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Limitation of thermodynamic entropy

We have a clear microscopic picture of internal energy U,
which in ideal gas is directly related to the kinetic energy.
Recall in L20 we introduced Clausius’ entropy from
purely thermodynamic origin.
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Temperature

Total Entropy Change =0

We have a differential expression of entropy, such that
we can compare the AS of two states. But like every
integral, the “zero point” definition of entropy is unclear,
nor is its microscopic picture.
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Transition from a to b for a substance.



Microstates

» Let’s consider an isolated system a lot of particles. The full description of
the whole system, is made up by many many small states, called
microstates.

» Actual explanation for microstates are the eigenstates of the Hamiltonian,
i.e. solutions to the time-independent Schrodinger equation.

ﬁW)) — EW)) (not required for exam)

« But imagine for a macroscopic system, the solution of the state has a very
large number of degree of freedom, like ~1023. The energy configuration
can be quite complicated to know what each particle is doing, plus small
perturbation.

* Moreover, the solution is usually totally uninteresting. Rather, we are
interested in the probability, p(n) of the system to sit in each states.



Macrostates = GJese

« We will only discuss systems that is in equilibrium, so the energy and momentum in the
system has been redistributed among the many particles, and any memory of whatever
special initial conditions the system started in has long been lost. The probability
distribution is independent of time, thus the macroscopic observables. Defined by such
variables, macrostate can correspond to many different microstates.

« The 2nd law says that the direction of a change is only a function of the states, and we
do not need to consider how you get from state to state. This root from the fact that the
time reversibility of laws of physics.

« To begin with, we first discuss the microcanonical ensemble, which describes an
isolated system with fixed energy, E. Every system in the ensemble must be strictly
isolated with its environment without heat and particle exchange, i.e., the total energy
(E) and the particle number (N) in each system is fixed.
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In modern statistical mechanics, the concept of an ensemble, developed by Josiah Gibbs in
the 1870s, is fundamental. An ensemble involves creating multiple identical copies of a
system and observing how they behave under different conditions.

1.Microcanonical (NVE) Ensemble: Each system is completely isolated, with no heat or
particle exchange. Both energy (E) and particle number (N) are fixed in each system.

2.Canonical (NVT) Ensemble: The systems can exchange heat, allowing them to reach a
common temperature (T). However, each system may have different energy levels, and the
particle number (N) remains fixed in each.

3.Grandcanonical (uVT) Ensemble: Systems can exchange both heat and particles.
Neither energy nor particle number is fixed, leading to both thermal and chemical
equilibriums. All systems share the same temperature (T) and chemical potential (p).

We can define other ensembles with fixed state variables, like (P,N,T).



Temperature: The division of energy

Consider an isolated system (fixed energy and fixed number of particles). There are
many, equally likely, microstates of the system with energy and particles arranged in
different ways. The system can move from one microstate to another (thermodynamics
applies to systems in flux) while keeping the same energy and no of particles.

We can split an isolated system into 2 sub-systems in thermal contact. For a particular
‘macrostate’ in which the sub-systems have energies E1and E2, the atoms and the
way that energy is stored within each sub-system can be rearranged in many ways (Q1
and Q2 microstates respectively) without changing E1and E2, giving a total number of

corresponding microstates of the whole system, Q= Q1x Q.

The most likely ‘macrostate’ (here = division of energy between E1and E2) is the one

with the most corresponding microstates.
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Example of Q: three harmonic oscillators s

Consider a box containing M=3 distinct simple harmonic oscillators each with energy E=
hw(1/2+N) that are weakly interacting so quanta can flow from one to another, but the
nature of the states is not affected by the interactions.

