$$

Then Eq. 10.17 is reduced to

$$
\begin{equation*}
E_{3}=\frac{m}{2}\left(\sqrt{2} v_{o}\right)^{2}+\frac{M}{2} v_{o}^{2}-m(\sqrt{2}-1) v_{o}^{2} \tag{10.19}
\end{equation*}
$$

According to energy conservation, $E_{1}=E_{3}$

$$
\begin{align*}
& \frac{m}{2} v_{o}^{2}\left((\sqrt{2})^{2}-2(\sqrt{2}-1)-1\right)=\frac{m}{2} v_{3}^{2}-\frac{G M m}{R} \\
& v_{3}^{2}=v_{o}^{2}(\sqrt{2}-1)^{2}+v_{2}^{2} \tag{10.20}
\end{align*}
$$

Plugging in $v_{o}=30 \mathrm{~km} / \mathrm{s}$ and $v_{2}=11.2 \mathrm{~km} / \mathrm{s}$, then we arrive at

$$
\begin{equation*}
v_{3}=\sqrt{30^{2} \times 0.414^{2}+11.2^{2}}=16.7 \mathrm{~km} / \mathrm{s} \tag{10.21}
\end{equation*}
$$

