
Lecture 2: Dirac notation and a review of linear algebra
Read Sakurai chapter 1, Baym chatper 3

1 State vector space and the dual space

Space of wavefunctions The space of wavefunctions is the set of all the possible wave-
functions of a given system. Ψ1(ξ), Ψ2(ξ), ..., are wavefunctions in the representation of ξ. ξ

can be general. For example, in the coordinate representation ξ = (~q,σ), where ~q represents
the set of coordinates (~q1, ...~qN), and σ represents the set of particle spin (σ1,z, ...,σ2,z). The
inner product between two wavefunctions are defined as

(ΨA,ΨB) =
Z

dξΨ
∗(ξ)Ψ(ξ) = ∑

σ1,z,...,σN,z

Z
d~q1...d~qNΨ

∗
σ1σ2...σN

(~q1, ..~qN)Ψσ1σ2...σN (~q1, ..,~qN). (1)

Space of state vectors (right-vectors); the Hilbert space More conveniently, we use the
notation of the state vector |Ψ〉 (right/ket-vector) to represent a wavefunction Ψ(ξ) of a given
quantum system. The advantage of the state vector notation is that it does not depend on
concrete representations. All the state vectors |Ψ〉 span the linear space denoted as the Hilbert
space H of a given quantum system. The following correspondence between a wavefunction
and a state vector is defined as:

1) Ψ(ξ)←→ |Ψ〉;
2) c1Ψ1(ξ)+ c2Ψ2(ξ)←→ c1|Ψ1〉+ c2|Ψ2〉;
3) The inner product: (Ψ1,Ψ2)←→ (|Ψ1〉, |Ψ2〉).

The orthonormal complete bases for the space of state vectors For an orthonormal
complete bases Ψα, we have

(Ψα,Ψ´
α) = δ(α,α´), ∑

α

Ψα(ξ)Ψ∗α(ξ´) = δ(ξ−ξ
´). (2)

For any wavefunction Ψ, we can expand it as

Ψ(ξ) = ∑
α

Ψα(ξ)(Ψα(ξ),Ψ), (3)

and the inner product as

(Ψ´,Ψ) = ∑
α

(Ψα,Ψ´)∗(Ψα,Ψ), (4)

Using the formalism of right-vectors, we use |Ψα〉 to represent the wavefunction of
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Ψα(ξ), and rewrite the above equations as

(|Ψα〉, |Ψ´
α〉 = δ(α,α´), |Ψ〉= ∑

α

|Ψα〉(|Ψα〉, |Ψ〉),

(|Ψ´〉, |Ψ〉) = ∑
α

(|Ψα,〉|Ψ´〉)∗(|Ψα〉, |Ψ〉), (5)

where (|Ψα〉, |Ψ〉) is the coordinate of the state vector |Ψ〉 projection to the basis |Ψα〉.

The dual space (space of left-vectors) The right-vector space H is a linear space. All the
linear mappings from the right-vector space H to the complex number field C also form a
linear space, which is denoted as the dual space. We use left-vector (bra-vector) to denote an
element in the dual space. Let us consider a linear mapping denoted by 〈A| in the dual space,
which can be determined by its operation on the orthonormal bases Φα in the Hilbert space
H .

〈A : |Φα〉 → a∗α, (6)

where a∗α is a complex number, and α is the index to mark the orthonormal bases. Then
for any right-vector |B〉 = ∑α bα|Ψα〉 where bα = (|B〉, |Ψα〉), the operation of 〈A| on |B〉 is
represented as

〈A| : |B〉 →∑
α

a∗αbα. (7)

We can identify a one-to-one correspondence between a right-vector and a linear mapping (a
left-vector) as

〈A| ←→ |A〉= aα|Φα〉, (8)

such that the operation of 〈A| on any right-vector |B〉 is expressed as

〈A| : |B〉 →∑
α

a∗αbα = (|A〉, |B〉). (9)

Below we will simply use the notation 〈A|B〉 to denote the mapping 〈A| : |B〉. Using these
notations, we can rewrite Eq. 5 as

〈Ψα|Ψ´
α〉= δ(α,α´), |Ψ〉= ∑

α

|Ψα〉〈Ψα|Ψ〉. (10)

We define the conjugation operation for left and right vectors, and complex numbers as

|Ψ〉= 〈Ψ|; 〈φ|= |φ〉; ā = a∗, (11)

thus we have

a|A〉= 〈A|ā, a〈B|= |B〉ā. (12)
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2 Operator of an observable

We define the linear operator L acting on the right-vectors in H , which satisfies

1) L|B〉 is still a right-vector in H ,
2) L(b|B〉+ c|C〉) = bL|B〉+ cL|C〉.
L can be determined through its operation on the orthonormal basis |Φβ〉 of H as

L|Φβ〉= ∑
α

Lαβ|Φα〉, (13)

where Lαβ = 〈Ψα|L|Ψβ〉 is the matrix element of L for the basis of Φα.

For any state-vector |B〉= ∑α bα|Φα〉, the operation of L is

L|B〉= ∑
β

bβL|Φβ〉= ∑
αβ

Lαβbβ|Φα〉. (14)

The operation of L on the left vectors can also be defined. For a given 〈A|, the operation
of 〈A|L is defined through the following equation

〈A|L : |B〉= 〈A|L|B〉, (15)

where |B〉 is an arbitrary right-vector. Thus 〈A|L is a linear mapping from the right-vector
space to complex numbers, thus it should be represented by a left-vector 〈φ|= 〈A|L, such that
〈A|L : |B〉= 〈φ|B〉.

