PHYS 100B (Prof. Congjun Wu)
Solution to HW 5

February 21, 2011

Problem 1 (Griffiths 6.26)
At the interface between two linear magnetic materials, the magnetic field lines band. Show that tanfy/tanf; =
o/ 1, assuming there is no free current at the boundary. Compare Eq. 4.68.

Solution: At the interface, (1)Bi- = By, (2) Bj= B} + (K x i) = H|= H} + K x i (Since =B = H+M).
No free current at the boundary = Hl= H) #iB!: M—ZBQ
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5 = [B3/IB1| = 2/ pa.

Problem 2 (Griffiths 6.27)
A magnetic dipole m is imbedded at the center of a sphere (radius R) of linear magnetic material with permeability
u. Show that the magnetic field inside the sphere (0 < r < R) is

pof1 e 2(po — p)m

What is the field outside the sphere?
Solution: In view of Eq. 6.33, the volume bound current density is proportional to the free current density

Jp =V xM=Vx(xmH) = xmJ;.

There is a bound dipole at the center
my = Xy

= Net dipole moment at the center is

Meepter = M+ My = (1 + Xm)m = Mﬂm
0

= (Eq. 5.87) Magnetic field produced by the dipole:

Beenter — 1 {1 [3(m-f')f'm]}.
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Magnetic field produced by the bound surface current K; at » = R: (No volume bound current J, since no free
current J; flowing through the material)
Bsurface = Am.
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The magnetization
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= bound current density
J,=VxM=0.
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This is the surface current produced by a spinning sphere: K; = cwRsin 0(;3, owR = xmm (% — 47r1Rg). =
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and xp, = £ — 1, =
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The field outside the sphere is that of the central dipole plus the dipole field from the surface current,
47 R3 4TR® 3 B 47TR3iﬁ 2(po — p)m p(po — p)m

m = —(owR) = —B = = .
pie s 5 (0wl 3 g sendess 3 2updm R3(2u0 + 1) po(2m0 + 1)

m — )m 3um
mwt:LJru(uo pm - 3p

po  po(2po +p)  (2uo+p)

and hence the field for » > R is
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Problem 3 (Griffiths 7.60)
(a) Show that Maxwell’s equations with magnetic charge (Eq. 7.43) are invariant under the duality transformation

E' = Ecosa+cBsine,
cB’ = cBcosa— Esina,
cq, = cgecosa+ qnysina,

¢, = Qmcosa— cq.sina.

where ¢ = 1/,/€ofig and « is an arbitrary rotation angle in E/B-space. Charge and current densities transform in the
same way as g, and ¢y,,. [This means, in particular, that if you know the fields produced by a configuration of electric
charge, you can immediately (using o = 90°) write down the fields produced by the corresponding arrangement of
magnetic charge.]



Solution:

1
V-E' = V-.-Ecosa+cV-Bsina = —p.cosa+ cgpm sina
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(b) Show that the force Law (Prob. 7.35)

1
F=¢E+vxB)+q¢.(B-5vxE),
c

is also invariant under the duality transformation.]
Solution:

1
F = q;(E’+v><B’)+q;n(B’fc—2v><E')
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