
Lecture 5: Orbital angular momentum, spin and rotation

1 Orbital angular momentum operator

According to the classic expression of orbital angular momentum ~L =~r×~p, we define the
quantum operator

Lx = ŷ p̂z− ẑ p̂y,Ly = ẑ p̂x− x̂ p̂z,Lz = x̂ p̂y− ŷ p̂x. (1)

(From now on, we may omit the hat on the operators.) We can check that the three compo-
nents of operators of~L are Hermitian, and satisfy the commutation relation

[Li,L j] = iεi jkh̄Lk. (2)

The non-commutativity of Li(i = x,y,z) is absent in the classic physics, which is a quantum
effect. We can normalize Li by dividing l, roughly speaking the magnitude of orbital angular
momentum, we have

[
Li

l
,
L j

l
] =

1
l

iεi jk
Lk

l
. (3)

As we can see, that in the limit of l → ∞, the non-commutativity approaches zero and thus
the classic physics is recovered.

2 Rotation operator

Let us define the rotation operator. Consider a single particle state |Ψ〉, and after a rotation
operation g(n̂,θ) where n̂ is the rotation axis and θ is the rotation angle, we arrive at |Ψg〉. The
operation of g on three-vectors, such as~r, ~p, and ~S, is described by a 3×3 special orthogonal
matrix, i.e., SO(3), gαβ as

(g~r)α = gαβrβ; (g~p)α = gαβ pβ; (g~S)α = gαβSβ. (4)

For example, for n̂ = ẑ, we have

g(ẑ,θ) =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 . (5)

For infinitesimal rotation angle θ,

g(ẑ,θ)≈ 1+θ
∂

∂θ

g(ẑ,θ)|θ=0 = 1+θ

 0 −1 0
1 0 0
0 0 0

 . (6)
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Exercise 1: Please find the explicit matrices for g(x̂,θ) and g(ŷ,θ), and find their in-
finitesimal rotation generators ∂

∂θ
g(x̂,θ)|θ=0 and ∂

∂θ
g(ŷ,θ)|θ=0.

By the physical meaning of rotation, we should have

〈Ψg|Ψg〉= 〈Ψ|Ψ〉, 〈Ψg|~p|Ψg〉= 〈Ψ|g~p|Ψ〉, 〈Ψg|~S|Ψg〉= 〈Ψ|g~S|Ψ〉. (7)

We denote that |Ψg〉= D(g)|Ψ〉, and assume that D(g) is a linear unitary operator. We should
have

D(g(~n,0)) = 1,

D†(g)D(g) = D(g)D†(g) = 1,

D†(g)~rD(g) = g~r,

D†(g)~pD(g) = g~p

D†(g)~SD(g) = g~S. (8)

For two successive rotations g1 and g2, their net effect is another rotation g whose matrix
is defined as g = g1g2. Their corresponding rotation operators satisfy the similar relation of
product as

D(g1g2) = D(g1)D(g2). (9)

Using the group theory language, D(g)’s form a unitary representation for the SO(3) (3D
special orthogonal) rotation group.

Next we discuss the relation between the rotation operator and total angular momentum.
In the limit of small rotation angle θ→ 0,

D(g(n̂,δθ))|Ψ(t)〉= |Ψ(t)〉+δθ
∂D(n̂,θ)

∂θ
|θ=0|Ψ(t)〉+ ..., (10)

thus

〈Ψ(t)|D(g)|Ψ(t)〉−〈Ψ(t)|Ψ(t)〉= δθ〈Ψ(t)|∂D(n̂,θ)
∂θ

|θ=0|Ψ(t)〉+ ... (11)

If the space is isotropic around the axis n̂, and if |Ψ(t)〉 is a state vector, then D(g)|Ψ(t)〉 is
also a valid time-dependent state vector, thus the left-hand-side is independent of time. Then
〈Ψ(t)|∂D(n̂,θ)

∂θ
|θ=0|Ψ(t)〉 is a conserved quantity associated with rotation around the axis~n. It

is also easy to show that ∂D(n̂,θ)
∂θ
|θ=0 is an anti-Hermitian operator. It should be the angular

momentum projection to the axis~n up to a constant α as

∂D(n̂,θ)
∂θ

|θ=0 =−
i
α

n̂ · ~J. (12)

~J should be the total angular momentum ~J =~L+~S. Next we need to determine the constant
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α. From D†(g)~rD(g) = g~r, we have

iα[n̂ · ~J,ri] =
∂g(n̂,θ)

∂θ
|θ=0,i jr j (13)

By taking~n along the z-axis and ri = rx, we can obtain that α = h̄, and thus

D(g(n̂,θ)) = e−i θ

h̄ n̂·~J (14)

From the Eq. 8 relation D†(g)SiD(g) = gi jS j, and take the infinitesimal rotation, we arrive
the commutation relation between spin operators

[Si,S j] = iεi jkh̄Sk. (15)

Exercise 2

1. Prove that above statement that α = h̄.

2. Prove Eq. 15.

3. From D†(g)LiD(g) = gi jL j, please derive that [Li,L j] = iεi jkh̄Lk, which is consistent
with the direct calculation using the canonical quantization condition.