The conjugation operations We further extend the definition of conjugation operation be-
low

〈Ψ1|L|Ψ2〉 = 〈Ψ2|L|Ψ1〉,
L1L2 = L2 L1,

L|Ψ〉 = 〈Ψ|L,

〈A|B〉 = 〈B|A〉. (16)

In the following, we denote L as L†.

In the orthonormal basis Ψα, the matrix elements of L† reads

L†
αβ

= 〈Ψα|L†|Ψβ〉= 〈Ψβ|L|Ψα〉= L∗
βα

. (17)

If the operators L = L†, i.e., Lαβ = L∗
βα

, we call that L is Hermitian.
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3 Outer product between left and right-vectors as opera-
tors

We define |A〉〈B| as a linear operator. When acting on a right-vector |Ψ〉, it behaves as

(|A〉〈B|)|Ψ〉= |A〉〈B|Ψ〉. (18)

Corollary:

1)〈Ψ|(|A〉〈B|) = 〈Ψ|A〉〈B|,
2) |A〉〈B|= |B〉〈A|,
3) |A〉〈A| is Hermitian.

4) |A〉〈B|Ψ〉= 〈Ψ|B〉〈A|= |Ψ〉 |A〉〈B|.
5) For a set of orthonormal bases |Ψα〉, from Eq. 5, we have

I = ∑
α

|Ψα〉〈Ψα|, (19)

where I is the identity operator.

6) Expansion of a linear operator L as

L = ∑
αα´

|Ψα〉〈Ψα|L|Ψα´〉〈Ψα´|= ∑
αα´

|Ψα〉〈Ψα´|Lαα´ , (20)

where Lαα´ = 〈Ψα|L|Ψα´〉 is the matrix element under the bases of |Ψα〉.

Examples:

1)For a single spinless particle, we denote |~r〉 as the eigenstate of the coordinate operator
~r, which satisfy the orthonormal condition 〈~r|~r´〉= δ(~r−~r´). We haveZ

d~r|~r〉〈~r|= I, (21)

thus Z
d~r|~r〉〈~r|Ψ〉= |Ψ〉, (22)

and Z
d~r´〈~r|~r´〉〈~r´|Ψ〉= 〈~r|Ψ〉= Ψ(~r). (23)
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Similarly, for an orthonormal basis Ψα, we have

∑
α

Ψ
∗
α(~r)Ψα(~r´) = ∑

α

〈~r|Ψα〉∗〈~r´|Ψα〉= ∑
α

〈~r´|Ψα〉〈Ψα|~r〉= 〈~r´|{∑
α

|Ψα〉〈Ψα}|~r〉

= 〈~r´|~r〉= δ(~r−~r´). (24)

4 Representations and transformation of representations

When we fix a set of orthonormal bases |Ψα〉 for the Hilbert space, it means that we are
using a specific representation. We can express a state vector |Ψ〉 and a linear operator L as
matrices as

|A〉 = ∑
α

|Ψα〉〈Ψα|A〉,

L = ∑
αα´

|Ψα〉〈Ψ´
α|〈Ψα|L|Ψ´

α〉, (25)

and

〈A|B〉 = ∑
α

〈A|Ψα〉〈Ψα|B〉

〈A|L|B〉 = ∑
α´

〈Ψα|A〉∗Lαβ〈Ψα|B〉. (26)

Using the matrix notation, we denote Aα = 〈Ψα|A〉, then in the representation of |Ψα〉, |A〉
is represented by a column vector of Aα, and L is represented by a matrix Lαβ. In the matrix
notation, we have

〈A|B〉= ∑
α

A∗αBα, 〈A|L|B〉= ∑
αβ

A∗αLαβBβ. (27)

Let us choose another set of orthonormal basis |ϕλ〉, which satisfy ∑λ |ϕλ〉〈ϕλ| = I. The
transformation matrix U between these two sets of bases is defined as

|ϕλ〉= ∑
α

|Ψα〉〈Ψα|ϕλ〉= ∑
α

|Ψα〉Uαλ, (28)

where Uαλ = 〈Ψα|ϕλ〉. U is an unitary matrix, which satisfies the following relation

U†U = UU† = I. (29)

For an arbitrary state vector |A〉, its coordinate 〈Ψα|A〉 in the |Ψ〉 representation can be ex-
pressed in terms of its coordinates in the |ϕ〉 representation through the transformation matrix
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U as

〈Ψα|A〉= ∑
λ

〈Ψα|ϕλ〉〈ϕλ|A〉= ∑
λ

Uαλ〈ϕλ|A〉. (30)

And for the matrix element Lαα´ in the |Ψ〉-representation can also be related to that in the in
the |ϕ〉 representation as

〈Ψα|L|Ψα´〉= ∑
λλ´

〈Ψα|ϕλ〉〈ϕλ|L|ϕλ´〉〈ϕλ´|Ψα´〉= Uαλ〈ϕλ|L|ϕλ´〉U†
λα´ . (31)
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