Lecture 2: Dirac notation and a review of linear algebra
Read Sakurai chapter 1, Baym chatper 3

1 State vector space and the dual space

Space of wavefunctions The space of wavefunctions is the set of all the possible wave-
functions of a given system. ¥ (§), ¥2(), ..., are wavefunctions in the representation of &. &
can be general. For example, in the coordinate representation & = (g,0), where g represents
the set of coordinates (g, ...gn), and G represents the set of particle spin (G ,...,02,;). The
inner product between two wavefunctions are defined as

(¥a,¥s) :/di?*(&)‘l’(g) = ) /dé’l---d?]’N‘Péloz...cN(f?h--EI'N)‘Pcloz...cN(f?h--#?N)- (1)

($1"z7...7($1\1ﬁZ

Space of state vectors (right-vectors); the Hilbert space More conveniently, we use the
notation of the state vector |¥) (right/ket-vector) to represent a wavefunction ¥(&) of a given
quantum system. The advantage of the state vector notation is that it does not depend on
concrete representations. All the state vectors |¥) span the linear space denoted as the Hilbert
space # of a given quantum system. The following correspondence between a wavefunction
and a state vector is defined as:

DW(E) —— [¥);
2) c1¥1(8) +2¥2(§) «— c1|¥1) +c2|¥2);
3) The inner product: (¥1,¥2) < (|¥1),|¥2)).

The orthonormal complete bases for the space of state vectors For an orthonormal
complete bases W, we have

(Wa, Wo) = 8(a, 00 ), %‘,‘Pa(é)‘l’i‘x(&') =3(§-§). 2)
For any wavefunction ¥, we can expand it as
Y€)= ;Ta(&) (Pu(C),'¥), 3)
and the inner product as
(¥,%) = ;(‘Pa,‘Pd*(‘Pa,‘P), (4)

Using the formalism of right-vectors, we use |Wy) to represent the wavefunction of



¥ (§), and rewrite the above equations as
(W), W) = B(a,a), [¥)=) Wo)([¥a), [¥)),
o

(19, %) = Y (IPa) ) (¥a)s [¥)), (5)

o

where (|Wq), |¥)) is the coordinate of the state vector |¥) projection to the basis |W,).

The dual space (space of left-vectors) The right-vector space # is a linear space. All the
linear mappings from the right-vector space # to the complex number field C also form a
linear space, which is denoted as the dual space. We use left-vector (bra-vector) to denote an
element in the dual space. Let us consider a linear mapping denoted by (A| in the dual space,
which can be determined by its operation on the orthonormal bases @, in the Hilbert space

H.
(A:|Dg) — ag, (6)

where ag is a complex number, and « is the index to mark the orthonormal bases. Then
for any right-vector |B) = Y o bo|W«) where by, = (|B), |¥«)), the operation of (A| on |B) is
represented as

(Al |B) = }_agba. ™)
o
We can identify a one-to-one correspondence between a right-vector and a linear mapping (a
left-vector) as
(Al «— |A) = aa|Pq), (8)
such that the operation of (A| on any right-vector |B) is expressed as

(Al :B) = ) agba = (|A),|B)). ©))

Below we will simply use the notation (A|B) to denote the mapping (A| : |B). Using these
notations, we can rewrite Eq. 5 as

(Wo|Py) = 8(a, ), ®) =Y W) (Po|P). (10)

o

We define the conjugation operation for left and right vectors, and complex numbers as

W) = (¥; (0|=[9); a=a", (11)
thus we have

alA) =(Ala, a(B|=|B)a. (12)

[\



2 Operator of an observable

We define the linear operator L acting on the right-vectors in #, which satisfies

1) L|B) is still a right-vector in #,
2) L(b|B) +c|C)) = bL|B) + cL|C).
L can be determined through its operation on the orthonormal basis |®g) of # as

L|¢B> :ZLOLB|‘1)0L>a (13)

where Lqog = (Wo|L|'Wp) is the matrix element of L for the basis of @y
For any state-vector |B) = Y, bo|®q), the operation of L is

LIB) =Y bgL|®p) = Y Lopbp|Pa). (14)
B op

The operation of L on the left vectors can also be defined. For a given (A|, the operation
of (A|L is defined through the following equation

(A|L:|B) = (A[L|B), (15)

where |B) is an arbitrary right-vector. Thus (A|L is a linear mapping from the right-vector

space to complex numbers, thus it should be represented by a left-vector (¢| = (A|L, such that
(A[L:|B) = (9|B).

