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Boltzmann & Maxwell distributions W 2225
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e Boltzmann’s distribution: the probability of finding
molecules in a given spatial arrangement varies
exponentially with the negative of the potential energy I
of that arrangement, divided by kT. e o TTT ﬁ h

temperature

n = ng e~ mgh/kT (specific) - | l
g

n = (COHStant)e_P'E'/kT (generalize) ‘@i—

* Maxwell’s distribution: the probability of finding
molecules in a given spatial arrangement varies N
exponentially with the negative of the potential energy \ h=bh
of that arrangement, divided by kT.

mu2/2 = mgh e (0) — e*mgh/kT — efmuQ/QkT (specific)
N~ (O)
h
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f(p) dp _ Ce—K.E./kT dp‘ (generalize)
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Unitarity of probability density

To calculate the unknown f(u) du = Ce ™ /2T dy, such that f f(u) du =1, we first calculate I:

Let | x = 2kT/mu g / e da.

o0

2 o —x2 o0 a2
I° = e " dzx- e ¥V dy
o0 o0 2 9
= / / e &) dy de,
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which is a double integral over the whole zy-plane. But this can also be written in polar

Then

coordinates as

I? 2/ e ™ . 2rrdr
0

:ﬂ'/ eltdt=m. = C’Z\/m/27rkT
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Maxwell distribution in 3D W
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m 1/2 —mvyz N fjj m 3/2 —m(vx2+vy2+vzz)d o
J — kT = e 2kT v,.Av,dv
f(vy)dvy (anT) e dv, kT xAVy AV,
m )1/ 2 —mvzzd
— e 2kT qv , -
21tk z css Change T @scueec
Write as f(v, 0, ¢): i
m \3/2 —m (V2 40y 2 4v,%) :
2 . %
( ) jv e 2kT dvjsm@d@]dgo
v, \2mkT
Distribution of Speeds for Noble Gases at Room Temperature
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Velocity (momentum) distribution
in 3D, v is the speed.
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Properties of Maxwell distribution

Probability

In 3D: f(v) = 4r (2 kT)

0,at T=300K
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By solving
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mv? 1| ex __mv2 =0
2kT P\Tokr ) ~

= vp = E (most probable speed)
\/ m
o0 [ 8KT
(v) = /0 vf(v)dv =4/ —— (average speed)

1
Vrms = 4/ (v*) = {f v f(v) dv} i (root-mean-square speed)
0

Observe (mv2/2)=3KT/2!

v, = 886%(1}) < (v) < 1085%(77) ~ Vrms
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Maxwell distribution in n-dimensional space Wy =2

In n-dimensional space, Maxwell-Boltzmann
distribution:

. miv|?
F)d"y = [ zexpilt-—

Velocity distribution:

mv2 »
C X expif— )xv" dv D
Mean squared velocity: timestep = 0
2
T2 =1 gyt TV
W = Jy v? - v Lexpif 2kT)dv
e v texpit- )dv
n + 2
[Zk | T T( )
_ -1 _—t = 01 4
r(x)_fomf‘ e dt m r(i
B 2kT_ n B nkT
2T m Simulation of a 2D gas relaxing towards a

Maxwell-Boltzmann speed distribution (wiki)
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Example: velocity profile of dark matter (DM) halo

dark matter halo

The Boltzmann equation describes the evolution of the phase-
bulge

space density f(x, v) of a DM particle. Conservation of probability: Sun disk

/f(X, V) EBxddv =1 Milky Way

While solving the position-dependent Boltzmann equation is
beyond the scope of this lecture (c.f. 1603.03797), we can use the

nice conclusion from Jeans Theorem that the phase-space 35 —
distribution is solely a function of energy E for a halo in steady | s Lo | g
state: ] Tl SHM*++ \,’ o | 8
f(x,v)=f(E) where & =T — 5(;)2 Ta ' , 0173
A o " 18
Phase-space distribution for a spherical isotropic halo in a steady = N
state is well-modeled by q_:fts_ |
) gs 1_ m
p(r) x 1/r?  and f(v) x e~/ =
05 \ .
o 1 V2 0 ) 1
fGataxy (v) = N (vp) CXp 02 (Vesc = [v1) % 100 200 300 400 500 600 700 800
0 v [km s7

where v, =~ 220 km/s, v, = 500-600 km/s .
— A self-gravitating isothermal gas sphere!



