
General Physics I

Lect.21 State Variables

李圣超
lishengchao@westlake.edu.cn

2023.11



李圣超 General Physics I

Variables in thermodynamics

• The subject of thermodynamics is complicated because there are so many different 
ways of describing the same thing. 

• For a gas, ideal gas law PV=NkT, we can say pressure depends on the 
temperature and on the volume P(V,T), or volume depends on the temperature and 
the pressure V(T,P). For internal energy U, we can have U(T,V), or U(T,P), or 
U(P,V). For entropy, S(T,V). And we can construct many other variables as we like, 
such as: U−TS. 

• For simplicity, we consider variables T and V, and their dependent functions U and 
the P. Everything else should be a function of them. 

• Since the variable of P depend on V and T, ordinary derivative dP/dT is not 
enough. We define a new math symbol called partial derivative, ∂P/∂T. This remind 
us that P depends on V, as well as on T. To show that the other variable is held 
constant, we write the variable that is held constant as a subscript, (∂P/∂T)V
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Partial differentials

If a function rely on multiple variables, e.g., 
f(x,y), its partial differentials follows:

(commutation)
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Useful Operators
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Specific heat at constant volume

When the temperature changes from T to T+ΔT and the volume changes 
from V to V+ΔV, change in the internal energy U(T,V) is: 

From the first law we have: 

Let’s first keep the volume constant (ΔV=0) to derive the heat capacity. With ΔQ=ΔU=0, 
and from above that ΔU= ΔT(∂U/∂T)V, so we have (∂U/∂T)V=ΔQ/ΔT. This value means
the amount of heat one needs to increase unit temperature of a substance, called 
the specific heat at constant volume (CV). 
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Fundamental relations in thermodynamics

P-V diagrams for a Carnot cycle

Consider a Carnot cycle, the total amount of work done by the gas in 
a reversible cycle is ΔQ(ΔT/T), where ΔQ is the amount of heat 
energy added. From geometry of right bottom plot, we know that from

The heat needed to expand:

ΔU can be written as the 
sum of ΔQ and the work done:

Now we find the rate of change of U with V at constant T:

Only P, V, U, T appear in this 
fundamental equation, and can be used 
to deduce other thermodynamic results. 
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Ideal gas at constant temperature

Assume we have an ideal gas at constant temperature T, so ΔU=0 as U only depend on T. So we 
have

From integration (we write out “const V” as a reminder) we have

This agrees with the ideal gas law that PV=NkT. Recall that at one stage we assumed that the 
kinetic energy of the molecules was proportional to the temperature, which we call it the ideal gas 
scale, or kinetic temperature. 
Here from the Second Law we defined we define the grand thermodynamic absolute 
temperature, which based on the Carnot cycles it is completely independent of the working 
substance, but rather the fundamental rule of thermodynamic. 

It’s nice to have the two temperature scales unified! 
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Enthalpy

Recall that ΔU=ΔQ−PΔV; we can play a trick to replace PΔV with VΔP. 
Let’s define a new state variable called enthalpy (焓), its dictionary definition is 
the total heat content of a system, most used by chemists. Observe that 
d(PV)=PdV+VdT:

So now we have ΔH=ΔQ+VΔP, compared with ΔU, we have the following rules: 
U→H, P→−V, V→P. The fundamental relationship becomes

Similarly, we can show that the heat capacity at constant pressure is
𝜕𝜕𝜕
𝜕𝜕𝜕 p

= Cp
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Helmholtz free energy

Helmholtz Free Energy is a thermodynamic potential that measures the “useful” work 
obtainable from a closed thermodynamic system at a constant temperature and 
volume. The derivation is very similar to the last slide, where d(TS)=TdS+SdT, s.t.

We define a new variable F=U-TS and have the relation of dF=-SdT-PdV. From that, 
compared with dU=TdS-PdV, we can use the rules U→F, S→T, T→-S to derive the 
fundamental relationship involving F. 

One can find expressions for entropy and pressure:

dU=d(TS)-SdT-PdV

d(U-TS)=-SdT-PdV



李圣超 General Physics I

Clausius-Clapeyron equation

• Consider some liquid (so not ideal gas) in a cylinder, if we keep the 
temperature constant, we have an isothermal line on the P-V 
diagram which involve the phase change between liquid and gas.

• Now connect the two isothermal lines with adiabatic lines, the heat 
added to the substance in changing it from a liquid to a vapor is 
related to the work done by the substance as it goes around the 
cycle. 