The conjugation operations We further extend the definition of conjugation operation be-
low

(PIlL[¥) = (FalL[¥)),

LiL, = L Li,
L) = (¥IL,
(A[B) = (B|A). (16)

In the following, we denote L as L.

In the orthonormal basis ¥, the matrix elements of L' reads
Lig = (PalL'|Wp) = (Wp|L[¥a) = L, (17)

If the operators L = L' ie., LaB = LE(X, we call that L is Hermitian.



3 Outer product between left and right-vectors as opera-
tors

We define |A)(B| as a linear operator. When acting on a right-vector |¥'), it behaves as
(14)(B])['¥) = |A)(B|'¥). (18)

Corollary:

D(PI(1A)(B]) = (¥]A)(B],

2) |A) (B = [B)(Al,

3) |A)(A| is Hermitian.

4) |A)(B|Y) = (¥|B)(A| =[¥) |A)(BI.

5) For a set of orthonormal bases |¥q), from Eq. 5, we have

I:Z|\Pa><lpoc|a (19)
o

where / is the identity operator.
6) Expansion of a linear operator L as
L= Y [¥o) (PalLl¥o )Py | = ¥ W) (P Lo 0)
oo oo

where L, = (Po|L|¥, ) is the matrix element under the bases of |Wy,).

Examples:

1)For a single spinless particle, we denote |F) as the eigenstate of the coordinate operator
7, which satisfy the orthonormal condition (F|F ) = 8(¥—7 ). We have

[artiy =1, (1)

thus
[ arie) =), 2)

and
[ 4 @) ) = 1) = v, ©3)



Similarly, for an orthonormal basis W, we have

LWA¥alF) = L% (W) = T W) (Falf) = ([ W) (¥ )

o o

= F|IH=8F-F). (24)

4 Representations and transformation of representations

When we fix a set of orthonormal bases |(,) for the Hilbert space, it means that we are
using a specific representation. We can express a state vector |¥) and a linear operator L as
matrices as

|A> = Z |\P(x> <‘P(x |A>

L = ZI‘POc Vol (WolL|¥y), (25)

and

(AlB) = ) (Al¥0)(PalB)

(AILIB) = ) (¥alA)"Lop(PalB). (26)

o

Using the matrix notation, we denote Aq = (Wq|A), then in the representation of |Wq), |A)
is represented by a column vector of Ag, and L is represented by a matrix Lyg. In the matrix
notation, we have

(A|B) ZA Ba, (A|L|B) =) AyLapBg. (27)
op

Let us choose another set of orthonormal basis |@; ), which satisfy Y |¢;) (@ | = I. The
transformation matrix U between these two sets of bases is defined as

o) =) [Wo) (Palon) = Y [Wa)Un, (28)

where Uy = (W |y ). U is an unitary matrix, which satisfies the following relation
U'v=uU" =1 (29)

For an arbitrary state vector |A), its coordinate (W|A) in the |¥) representation can be ex-
pressed in terms of its coordinates in the |@) representation through the transformation matrix



U as

(Wald) =) (Faloa) (9r]A) = Y Unp (91]A). (30)
A A

And for the matrix element L, in the |¥)-representation can also be related to that in the in
the |@) representation as

(WalL[¥y) = Y (Palon) (QnIL10y ) (01 [Wo) = Uoa (@1 |LI9y ) Uy, - €10
vy



