
Lecture 3: Mixed states and entangled states
Read:Gottfried & Yan, Chapter 1, 2.1, 2.2.

1 The density matrix

Quantum mechanical systems can be in states which cannot be described by wavefunctions.
Such states are called the mixed states. The states described by wavefunctions are called
pure states. Unlike the “statistical description” in classical mechanics which is essentially
due to our insufficient knowledge of classical systems, even if we have complete knowledge
of quantum systems, they still can be in the mixed state. This subtle point will be explained
below. In this case, we need to use the concept of density matrix instead of wavefunctions.

A mixed state can be represented as an incoherent summation of orthonormal bases |Ψi〉’s
as

ρ = ∑
i

ρi|Ψi〉〈Ψi|, (1)

where ρi is the probability for the system in the state of Ψi, and Ψi’s are the diagonal basis
for ρ. ρi are called eigenvalues of the density matrix ρ. Please note that Eq. 1 is not the
superposition of states |Ψi〉. There are no interference between different |Ψi〉’s.

If we measure an observable F , the distribution of measurement results in the mixed state
described by ρ is the sum of those from individual pure states |Ψi〉 with the corresponding
probability ρi. In other words, when performing measurements of F in the mixed states, we
have two different steps of average.

1. For each eigenstate |Ψi〉 or ρ, we have the quantum mechanical statistical interpretation
F̄i = 〈Ψi|F |Ψi〉. Generally speaking, the diagonal bases for ρ are not the eigenstates
for F , in which F = ∑i j |Ψi〉〈Ψ j|Fi j.

2. The second step is the usual statistical average over the probability distribution ρi, such
that we have the expectation value of F as

F = ∑
j

ρ jF̄j = ∑
j

ρ j〈Ψ j|F |Ψ j〉, (2)

which can further expressed in a formal way as

F = ∑
j

ρ j〈Ψ j|F |Ψ j〉= ∑
i

∑
j

ρ j〈Ψi|Ψ j〉〈Ψ j|F |Ψi〉= ∑
i
〈Ψi|ρF |Ψi〉= tr{ρF}. (3)

Since ρi is the probability, it satisfies

ρi ≥ 0, ∑
i

ρi = trρ = 1. (4)
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If there is one of ρi’s equal to 1, say, ρ1 = 1, and all other probabilities ρi = 0(i 6= 1), then
ρ = |Ψ1〉〈Ψ1|. It means that the system is in the pure state |Ψ1〉, thus the pure state can also
be represented by the density matrix. The trace of the square of ρ2 satisfies the inequality of

trρ2 = ∑
i

ρ
2
i ≤ 1. (5)

The equality is satisfied if ρ represents the pure state. In this case, ρ2 = ρ, which is just a
projection operator.

2 Density matrix in a general representation

Now we can use a general representation with orthonormal bases of |ϕ〉’s to represent the
density matrix as

ρ = ∑
i

ρi|Ψi〉〈Ψi|= ∑
i,a,b

ρi|ϕa〉〈ϕa|Ψi〉〈Ψi|ϕb〉〈ϕb|= ∑
ab
|ϕa〉〈ϕb|ρab, (6)

where

ρab = 〈ϕa|ρ|ϕb〉= ∑
i

ρi〈ϕa|Ψi〉〈Ψi|ϕb〉. (7)

The diagonal matrix elements ρaa = ∑i ρi|〈ϕa|Ψi〉|2, which remains non-negative and can be
interpreted as the probability for the system in the state of |ϕa〉. The off-diagonal matrix
elements are generally complex valued. Since the trace is invariant under different bases, the
expectation value of an observable F remains

F = tr[ρF] = ∑
ab

ρabFba = ∑
ab

ρab〈ϕb|F|ϕa〉. (8)

Exercise
I leave it as an exercise that you can directly obtain Eq. 8 starting from Eq. 2 by perform-

ing the transformation between bases.

3 Entropy

Next we define the von Neumann entropy S for a mixed state. Let us first recall how we define
classical entropy Scl . If there are a set of classical states with the probability distribution of
ρi, the classical entropy is defined as Scl = kB ∑ρi lnρ

−1
i . Now for the mixed states described

by the density matrix, in the diagonal representation |Ψi〉, we still define the von Neumann
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entropy S

S =−kB ∑
i

ρi lnρi. (9)

Formally, we can write a representation independent form as

S =−kBtr[ρ lnρ]. (10)

One question is how to define a logarithmic of an operator. Since all the eigenvalues of ρ are
positive and smaller than 1, we can define

lnρ = ln[1− (1−ρ)] =−
∞

∑
n=1

(1−ρ)n

n
. (11)

For the pure state in which only one of ρi equals to 1 and all others probabilities are 0, thus
Spure = 0.

