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Limitation of thermodynamic entropy

We have a clear microscopic picture of internal energy U, 
which in ideal gas is directly related to the kinetic energy. 
Recall in L20 we introduced Clausius’ entropy from 
purely thermodynamic origin.

We have a differential expression of entropy, such that 
we can compare the ΔS of two states. But like every 
integral, the “zero point” definition of entropy is unclear, 
nor is its microscopic picture. Transition from a to b for a substance. 
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Microstates

• Let’s consider an isolated system a lot of particles. The full description of 
the whole system, is made up by many many small states, called 
microstates.

• Actual explanation for microstates are the eigenstates of the Hamiltonian, 
i.e. solutions to the time-independent Schrödinger equation.

• But imagine for a macroscopic system, the solution of the state has a very 
large number of degree of freedom, like ~1023. The energy configuration 
can be quite complicated to know what each particle is doing, plus small 
perturbation. 

• Moreover, the solution is usually totally uninteresting. Rather, we are 
interested in the probability, p(n) of the system to sit in each states. 

(not required for exam)
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Macrostates

• We will only discuss systems that is in equilibrium, so the energy and momentum in the 
system has been redistributed among the many particles, and any memory of whatever 
special initial conditions the system started in has long been lost.  The probability 
distribution is independent of time, thus the macroscopic observables. Defined by such 
variables, macrostate can correspond to many different microstates.

• The 2nd law says that the direction of a change is only a function of the states, and we 
do not need to consider how you get from state to state. This root from the fact that the 
time reversibility of laws of physics. 

• To begin with, we first discuss the microcanonical ensemble, which describes an 
isolated system with fixed energy, E. Every system in the ensemble must be strictly 
isolated with its environment without heat and particle exchange, i.e., the total energy 
(E) and the particle number (N) in each system is fixed. 
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Ensembles

In modern statistical mechanics, the concept of an ensemble, developed by Josiah Gibbs in 
the 1870s, is fundamental. An ensemble involves creating multiple identical copies of a 
system and observing how they behave under different conditions.

1.Microcanonical (NVE) Ensemble: Each system is completely isolated, with no heat or 
particle exchange. Both energy (E) and particle number (N) are fixed in each system.

2.Canonical (NVT) Ensemble: The systems can exchange heat, allowing them to reach a 
common temperature (T). However, each system may have different energy levels, and the 
particle number (N) remains fixed in each.

3.Grandcanonical (μVT) Ensemble: Systems can exchange both heat and particles. 
Neither energy nor particle number is fixed, leading to both thermal and chemical 
equilibriums. All systems share the same temperature (T) and chemical potential (μ).

We can define other ensembles with fixed state variables, like (P,N,T). 
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Temperature: The division of energy 

• Consider an isolated system (fixed energy and fixed number of particles). There are 
many, equally likely, microstates of the system with energy and particles arranged in 
different ways. The system can move from one microstate to another (thermodynamics 
applies to systems in flux) while keeping the same energy and no of particles. 

• We can split an isolated system into 2 sub-systems in thermal contact. For a particular 
‘macrostate’ in which the sub-systems have energies E1 and E2, the atoms and the 
way that energy is stored within each sub-system can be rearranged in many ways (Ω1 

and Ω2 microstates respectively) without changing E1 and E2, giving a total number of 
corresponding microstates of the whole system, Ω= Ω1 x Ω2 . 

• The most likely ‘macrostate’ (here = division of energy between E1 and E2 ) is the one 
with the most corresponding microstates. 
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Example of Ω: three harmonic oscillators

Consider a box containing M=3 distinct simple harmonic oscillators each with energy E= 
ħω(1⁄2+N) that are weakly interacting so quanta can flow from one to another, but the 
nature of the states is not affected by the interactions.
Now consider the different ways (macrostates) to put N quanta into the three boxes. For 
each value of N there are a number of ways of arranging the energy where N1 +N2 +N3 =N 

As N rises Ω rises rapidly.

Ω =
𝑁𝑁 + 𝑀𝑀 − 1 !
𝑁𝑁! 𝑀𝑀 − 1 !

# of ways to arrange N+M-1 objects

# of ways to arrange identical objects
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Temperature in statistical thermodynamics 

• Assume we have two connected macrostates: ΩA and ΩB, with corresponding energy 
in each state EA and EB=E-EA (the total energy E of the two system is fixed)

• To look for a condition on E and Ω that can be related to the classical 
thermodynamics concept of temperature, maximize Ω= ΩA ΩB w.r.t. EA: 

• The most likely macrostate (distribution of internal energy between the two states) is 
the one with the max value of Ω= ΩA ΩB, and thus is the condition when TA=TB (the 0th

law). β is a common factor shared by all the systems Ω at thermal equilibrium, and Ω 
must relate to the classical thermodynamics concept of temperature by:  
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Entropy: the statistical definition

Ludwig Boltzmann (1844-1906) 
“S = k logW” is inscribed on 
Boltzmann’s tombstone. 
Unfortunately, his theory was not 
widely accepted by the community 
before his death. 

