Lecture 5: Orbital angular momentum, spin and rotation

1 Orbital angular momentum operator

According to the classic expression of orbital angular momentum L =7 x P, we define the
quantum operator

Lx:yﬁz_fﬁwl*y :fﬁx_)eﬁmlfz:)eﬁy_)?ﬁx- (D)

(From now on, we may omit the hat on the operators.) We can check that the three compo-
nents of operators of L are Hermitian, and satisfy the commutation relation

[Ll', Lj] = ieiijsz. (2)

The non-commutativity of L;(i = x,y,z) is absent in the classic physics, which is a quantum
effect. We can normalize L; by dividing /, roughly speaking the magnitude of orbital angular
momentum, we have

[

As we can see, that in the limit of / — oo, the non-commutativity approaches zero and thus
the classic physics is recovered.
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2 Rotation operator

Let us define the rotation operator. Consider a single particle state |¥), and after a rotation
operation g(7i, 0) where 7 is the rotation axis and 6 is the rotation angle, we arrive at |¥$). The
operation of g on three-vectors, such as 7, j, and S, is described by a 3 x 3 special orthogonal
matrix, i.e., SO(3), 8op @S

(8o =8up’s:  (8P)a = 8apPp:  (85)a = gupSp- 4)
For example, for /i = Z, we have
cos® —sin® O
2(2,8) = sin® cos® 0O |. (5)
0 0 1

For infinitesimal rotation angle 6,
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Exercise 1: Please find the explicit matrices for g(£,0) and g(¥,0), and find their in-
finitesimal rotation generators %g()ﬁ, 0)|o—0 and %g(ﬁ, 0)e—o0-

By the physical meaning of rotation, we should have
(WEW9) = (BIW), (W8I5198) = (lgplY), (W8IS|WS) = (P]gSIY). (7)

We denote that |$) = D(g)|¥), and assume that D(g) is a linear unitary operator. We should
have

D(g(i1,0)) = 1,

D'(g)D(g) = D(g)D'(g) =1,

D(g)7D(g) = g,

D'(g)pD(g) = gp

D(g)SD(g) = gS. ©)

For two successive rotations g; and g;, their net effect is another rotation g whose matrix
is defined as g = g1g>. Their corresponding rotation operators satisfy the similar relation of
product as

D(g182) = D(g1)D(g2) )

Using the group theory language, D(g)’s form a unitary representation for the SO(3) (3D
special orthogonal) rotation group.

Next we discuss the relation between the rotation operator and total angular momentum.
In the limit of small rotation angle 6 — 0,

aD(#,0)

D(g(1,80))[¥(r)) = [¥(r)) + 50 —=¢

lo=o| (1)) + ..., (10)

thus

aD(#,0)

(F(1)[D(g)[¥(2)) — (F(1)[¥(2)) = 06(¥ (1) —75

lo=0|¥ (7)) + ... (11)
If the space is isotropic around the axis 7, and if |¥(¢)) is a state vector, then D(g)|¥(z)) is
also a valid time-dependent state vector, thus the left-hand-side is independent of time. Then

(W(1)] w lo=o|¥(z)) is a conserved quantity associated with rotation around the axis 7. It

0
is also easy to show that BD(-%’G) lo=o is an anti-Hermitian operator. It should be the angular

momentum projection to the axis 7 up to a constant o as

aD(R,0), Q. -
% |e:0——&n-J. (12)

J should be the total angular momentum J=L+S. Next we need to determine the constant
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o. From D (g)7D(g) = g7, we have

o do(7,0
iofi T, r] = %ye_wq (13)

By taking 7i along the z-axis and r; = ry, we can obtain that o = £, and thus

St

D(g(#,0)) = e 417 (14)

From the Eq. 8 relation D' (g)S:D(g) = gi;S;, and take the infinitesimal rotation, we arrive
the commutation relation between spin operators

[S,',Sj] = iSijkﬁSk. (15)

Exercise 2

1. Prove that above statement that o0 = A.
2. Prove Eq. 15.

3. From D'(g)L;D(g) = gi;L;, please derive that [L;,L;] = i€;jx/iLx, which is consistent
with the direct calculation using the canonical quantization condition.

