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Boltzmann & Maxwell distributions 

• Boltzmann’s distribution：the probability of finding 
molecules in a given spatial arrangement varies 
exponentially with the negative of the potential energy 
of that arrangement, divided by kT.

• Maxwell’s distribution：the probability of finding 
molecules in a given spatial arrangement varies 
exponentially with the negative of the potential energy 
of that arrangement, divided by kT.

(specific)

(generalize)

(specific)

(generalize)
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Unitarity of probability density

To calculate the unknown , such that , we first calculate I:

𝑥 = 2𝑘𝑇/𝑚𝑢Let
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Maxwell distribution in 3D
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Change T

Velocity (momentum) distribution 
in 3D, v is the speed.  
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Properties of Maxwell distribution

In 3D: 𝑓 𝑣 = 4𝜋
𝑚
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By solving

Observe ⟨mv2/2⟩=3kT/2!

𝑣p ≈ 88.6%⟨𝑣⟩ < ⟨𝑣⟩ < 108.5%⟨𝑣⟩ ≈ 𝑣rms  

（most probable speed）

（average speed）

（root-mean-square speed）
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Maxwell distribution in n-dimensional space

In n-dimensional space, Maxwell–Boltzmann 
distribution:
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Velocity distribution:

Simulation of a 2D gas relaxing towards a 

Maxwell–Boltzmann speed distribution (wiki)
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Mean squared velocity:
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Example: velocity profile of dark matter (DM) halo 

The Boltzmann equation describes the evolution of the phase-
space density f(x, v) of a DM particle. Conservation of probability:

While solving the position-dependent Boltzmann equation is 
beyond the scope of this lecture (c.f. 1603.03797), we can use the 
nice conclusion from Jeans Theorem that the phase-space 
distribution is solely a function of energy E for a halo in steady 
state:

Phase-space distribution for a spherical isotropic halo in a steady 
state is well-modeled by

where v0 ≈ 220 km/s, vesc ≈ 500-600 km/s 
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A self-gravitating isothermal gas sphere! 

https://arxiv.org/pdf/1603.03797.pdf
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The specific heats of gases

From the 1st law of thermal dynamics*: 
dU = –PdV + dQ

CV = (dQ/dT)V = dU/dT = U/T

CP = (dQ/dT)P = dU/dT + PdV/dT 

Given (PdV = NkdT)P => CP = U/T + Nk

CP / CV = (U + NkT)/U = 1 + NkT/U

From the total internal energy: 
PV = (γ-1)U => 1/U= (γ-1)/PV

Hence, CP / CV = 1 + NKT(γ-1)/PV = γ

*we will return to this in the future

This suggest that, by measuring the 
γ = CP / CV of different gases, we 
can infer the total energy U for 
each of them.
Indeed, for monatomic gas, it has 
three degrees of freedom, thus 
U=3NkT/2 and we expect γ to be 
5/3 ≈ 1.666... We found exactly the 
case from He, Kr, Ar and so on!
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The total energy of diatomic molecule (classical)

In L16, we said that the total kinetic energy 
of a diatomic molecule is 3kT. This can be 
seen as each atom carries 3kT/2 energy, or 
3kT/2 from C.O.M motion, kT from 
rotational motion (2 axis) and kT/2 from 
vibrational kinetic energy.  
There is, however, another kT/2 from the 
potential energy, coming from the fact that 
the bottom of V(r) is close to a parabolic 
potential, i.e, the harmonic oscillator. Thus, 
we have <K.E.>=<P.E.> from Virial Theorem, 
or simply based on our experience. 

Parabola potential

V~k(x-x0)
2

Therefore, the total energy of a 
diatomic molecule is 7kT/2. 
We can also see that, classically, 
the total energy of a molecule 
with N atoms keeps increasing, 
U=(6N-6)kT/2 for N>=3

Potential of an O2 molecule: 
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Failure of classical physics

With the total energy of a diatomic 
molecule being 7kT/2, we expect γ = 9/7 
≈ 1.286 independent of its temperature.

In experiment, we saw a strong 
dependence of γ with temperature. 
Seems that the effective d.o.f. decreases 
to 3 (γ = 5/3) with T->0. And this effect is 
stronger for H2 than O2. 

“I have now put before you what I consider to be 
the greatest difficulty yet encountered by the 
molecular theory.”   -- Maxwell in 1869

d.o.f.

5

7

3
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Need for quantum mechanics

Now 150 years later, we know that this 
problem can be solved beautifully by 
quantum mechanics, as a solution to a 
next difficulty in statistical mechanics 
that we will cover soon. 
Without proof, let’s assume the 
molecule takes discrete energy states, 
E0, E1, E2…The number of particles in 
state E1 compared of that of E0 follows 
the Maxwellian relation (E~mv2): 

In fact, the energy levels are equipartition, 
and each level adds a suppression factor of 
e−ℏω/kT for the distribution. 
At ℏω>>kT, almost all molecule is at E0, 

effectively “frozen”---no contribution to the 
specific heat. At ℏω<<kT, the behavior of 
the gas approaches classical physics 
(quantization->continuum)


