General Physics I

Lect15．The Kinetic Theory of Gases

李圣超

lishengchao＠westlake．edu．cn
－The analysis of matter from a physical perspective is complex，given that it＇s made of numerous atoms interacting electrically and mechanically．
－Unlike simpler systems like mechanics or light，where we started with precise laws（like Newton＇s），matter is too intricate to be understood directly from these laws alone．
－The study of matter requires understanding the probabilistic behavior of many atoms－from a macroscopic point of view．We will start with imprecise classical statistic mechanics but progressively refine thermodynamics with quantum mechanics．

[^0]The world is too complex to be described exactly：we need approximations．
－Real－world analysis of matter starts with physical intuition and appropriate approximations，rather than direct mathematical solutions from fundamental equations．
－The discussion begins with gases and will extend to their properties like pressure，volume，and temperature－many of the rules are empirical at first．
－We will understand：
Why gas at the same temperature and pressure has the same number of molecules？Why does gas heat up as it is compressed，or expand as it is heated？And so on．．．
－Gas molecules in constant motion exert a force on surfaces（e．g．，eardrums）．This is perceived as pressure．

$$
P=F / A
$$

－Consider a box of volume V ，with atoms moving around inside the box with various velocities they bang against the piston．The piston is assumed to be a perfect reflector（no heating up）．

$$
\mathrm{dW}=\mathrm{F}(-\mathrm{dx})=-\mathrm{PAdx}=-\mathrm{PdV}
$$

$\bullet F$ is the force needed to balance the banging of the molecules．The minus sign as we compress it， we decrease the volume．
－How many atoms are hitting？The small volume dV is occupied by the atoms to hit the piston

$$
d V=v_{x} A d t
$$

－A perfectly elastic collision with a piston doubles the momentum transfer－＞ $\mathbf{2 m v} \mathbf{v}_{\mathbf{x}}$
－The number of the molecule with velocity v is defined as $\mathrm{n}(\mathrm{v})$ ，then the total momentum transfer per time：

$$
d P=2 m v_{x} \cdot n(v) \cdot v_{x} A d t
$$

－Recall that $\mathrm{dP}=\mathrm{Fdt}$ ，and half of the $\mathbf{v}_{\mathbf{x}}$ is pointing away from the piston－＞ $1 / 2$ ，we have

$$
F=m v_{x}^{2} \cdot n(v) \cdot A
$$

Gas Pressure（Cont＇d）

－Denote the velocity distribution $\mathrm{n}(\mathrm{v})$ as the product of average velocity $\left\langle\mathrm{v}_{\mathrm{x}}{ }^{2}\right\rangle$ and volume density $\mathbf{n}=\mathrm{N} / \mathrm{V}$

$$
\begin{aligned}
F & =m v_{x}^{2} \cdot n(v) \cdot A \\
& =n \cdot m \cdot A\left\langle v_{x}^{2}\right\rangle
\end{aligned}
$$

－Recall $\mathbf{P}=\mathrm{F} / \mathrm{A}$ ，we have

$$
P=n \cdot m\left\langle v_{x}^{2}\right\rangle
$$

$$
\begin{aligned}
=2 \mathrm{n} \cdot & \left\langle 1 / 2 m v_{\mathrm{x}}{ }^{2}+1 / 2 m v_{\mathrm{y}}{ }^{2}+1 / 2 m v_{\mathrm{z}}{ }^{2}\right\rangle / 3 \\
& =2 / 3 \cdot \mathrm{n}\left\langle 1 / 2 m v^{2}\right\rangle
\end{aligned}
$$

－The equation of state

$$
P V=2 / 3 \cdot N\left\langle 1 / 2 m v^{2}\right\rangle=2 / 3 \cdot U
$$

U is the total internal energy of the monoatomic gas，where we disregard excitation or motion inside the atoms．

Notice that the number $2 / 3$ changes with different types of gas．Conventionally，the general expression of the equation is written as

$$
\text { PV = }(\nu-1) U
$$

We know that for a monatomic gas like helium，$\gamma=5 / 3$
${ }^{*} \gamma=C p / C v$ ，ratio of specific heats（homework）
\qquad
Adiabatic＝a（not）＋dia（through）＋bainein（to go）
－Definition：A process in which no heat is transferred to or from the system，and all work done on the gas changes its internal energy．
－For an adiabatic compression，all the work done goes into changing the internal energy

$$
\mathrm{PdV}=-\mathrm{dU}
$$

－Since $U=P V /(\gamma-1)$ ，and $P d V=-(P d V+V d P) /(\gamma-1)$

$$
\Rightarrow d P / P+\gamma d V / V=0
$$

Figure 8.29 （b）：When the gas is

$$
\Rightarrow v \ln V+\ln P=\text { const. }
$$ compressed or expanded so fast，the gas cannot exchange heat with surrounding

$$
\Rightarrow P V^{v}=\text { const. }
$$ even though there is no thermal insulation．

－Under adiabatic conditions，the pressure times the volume to the $5 / 3$ power is a constant for a monatomic gas＝＞experimentally confirmed

Example：Stellar Photon Gas

－In astrophysics，the gas of photons can be used to describe the features of very hot stars，where atomic contribution can be neglected．

$$
\mathrm{P}=2 \mathrm{n} \mathrm{p}_{\mathrm{x}} \mathrm{v}_{\mathrm{x}}=\mathrm{n}\left\langle\mathrm{p}_{\mathrm{x}} \mathrm{v}_{\mathrm{x}}\right\rangle=\mathrm{n} / 3\langle\vec{p} \cdot \vec{v}\rangle
$$

－Photon energy $\mathrm{E}=\mathrm{pc}=\langle\vec{p} \cdot \vec{v}\rangle$ ，and total internal energy $U=N E=n V E$ ，hence for photon gas
PV = U/3
－From $\gamma-1=1 / 3$ ，we know $\gamma=4 / 3$ ，and the compressibility of radiation！

$$
\mathrm{PV}^{4 / 3}=\text { const. }
$$

－As the volume decreases due to gravitational pull， the pressure must increase to maintain equilibrium．

Understanding photon gas behavior is essential for studying the life cycle of stars，especially during phases like white dwarf and neutron star formation，where temperature and pressure are extreme．

[^0]: 李圣超 General Physics I