Exercise:

We can also prove that Eq. 9 reaches maximal if all the ρi are equal to each other. I leave
it as an exercise, or, you can refer to Gottfried’s book.

4 Entangled states

Generally speaking, for a large system with N-particles, in a pure state Ψ(q1, ..,qN). Let us
ask what is the state that particle one is in? The answer is that the state of particle one cannot
be described by a wavefunction, but in a mixed state.

Let us consider a system composed of two subsystems with coordinates q1 and q2 for
each subsystem, respectively. Suppose the entire system is in a pure state |Ψ12〉, and we use
the coordinate representation in which the state is represented by the wavefunction Ψ(q1,q2),
and thus ρ12 = |Ψ12〉〈Ψ12|. In the coordinate representation,

〈q1q2|ρ12|q´
1q´

2〉= 〈q1q2|Ψ12〉〈Ψ12|q´
1q´

2〉= Ψ(q1q2)Ψ
∗(q´

1,q
´
2). (12)

However, the subsystem 1 is not in a pure state. It lives in the mixed state described by
the density matrix ρ1. It is defined as

ρ1 = tr2 ρ12, (13)

where tr2 is a partial trace over the degree of freedom of particle 2. In the coordinate repre-
sentation,

〈q1|ρ1|q´
1〉=

∫
dq2〈q1q2|ρ12|q´

1q2〉=
∫

dq2Ψ(q1q2)Ψ
∗(q´

1,q2). (14)

3



Let us consider an operator A1 that only depends on q1 of the subsystem 1, i.e.,

〈q1q2|A1|q´
1q´

2〉= 〈q1|A1|q´
1〉δ(q2−q´

2). (15)

Thus for the state of |Ψ12〉, we have the expectation value of A1 as

〈Ψ12|A1|Ψ12〉 =
∫

dq1dq2dq´
1dq´

2 〈Ψ12|q1q2〉〈q1q2|A1|q´
1q´

2〉〈q´
1q´

2|Ψ12〉

=
∫

dq1dq´
1dq2 Ψ

∗(q1,q2)〈q1|A1|q´
1〉Ψ(q´

1,q2)

=
∫

dq1dq´
1〈q1|A1|q´

1〉〈q´
1|ρ1|q1〉

= tr1(ρ1A1). (16)

Only if |Ψ12〉 can be factorize into a product of |Ψ1〉⊗|Ψ2〉 where |Ψ1〉 and |Ψ2〉 are pure
states for the subsystem 1 and 2, respectively, then ρ1 = |Ψ1〉〈Ψ1| describing a pure state.
In this case, there is no entanglement between subsystems 1 and 2. Otherwise, we say that
subsystems 1 and 2 are entangled, and ρ1 describes a mixed state for the subsystem 1.

In general, according to the Schmidt decomposition, for any |Ψ12〉, it can always be
decomposed as

|Ψ12〉=
n

∑
i=1

ci|Ψ1,i〉⊗ |Ψ2,i〉, (17)

where |Ψ1,i〉(i= 1,n) are orthogonal with each other for the subsystem 1, and so do |Ψ2,i〉(i=
1,n) for the subsystem 2. Then we have

ρ1 = ∑
i

ρi|Ψ1,i〉〈Ψ1,i|, (18)

with ρi = |ci|2. If there are more than one terms of ci 6= 0, tr[ρ2
1] = ∑i |ci|4 < 1, thus the

subsystem 1 is in a mixed state.

Here I presen the proof of the theorem of Schmidt decomposition.

Theorem: Consider two Hilbert spaces H1 and H2 for systems 1 and 2 with dimensions
n1 and n2, respectively. Without loss of generality, we assume n1 ≥ n2. The Hilbert space
for the combined system is simply H1⊗H2. For any state of the combined system |Ψ12〉
in H1⊗H2, we can always find a set of orthonormal states |Ψ1,i〉(i = 1, ...n2) in H1, and
|Ψ2,i〉(i = 1, ...,n2) in H2, such that |Ψ12〉 = ∑

n2
i=1 ci|Ψ1,i〉⊗ |Ψ2,i〉, where ci is non-negative.