• Such heat is usually called the Latent heat, denoted by L. Using 
the analogy of the previous Carnot’s argument*, we can now equate 
L(ΔT/T) and ΔP(VG−VL) [see bottom plot]. Similarly to previous 
example, we write

• For each mole, VG−VL ≈ VG=RT/P, and hence ∂P/∂T=L/(RT2/P). So 
the solution is in the form of P = const e−L/RT, which is very similar 
to the results from the result derived from kinematic theory 

*Previously, we derived work done

𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛
𝑉𝑉𝑎𝑎

𝑒𝑒−(𝑈𝑈𝐺𝐺−𝑈𝑈𝐿𝐿)/𝑅𝑅𝑅𝑅
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Clausius-Clapeyron equation (cont)

𝑃𝑃 =
𝑛𝑛𝑛𝑛
𝑉𝑉𝑎𝑎

𝑒𝑒−(𝑈𝑈𝐺𝐺−𝑈𝑈𝐿𝐿)/𝑅𝑅𝑅𝑅

Thermodynamics Kinetic theory

𝑃𝑃 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐 𝑒𝑒−𝐿𝐿/𝑅𝑅𝑅𝑅

Not exactly the same if L=const

(exact, universal; differential) (approximation, limited; complete)

Rather, UG-UL is constant, independent of temperature, then the 
two P-T relations are equal. Since the pressure is constant while 
the volume is changing, the change in internal energy UG−UL is 
equal to the heat L put in minus the work done P(VG−VL), 
so L=(UG+PVG)−(UL+PVL) or L=HG-HL= ΔH.
1. In the phase change, the enthalpy plays the role of internal energy. 
2. Unlike ideal gas energy states is purely a state of temperature, states of 

evaporation also depends on the pressure (see xenon). 
3. From thermodynamic relation, this the argument is true for any other 

change of state, i.e., solid-to-liquid: (∂Pmelt/∂T)V=M/[T(Vliq−Vsolid)]
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Heat capacities, latent heats, Gibbs energy
(in terms of entropy)

• For reversible process, we can express heat capacities in 
terms of entropy: 

𝐶𝐶𝑉𝑉 = (𝑑𝑑𝑑𝑑
𝑑𝑑𝑅𝑅

)𝑉𝑉 = 𝑛𝑛(𝑑𝑑𝑆𝑆
𝑑𝑑𝑅𝑅

)𝑉𝑉 and likewise, 𝐶𝐶𝑃𝑃 = 𝑛𝑛(𝑑𝑑𝑆𝑆
𝑑𝑑𝑅𝑅

)𝑃𝑃

• For latent heat (heat needed to convert unit mole from 
one phase to another) the expression is L= ΔQ = TΔS. We 
can see that the heat exchange in the phase change 
comes from the change of entropy, even T and P can 
stay at constant. 

• Now equate L=(UG+PVG)−(UL+PVL) and is L= T (SG-SL) and 
rearrange, and define a new expression called Gibbs free 
energy*, G=H-TS:

GG=(UG+PVG) -TSG= UL+PVL-TSL=GL

Latent heat and entropy change for 
changes in different substances.

*depends on T and P

Gibbs free energy is, again, a 
thermodynamic state variable to 
predict spontaneous chemical 
reactions (ΔG<0). 



李圣超 General Physics I

Entropy for ideal gas

• For ideal gas, assuming constant number of molecules, 
we have, and we define a new quantity, heat capacity per 
mole, CV,m=CV/n, s.t.

dU=TdS-PdV=nCV,mdT

dS=(dU+PdV)/T = (nCV,mdT+PdV)/T

= (nCV,mdT+nRTdV/V)/T

= n(CV,mdT/T+RdV/V)

S=nCV,mlnT+nRln(V/n)+const.
• The constant term we cannot directly derive from 

thermodynamical analysis (though we can probably 
guess it’s proportional to n). 

• Setting S=0, we have the adiabatic process, so 
CV,mlnT1+RlnV1= CV,mlnT2+RlnV2 

• We can show that T1V1
γ-1= T2V2

γ-1 

Back to the example in the last 
lecture, the expansion of gas into 
vacuum: ∆U = ∆Q = ∆W = 0

∆U = 0 , ∆T = 0 for an ideal gas 
T = T’. 
Per mole of gas we have 

ΔS = CVln(T/T’) + Rln(V/V’) 
= Rln(V/V’) > 0 for V’>V
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Summary of state variables
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