https://arxiv.org/pdf/1603.03797.pdf

The specific heats of gases

From the 1st law of thermal dynamics™:
dU =-PdV + dQ

C, = (dQ/dT), = dU/dT = U/T
C, = (dQ/dT), = dU/dT + PAV/dT
Given (PdV = NKkdT), => C, = U/T + NK

Cp/Cy, =(U+NKT)/U=1+NKT/U
From the total internal energy:

PV = (y-1)U => 1/U= (y-1)/PV
Hence, C,/ C, =1 + NKT(y-1)/PV =y

W) E#25%
This suggest that, by measuring the
v = Cp / C,, of different gases, we
can infer the total energy U for
each of them.
Indeed, for monatomic gas, it has
three degrees of freedom, thus
U=3NkT/2 and we expect y to be
5/3 = 1.666... We found exactly the
case from He, Kr, Ar and so on!

Gas T(°C) vy
He —180 1.660
Kr 19 1.68
Ar 15 1.668

*we will return to this in the future



The total energy of diatomic molecule (classical)

Potential of an O, molecule:
In L16, we said that the total kinetic energy mE V(r)
of a diatomic molecule is 3kT. This can be
seen as each atom carries 3kT/2 energy, or
3kT/2 from C.0.M motion, kT from
rotational motion (2 axis) and kT/2 from o

.
vibrational kinetic energy. \/'

There is, however, another kT/2 from the
potential energy, coming from the fact that  Therefore, the total energy of a

the bottom of V(r) is close to a parabolic diatomic molecule is 7kT/2.
potential, i.e, the harmonic oscillator. Thus, ~We can also see that, classically,
we have <K.E.>=<P.E.> from Virial Theorem, the total energy of a molecule

or simply based on our experience. with N atoms keeps increasing,
U=(6N-6)kT/2 for N>=3




Failure of classical physics

With the total energy of a diatomic 1
molecule being 7kT/2, we expecty = 9/7
= 1.286 independent of its temperature.

Gas T(°C) 0%
He —180 1.660
Kr 19 1.68
Ar 15 1.668
H, 100 1.404
O, 100 1.399
HI 100 1.40
Brs 300 1.32
I, 185 1.30
NH; 15 1.310
C2Hs 15 1.22
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In experiment, we saw a strong

dependence of y with temperature.
Seems that the effective d.o.f. decreases
to 3 (y = 5/3) with T->0. And this effect is
stronger for H, than O,.

“I have now put before you what I consider to be
the greatest difficulty yet encountered by the
molecular theory.” -- Maxwell in 1869
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Need for quantum mechanics N
Es = 4fw Py = Aexp(—4hw/kT)

N3

Now 150 years later, we know that this Ey =3hw Ps = Aexp(—3hw/kT)

problem can be solved beautifully by N E —2hw P = Aexp(—2hw/kT)
quantum mechanics, as a solution to a M f = hw P = Aexp( —Tw/kT)
next difficulty in statistical mechanics No
. En= 0 Po=A
that we will cover soon.
Without proof, let’s assume the In fact, the energy levels are equipartition,

E,, E,, E,...The number of particles in e /KT for the distribution.

state E, compared of that of E, follows At Aw>>kT, almost all molecule is at E,
the Maxwellian relation (E~mv?): effectively “frozen”---no contribution to the

specific heat. At hw<<kT, the behavior of
the gas approaches classical physics
(quantization->continuum)