4. From D†(g)piD(g) = gi j p j, please derive that [Li, p j] = iεi jkh̄p j.

3 Pauli matrices for spin-1
2 particles

For spin-1
2 , we can explicitly construct its operators due to its simplicity. The projection of

spin along any direction can only take values of ± h̄
2 , thus

S2
x = S2

y = S2
z =

1
4

h̄2, S2
x +S2

y +S2
z =

3
4

h̄2. (16)

Set ~S = h̄
2~σ, such that σ2

x = σ2
y = σ2

z = 1 which are all Hermitian matrices. The satisfy the
commutation relation

σxσy−σyσx = 2iσz, σyσz−σzσy = 2iσx, σzσx−σxσz = 2iσy. (17)

A convenient choice of representations of Pauli matrices is

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (18)
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Pauli matrices have a special properties that other spin matrices do not have, they anti-
commute with each other, i.e.,

σiσ j +σ jσi = 2δi j, (19)

and consequently

σiσ j = δi j + iεi jkσk. (20)

Pauli matrices are actually the lowest order Clifford algebra. They are also isomorphic to
quaternions (the Hamilton number) following the correspondce of

i↔−iσx j↔−iσy k↔−iσz. (21)

Exercise 3 1) Prove the anti-commutation relation σiσ j+σ jσi = 2δi j which is independent
of the concrete representation.

2) Prove that for the rotation operator from the spin part Ds(n,θ) = exp{− i
2θ~σ ·~n}, it

equals to cos θ

2 − i(~σ ·~n)sin θ

2 .

4 Hamiltonian operator for charged particles in the E-M
field and gauge invariance

The classic Lagrangian is

L(x, ẋ, t) =
1
2

m~̇r2 +
e
c
~̇r · ~̇A− eφ, (22)

the canonical momentum is

~P =
∂L
∂~̇q

= m~̇r+
e
c
~A. (23)

Thus

Hc(~r,~P) = ~P ·~̇r−L =
(~P− e

c
~A)2

2m
+ eφ. (24)

Quantum mechanically, we replace the canonical momentum ~P, rather than the mechani-
cal momentum, with the operator−ih̄ ∂

∂x . Again it is because of the correspondence principle:
In classical mechanics, it is the canonical momentum ~P satisfy the Poisson bracket, not the
mechanical momentum. Then for the quantum mechanical Hamiltonian, however, what en-
ters the Hamiltonian is the mechanical momentum which is an physical observable. The
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canonical momentum is not gauge invariant, and thus is not a physical observable.

H =
(−ih̄~∇− e

c
~A(~r))2

2m
+ eφ(~r). (25)

If we expand the above Hamiltonian, we have

H =
−h̄2

∇2

2m
− e

2mc
ih̄~∇ · (~A− e

2mc
~A · ih̄~∇+

e2

c2

~A2(~r)
2m

. (26)

The meaning of the second term in the above equation is that for any wavefunction ψ(~r), its
effect is − i

2m h̄~∇ · {~A(~r)ψ(~r)}. We often use Column like gauge such that ~∇ ·~A = 0, in this
case, Eq. 26 is reduced to

H =
−h̄2

∇2

2m
− ih̄e

mc
~A ·~∇+

e2~A2(~r)
2mc2 . (27)

In classic EM, we know that ~A(~r) has gauge redundancy, i.e., for

~A´(~r) = ~A(~r)+∇ f (~r, t), φ
´(~r) = φ(~r)− 1

c
∂

∂t
f (~r, t) (28)

where f (~r, t) is an arbitrary scale field, (~A´,φ´) and (~A,φ) represent the same physical electric
and magnetic fields. In classic EM, it is not a problem because the equation of motion can be
written by using ~E and ~B,

~F = m
d2~r
dt2 = e~E + e

~v
c
×~B. (29)

The introduction of ~A and φ is just a convenience not essential.

However, in quantum mechanics, the concept of force is ill-defined. We have to either
use Hamiltonian, or, Lagrangian, both of which can only be expressed by ~A and φ not by ~E
and ~B. The form of Hamiltonian by using ~A´ and φ´ is written as

H´ =
(−ih̄~∇− e

c
~A´(~r))2

2m
+ eφ

´(~r). (30)

A natural question is: Should H´ and H give rise to the same physics?

We can prove that for any solution to the equation

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t) (31)
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with H defined in Eq. 25, we define the a new wavefunction ψ´(~r, t)

ψ
´(~r, t) = e

ie
h̄c f (~r,t)

ψ(~r, t) (32)

such that it satisfies

ih̄
∂

∂t
ψ

´(r, t) = H´
ψ

´(r, t). (33)

Exercise 4 Prove the above statement in Eq. 32 and Eq. 33. Hint: you may need to first
verify that

(ih̄
∂

∂t
− eφ

´)ψ´ = e
ie
h̄c f (~r,t)(ih̄

∂

∂t
− eφ)ψ, (34)

and you can also find a similar expression with respect to the spatial gradient.

5-6