4. From D'(g)p:D(g) = gijpj» please derive that [L;, p,] = ig; jkhp;.

3 Pauli matrices for spin-% particles

For spin—%, we can explicitly construct its operators due to its simplicity. The projection of
spin along any direction can only take values of j:%, thus

1 3
Si=8y =8 =, Si+S+8T =0 (16)

Set § = %6, such that G)zc = 65 = Gg = 1 which are all Hermitian matrices. The satisfy the
commutation relation

0.0y — 0,0y = 2iG;, 0,0; — 0,0y = 2i0;, G,0x —0,0; = 2i0,. (17)

A convenient choice of representations of Pauli matrices is

0 1 0 —i 1 0
Gx:(lO)’Gy:(i 0)7612(0—1) (18)

5-3



Pauli matrices have a special properties that other spin matrices do not have, they anti-
commute with each other, i.e.,

Gi0j+6j6i:25ij, (19)
and consequently
Gi0j = 5,‘1' + iSijka. (20)

Pauli matrices are actually the lowest order Clifford algebra. They are also isomorphic to
quaternions (the Hamilton number) following the correspondce of

[ —i0x j<» —i0y k<> —iC;. (21)

Exercise 3 1) Prove the anti-commutation relation 6,6 + 6 ;6; = 29;; which is independent
of the concrete representation.

2) Prove that for the rotation operator from the spin part Ds(n,0) = exp{—%ﬂ?s -h}, it

equals to cos 5 — i(6 - 7i) sin 3.

4 Hamiltonian operator for charged particles in the E-M
field and gauge invariance
The classic Lagrangian is
. I o e, =
L(x,x,t) = Smr + Er-A — e, (22)

the canonical momentum is

- oL ) -
P=2 =i A (23)
0g c
Thus
s 8o (P—¢A)?
H.(F,P)=P-F—L= ¢ + ed. (24)
2m

Quantum mechanically, we replace the canonical momentum P, rather than the mechani-
cal momentum, with the operator —ih%. Again it is because of the correspondence principle:
In classical mechanics, it is the canonical momentum P satisfy the Poisson bracket, not the
mechanical momentum. Then for the quantum mechanical Hamiltonian, however, what en-
ters the Hamiltonian is the mechanical momentum which is an physical observable. The
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canonical momentum is not gauge invariant, and thus is not a physical observable.

_iEVY — €A(7))2
g VAN . 25)

2m

If we expand the above Hamiltonian, we have

—V?: e - . e - = AP
H= ——ihV-(A— —A-ihV+ — .
2m 2mcl ( mc v+ 2 2m

(26)

The meaning of the second term in the above equation is that for any wavefunction y(7), its
effect is —-7V - {A(7)y(7)}. We often use Column like gauge such that V- A = 0, in this

2m

case, Eq. 26 is reduced to

RV ihey . A% (7)

H= . 27
2m mc 2mc? @7
In classic EM, we know that K(?) has gauge redundancy, i.e., for
- - . . N
A () =A@ +Vf(71), ¢ () =0(F) - -5 f(7,1) (28)

—

where f(7,t) is an arbitrary scale field, (A", ¢") and (A, ¢) represent the same physical electric
and magnetic fields. In classic EM, it is not a problem because the equation of motion can be
written by using E and B,

X B. (29)
C

The introduction of A and ¢ is just a convenience not essential.

However, in quantum mechanics, the concept of force is ill-defined. We have to either
use Hamiltonian, or, Lagrangian, both of which can only be expressed by A and ¢ not by E
and B. The form of Hamiltonian by using A and ¢ is written as

(ihY — £A (7))

H = o +ed (). (30)

A natural question is: Should H and H give rise to the same physics?

We can prove that for any solution to the equation

() = () a1)
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with H defined in Eq. 25, we define the a new wavefunction y (7,¢)

W (7.0) = e/ Py () (32)
such that it satisfies

9 . .

zhg\u (rt) =H vy (nt). (33)

Exercise 4 Prove the above statement in Eq. 32 and Eq. 33. Hint: you may need to first
verify that

8 . . ie £(7 a
h— — — c (r,t) h— —
(lhat ed )1|I eh (lhat e¢)l|f, (34)

and you can also find a similar expression with respect to the spatial gradient.
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