Now consider the different ways (macrostates) to put N quanta into the three boxes. For
each value of N there are a number of ways of arranging the energy where N, +N, +N; =N
N=0 Q=1 (000) ' |

N, N, N; N=1 Q=3 (100) (010) (001) As N rises Q rises rapidly.
L N=2 Q=6 (200) (020) (002) (110) (101) (011)
N=3 Q=10 (300) (030) (003) (210) (201) (120) (021) (102) (012) (111)

# of ways to arrange N+M-1 objects

QQWQQQQWQWWQQQWQQQWQ (N+M—-1)!
N;=2 N,=4 N3T\I14=0N4=3 N5=3 Ng=1 (= NT(M — 1)

# of ways to arrange identical objects



Temperature in statistical thermodynamics
« Assume we have two connected macrostates: Q, and Qg, with corresponding energy
in each state E, and Egz=E-E, (the total energy E of the two system is fixed)

« To look for a condition on E and Q that can be related to the classical
thermodynamics concept of temperature, maximize Q= Qa Qs w.r.t. E,:

d ! !
0=-—(QEDWE —Ey)) = Q'Qp — Qg

dE,
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« The most likely macrostate (distribution of internal energy between the two states) is
the one with the max value of Q= Qa Qs, and thus is the condition when T,=Tg (the O«

law). B is a common factor shared by all the systems Q at thermal equilibrium, and Q
must relate to the classical thermodynamics concept of temperature by:

- d In() 1

_ B==3E Tk,T




Entropy: the statistical definition

Boltzmann provided a probability interpretation of
entropy,

S=kgInQ  [k=1.381x102J/K]

S

Immediately, We can derive Pt 1/T, which hints on

the 0 law of temperature (see previous slide). Also,
suppose we bring together two systems at slightly
different temperatures T,>T,:
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BOLTZMANN
1844 -1906

Ludwig Boltzmann (1844-1906)
“S = klogW” is inscribed on
Boltzmann’s tombstone.
Unfortunately, his theory was not
widely accepted by the community
before his death.



Example: Two State System (microcanonical)

Consider a system of N non-interacting particles. Each particle is fixed in position and
can sit in one of two possible states which, for convenience, we can call them “spin up”
and “spin down” . The energy of the two states are:

EJ’:O y ET:E

which means that the spins want to be down; you pay an energy cost of € for each spin

which points up. The energy of the system is £ = N, , and the number in the spin-
down state is N, = N - N;

For a microcanonical system, the number of states Q(E) of the total system which have
energy E. N

UE) = NJ(N — N,)!

The entropy is given by

N!
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Stirling’s Formula (V] Edtkates

To calculate log(N!) for large N, there is a remarkably accurate approximation, known as
Stirling’s formula, we shall prove it in the homework.

log N! = Nlog N — N + ;log2rN + O(1/N)

However, a less accurate but easier prove comes from the simplification, where we have
approximated the sum by the integral as shown in the figure:

N
log N! :Zloggm/ dp logp=NlogN — N +1
1

log(p)

=
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Entropy of a two state system W 2225

The Boltzmann’s definition gives the entropy of a two state system (spin-up: €= €, spin-

down €=0): NI
5(6) = k1% (737 )

Using the math from last slide:

S(E) = kg [Nlog N — N — Nilog N+ 4+ Ni — (N — Ny) log(N — Ny) + (N — Ny)]

N — Ny Ny |
E E\, 6 E £
— kN Kl - E) log (1 - E) + . 108 (E)]
The temperature: 1 85 k‘Bl Ne 1 Distribution: N, E _ 1
T 0E ¢ °\E N Ne eftaT+1



Maximum entropy and negative temperatures

S(E) = —kyN K1 - %) log (1 - %) + %k’g (%)]

Temperature of the system: Ase) Maximum: S = N kg log 2
T 0E € B\E

 For E>N ¢ /2, we have negative temperatures.
This should be thought of as hotter than infinity!