The set of |Ψ1,i〉 and |Ψ2,i〉 are uniquely determined by the state |Ψ12〉.
Let us consider two general sets of orthonormal bases |αi〉(i = 1, ...n1) for space H1, and

|βi〉(i = 1, ...n2) for space H2, respectively. |Ψ12〉 can always be expanded as

|Ψ12〉=
n1

∑
i1=1

n2

∑
i2=1

ci1i2 |αi1〉⊗ |βi2〉. (19)
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The coefficient ci1,i2 can be viewed as a rectangular n1×n2 matrix Mi1,i2 = ci1,i2 .

According to the theorem in linear algebra of singular value decomposition, there always
exist an n1×n1 unitary matrix U , and n2×n2 unitary matrix V such that

M =U
[

Σ

0

]
V T , (20)

where Σ is a n2×n2 a positive semidefinite diagonal matrix, and 0 refers to a (n1−n2)×n2
matrix with all elements 0. We use ci(i = 1, ...,n2) to denote the diagonal element of Σ,
u1, ...,un2 for the first n2 columns of U , and v1, ...,vn2 for the columns of V . Then we have
M = ∑

n2
i=1 ciuivT

i , which means that

|Ψ12〉=
n2

∑
i=1

ci|ui〉⊗ |vi〉 (21)

where

|ui〉=
n1

∑
j=1

Ui, j|α j〉, |vi〉=
n1

∑
j=1

Vi, j|β j〉. (22)

5 Two-particle interference

Let us consider an entangled two-particle state

Ψ(q1,q2) = c1u1(q1)v1(q2)+ c2u2(q1)v2(q2), |c1|2 + |c2|2 = 1. (23)

Here we do not assume that u1,2 are orthogonal, and neither do v1,2. The two-body probability
distribution is

ρ(q1,q2) = |c1|2|u1(q1)|2|v1(q2)|2 + |c2|2|u2(q1)|2|v2(q2)|2 + I2(q1,q2),

I2(q1,q2) = 2Re
{

c1c∗2u1(q1)u∗2(q1)v1(q2)v∗2(q2)
}
. (24)

The cross term I2(q1,q2) survives even if particles 1 and 2 are faraway from each other, i.e.,
u1,2 do not have spatial overlap with v1,2. Nevertheless if v1,2(q2) are orthogonal to each
other, in the reduced one-body density ρ(q1), the two-particle interference term I2 vanishes
after the integral of q2.

If v1,2(q2) are not orthogonal, then in the reduced one-body density

ρ(q1) = |c1||u1(q1)|2 + |c2||u2(q2)|2 +2Re[u∗1(q1)u2(q1)V], (25)

where

V =
∫

dq2 v1(q2)v∗2(q2). (26)
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Thus particle 1 will show interference if the two states of particle 2 are not completely or-
thogonal.

6 Quantum statistical density matrix

In classical statistical mechanics, the equilibrium partition function is

Z = ∑
i

ρi = ∑
i

e−βEi, (27)

where i is the index of the system configurations, Ei is the energy of the configuration i, and
β = 1/T . From the partition function, we have F = − 1

β
lnZ, from which we can obtain all

the information of thermodynamics.

For a quantum statistical system, it is also connected to a heat bath, thus it is also in a
mixed state. In the equilibrium, its density matrix is known

ρ =
1
Z

e−βH , (28)

Z = tr e−βH. (29)

If we knew all the eigenstates |Ψn〉 of H, the density matrix and the partition function become
ρn = 1

Z e−βEn and Z = ∑n e−βEn . However, generally speaking, it is very difficult to solve
the energy eigenstates for a many-body quantum mechanical systems. We have to use a
convenient set of bases, which are often the tensor product of the bases of a single particle.
And the single particle bases can either be chosen in momentum space bases or the coordinate
bases. In a general many-body bases |ϕi〉, we have

ρ = ∑
i, j
|ϕi〉〈ϕ j|〈i|e−βH | j〉

Z = ∑
i
〈i|e−βH |i〉. (30)

For the thermodynamic observable F ,

F = ∑
i j
〈i|F | j〉〈 j|e−βH |i〉 (31)

Different from the classical case, 〈 j|e−βH |i〉 is not positive-definite, but in general complex.
This is a major difficulty of quantum statistical problem.
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