Boltzmann provided a probability interpretation of 
entropy, 

S = kB ln Ω
Immediately, We can derive 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 1/𝑇𝑇, which hints on 

the 0th law of temperature (see previous slide). Also, 
suppose we bring together two systems at slightly 
different temperatures T1>T2:

𝑆𝑆 > 0 ⟺ 𝐸𝐸1 < 0
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Example: Two State System (microcanonical)

Consider a system of N non-interacting particles. Each particle is fixed in position and 
can sit in one of two possible states which, for convenience, we can call them “spin up”  
and “spin down” . The energy of the two states are: 

which means that the spins want to be down; you pay an energy cost of ε for each spin 
which points up. The energy of the system is                 , and the number in the spin-
down state is
For a microcanonical system, the number of states Ω(E) of the total system which have 
energy E.

The entropy is given by
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Stirling’s Formula

To calculate log(N!) for large N, there is a remarkably accurate approximation, known as 
Stirling’s formula, we shall prove it in the homework. 

However, a less accurate but easier prove comes from the simplification, where we have 
approximated the sum by the integral as shown in the figure:
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Entropy of a two state system

The Boltzmann’s definition gives the entropy of a two state system (spin-up: ε= ε, spin-
down ε=0): 

Using the math from last slide: 

The temperature: Distribution:
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Maximum entropy and negative temperatures

Temperature of the system: Maximum: S = N kB log 2

S=0: only one possible state 

• For E>N ε /2, we have negative temperatures. 
This should be thought of as hotter than infinity! 

• Systems with negative temperatures have the 
property that the number of microstates 
decreases as we add energy. They can be 
realized in laboratories, at least temporarily, by 
instantaneously flipping all the spins in a system.
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The Boltzmann Factor

A typical thermodynamics ‘thought’ experiment is a system in contact with a thermal 
reservoir (a ‘heat bath’) of such a high heat capacity that its temperature does not change 
when you transfer (small) amounts of heat in/out of it. If the system is kept at a constant 
temperature, it satisfies the definition of canonical ensemble

Set the probability to 1 for a microstate of the system with its lowest energy ES=0 (a 
‘ground state’), with all the available energy (E) stored in the reservoir. The relative 
probability Pr(ES) that the system will be in a ‘excited’ microstate of energy ES is given by: 
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The Boltzmann Factor (cont)

Now relate probability Pr(ES) to β=dlnΩ/dE, using Taylor expansion:  

Therefore, relative chance of the system being in a microstate with energy ES: 

• Boltzmann factor is independent of the nature of the reservoir, same temperature = 
same β. 

• The most likely system microstate is the ground state (ES=0). 
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Boltzmann distribution and canonical ensemble

• As shown previously, the probability that the system sits in state |n> is just the ratio of this 
number of states to the total number of states,

• We usually write the normalization factor as Z, where                      ., which is the most 

important quantity in statistical mechanics, the partition function.
• In the canonical ensemble, total energy is not fixed. However, we can compute the 

average energy,

• Or more succinctly
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Energy spread

We can also look at the spread of energies about the mean — in other words, about fluctuations in the 
probability distribution. As usual, this spread is captured by the variance,

This too can be written neatly in terms of the partition function,

In the canonical ensemble, where the energy is not fixed, the heat capacity is

So we have the important relation LHS=probabilistic fluctuations in the 
energy of the system. RHS=the heat 
capacity CV describes the ability of the 
system to absorb energy. If CV is large, 
the system can take in a lot of energy 
without raising its temperature too much. 
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Example: Two State System (canonical)

Consider a system of N non-interacting particles. We can rederive our previous results 
for the two state system using the canonical ensemble. For a single particle with two 
energy levels, 0 and ε, the partition function is given by

We simply need to multiply the N partition functions together(Z=Z1Z2..). We then have

which has the same result as the microcanonical ensemble
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Entropy for canonical ensemble

• Suppose that we have a large number, W, of identical copies. Each system lives in 
a particular state |n>. If W is large enough, the number of systems that sit in state 
|n> must be simply p(n)W. 

• Using Boltzmann’s definition of entropy, we have

• So the entropy for W copies becomes

• While we know entropy is additive, hence for each copy, Gibbs found that

This was rediscovered some decades later in the context of information theory where it goes by the 
name of Shannon entropy for classical systems or von Neumann entropy for quantum systems.
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Free energy

Previously, we have derived the formula

F is a thermodynamic potential with very accessible natural variables, T and V. This 
means that the partition function, Z, takes a central place in statistical thermodynamics.

Previously, we have derived the formula


	幻灯片编号 1
	Limitation of thermodynamic entropy
	Microstates
	Macrostates
	Ensembles
	Temperature: The division of energy 
	Example of Ω: three harmonic oscillators
	Temperature in statistical thermodynamics 
	Entropy: the statistical definition
	Example: Two State System (microcanonical)
	Stirling’s Formula
	Entropy of a two state system
	Maximum entropy and negative temperatures
	The Boltzmann Factor
	The Boltzmann Factor (cont)
	Boltzmann distribution and canonical ensemble
	Energy spread
	Example: Two State System (canonical)
	Entropy for canonical ensemble
	Free energy