« Systems with negative temperatures have the
property that the number of microstates

decreases as we add energy. They can be i ;
realized in laboratories, at least temporarily, by Neyp Ne
instantaneously flipping all the spins in a system. \

S=0: only one possible state



The Boltzmann Factor

A typical thermodynamics ‘thought’ experiment is a system in contact with a thermal

reservoir (a ‘heat bath’) of such a high heat capacity that its temperature does not change
when you transfer (small) amounts of heat in/out of it. If the system is kept at a constant
temperature, it satisfies the definition of canonical ensemble

Energy

E
No of corresponding nergy
microstates

Set the probability to 1 for a microstate of the system with its lowest energy Es=0 (a

‘ground state’), with all the available energy (E) stored in the reservoir. The relative
probability P (Eg) that the system will be in a ‘excited’ microstate of energy Esis given by:

Qr(E — Es)
Or(E)

Pr(Es) =



& P < 4
The Boltzmann Factor (cont) W 22282

Now relate probability P (Eg) to B=dInQ/dE, using Taylor expansion:
dinQg

dE

INQR(Eg) = InQgr(E — Eg) = InQx(E) — Eg
= InQx(E) — Esp
Hence: InQp(E — Es) — InQgx(E) = —Egf
Therefore, relative chance of the system being in a microstate with energy Eg:
Og(E — Es)

= e_ﬁES
Qg (E)

B(E;)=

* Boltzmann factor is independent of the nature of the reservoir, same temperature =
same 3.
» The most likely system microstate is the ground state (Eg=0).



Boltzmann distribution and canonical ensemble

« As shown previously, the probability that the system sits in state |n> is just the ratio of this
number of states to the total number of states,

p(n) = S e Bn/ksT 7

» We usually write the normalization factor as Z, where Z = Z e PF~ which is the most
important quantity in statistical mechanics, the partition function.
* In the canonical ensemble, total energy is not fixed. However, we can compute the

average energy, B, e PEn
(B) =) p(n)E, =) 7

« Or more succinctly __90
(E) = Y log Z



Energy spread

We can also look at the spread of energies about the mean — in other words, about fluctuations in the

probability distribution. As usual, this spread is captured by the variance,
AE® = ((E - (E))*) = (E®) - (B)”

This too can be written neatly in terms of the partition function,

0 O(E)
AE?= ——logZ = ———L
9p2 8 93
In the canonical ensemble, where the energy is not fixed, the heat capacity is
o(E
Cy = Q
aT
So we have the important relation LHS:prOfbtibﬂiSﬁtc ﬂugﬁasﬁ—(lﬁs 11111 t}ie
AE? = kgT2Cy energy of the system. RHS=the hea

capacity Cy, describes the ability of the
system to absorb energy. If CV is large,
the system can take in a lot of energy
without raising its temperature too much.




Example: Two State System (canonical)

Consider a system of N non-interacting particles. We can rederive our previous results
for the two state system using the canonical ensemble. For a single particle with two
energy levels, 0 and ¢, the partition function is given by

Z) = Z e PEn = 1 4 e7P¢ = 2¢7P9/2 cosh(Be/2)

We simply need to multiply the N partition functions together(Z=2,Z,..). We then have
Z = 2Ne NP2 cosh™ (Be/2)

which has the same result as the microcanonical ensemble

(E) = —%logZ = % (1 — tanh(Be/2))



Entropy for canonical ensemble

« Suppose that we have a large number, W, of identical copies. Each system lives in
a particular state |n>. If W is large enough, the number of systems that sit in state
|[n> must be simply p(n)W.

« Using Boltzmann’s definition of entropy, we have

14
[L.(p(n)W)!

« So the entropy for W copies becomes
S =kplogQl = —kgW Zp(n) log p(n)

() =

« While we know entropy is additive, hence for each copy, Gibbs found that
S = —kg Zp ) log p(n

This was rediscovered some decades later in the context of information theory where it goes by the
name of Shannon entropy for classical systems or von Neumann entropy for quantum systems.




Free energy

Previously, we have derived the formula
S = —kg Zp ) log p(n

Previously, we have derived the formula

Ei
S=-k) pinp; = —kzpl(——— In Z) (0, = e7/2)

1 U
:sziEi+kanzpi:T+kan (U = X piE))

Hence: F=U-TS=—-kTInZ

F is a thermodynamic potential with very accessible natural variables, T and V. This
means that the partition function, Z, takes a central place in statistical thermodynamics.
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