PHYS 212A: Homework 3

November 11, 2013

Exercise 2

a

Take n along the z-axis and r; = r,. The idea is to reduce the commutator to position and
momentum operators so that we can take advantage of the cannonical quantization conditions.
Plugging in to eq (13) we find,

[ J, 2] = [La, 2] + [Sz, 2] = [2py — ypa, 2] = 2(2py — yps) — (2py — ypa)® = [, py] + y[ps, 7] (1)
We can now apply the cannonical quantization conditions to find
ialJ,z] =y = —ia(ih)y (2)

which implies a = 1/h.

b
Choose 7 = J, then for infinitesimal rotations we can neglect terms of O(6?) and have
i6 6 6 i6
DY(9)8:D(g) = (1+ 7 (Ii)Si(1 = —(J5)) = Si + - (855 = Si8;) = Si + 15,51 (3)
Comparing this to the relation
D¥()5:D(g) = gi; Sk, (4)
we can see that we must have
[Sl, SJ] = ZhEZ]kSk (5)

C

This derivation follows from the same procedure as used above.

Exercise 4

Note: For an alternative derivation of this result see Sakurai 2.7

Taking the partial derivative with respect to time of the 1)/, we have
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Rearranging the above expression, we find

(iho —ed ' = el (ih ey (7)
Acting on the new wavefunction with the spatial gradient operator leads to the expression
(—ihV — SA)Y = ened (—ihV — S Ay (8)
c c
Combining these two results shows that the new wavefunction satisfies
inSy = By (9)
ot
2.3
a

For this problem the Hamiltonian is simply
H=—ji-B=(g9sup/2)0.B (10)
Recall the eigenstates of the operator S - # from problem 1.9. The normalized eigenket is

[v) = (%)1/2 ( siiﬁ ) (11)

cos 5+1

From the Schrodinger equation, we have

() (35)

Solving the Schrodinger equation using the using the normalized eigenket of S -7, we find that the
the time evolutoin of the wavefunction is described by

(1+cosﬁ )1/2€fiwt
V)= Csnp e (13)
(2(1+cos 8))1/2)
If we now change to the s, basis the coefficients we find that the coefficient of |s;;+) is
1+ cospf _ sin 8 »
=1 21/2 1/2  —iwt +1 21/2 wt 14
a / ( 2 ) € / ((2(1 + cos 5))1/2)6 ( )
To find the probability of measuring the electron in the |s,;+) we calculate
aja; = 1/2(1 + sin 3 cos 2wt) (15)

b

The expectation value is given by

(50) = (0|32 0(1)) = (A*(1), B*(£))h/2 ( ol ) ( e ) — hj2sinfeos2st (16)



C

As 8 — 0 the probability of measuring s, = h/2 — 1/2 and (s;) = 0. In the other limit
Se = h/2 — 1/2(1 + cos 2wt and (s,) = h(cos? wt — 1/2).

2.11

For a cme-dimensional SEO potential H = p2/2m + L mu?x?, hence % = (1/4K)[x,H] =
p/m, and § = (1/10)[p,8] = (1/46) ?/2) [p,2?] = (w?/21K) [-21¥x] = -mo’x. Hence
X +wlx = 0, and solution is x(t) = Acosut + Bsimut. At t=0, x(0) = A while #(t)=
-Awsinet+Bucoswt leé.ds to £(0) = Buw and thus p(0) = muB. Thus in the neisenberg
picture x{t) = x(0)coswt + {p(0)/mu)sinnt.
Our state vector |a>= e'ipamltb at t=0; for t>0 we have in the Heisenberg
. pleture <x(t)> = <aix(t){e>. We note thar .
eip(O)afo(o)e-ip(O)aﬁ! - eip(o)aﬂi({x(o) ,e-ip.(ﬂ)anl] + e-i?(ﬂ)alﬁx(on
= x(0) + a,
while o3P/, gy 10 @a/k | 5y pepee
«()> = <alx(t) o> = <0|eiP2Ey(rye-tpallyo,
= <0[e3P@3/8 11 (0 cosut+(p(0) fow) sinut e P W s

Since <0]|x(0)[0> = <0|p(0)|0> = 0, we obtain for <x(t)> = acosut.

2.19



(a) Take a|A> = exp[-|1]%/2] a expDia’} [0> = expl-]1{%/2] 2 (¥ a)@h) o>

but we kmow that (") ¥|n> = /@D (n +2).....(n +%) [n+k> hence (a’f)“lo> = /k! k>

—|a]?/2

and a(af)klo>= Ykl alk> =/k/k!l{k-1>. Thus a|r>= e nzl}\nft_:fi?ln—li’ =
n!

275 o o . '
= e-IAI lzn_g_o An+1(/ﬁ'-l:i-f¢(n-l-l)!)]n>. But (n+l)!/(a+l) = n!, hence

2 @ - 2 o
a|a> = o 1A Mﬂ;{)(x"“//ﬁ?)[m = 2e~ 12 /zngu(x"//ﬁ."} |n>. ()

1112 + T
The r.h.s. of (1} is Ae h[ /22}\3 ]0> by noting that ela [0:- =n§°(laf)n/n! | 0>

o : 1312 +
= E%|n>//aT . Hence with |i>=e IM*/2387 14, | ve have indeed a|r> =A|A> with

A in general a complex number. For normalization we find
2 * T 2 * .
<Afa> = 121 <0|e* 26 j0sa eIl <0|e’ anzoln]n#/tﬁ

, @
=Wz 2 a0t al o,

but am|n> = /o(n-1).....(o-m+]) |[n-m>, hence (2) contributes by orthomormality

of states only when n-m = 0, i.e.



- 2 n n 2 2
alp = M) 7 BODE arjos « AL

Therefore |[A> is a normalized coherent state. |

®) <)% = x> - <02 , x = /RTZms(ata )}, where a|a> =a]3> and <jat - <1]xf
So <> = <A|x]}> = ATZma(<A|(ata?) [1>) = HT2ms(242*), and <x>? =(K/2ms) 02+
*24230%) = (h/2m) OFA%) 2. Now x2 = xx = (K/2m0)[at2taZtaaf+ata] = (h/2ma) [at2
+a2+2ata+1], hence <xZ> = (H/Zma) [1 240 *A41] = (K/2m0) [(AV*2)241].  Likewise
<p>2 = ~(Rr/2) [A*-1]12 and <P = (HmolZ)[l—-(l*-l)z], using p = L/fme/2(at-a).
Hence <(Ap)2> = <p2> - <p>2= Kmu/2 and <(8x}2> = J/2ms and <(ax)D>e(ap)Z>= K274,

~|a[%/2 2m

(c) Write [A>=e -|x]? 12 el 2/ [n> = go f(n)|n> . ‘@ence f(n) = e G-

Therefore [f(n)lz = e-lu |A|2‘nln! and 15 a Poisson distribution

P(A",n) = e*'A"%/n!, vhere A’ = |a]2.
Now I'(n+l) = n!, hence [f@ |2 = e__mz ‘lxlz"/r(m-l). The maximum value is ob-
tained by soting that In|£(@)|2 = =ja|2 + nia[{2|?]- 1ar(a+l), and Z-dajz@)|?

= lnlllz- %lnl'(ﬁl) = 0. The latter equation defimes n _  where for large n,

3_ lof{otl) ~ in n. Hencen = il]z.
P :
_ ~ip2/¥
{d) The translation operator e vwhere p is momentum operator and £ just the

displacement distaoce, can I:e rewritten as
-:lp!-lli i’-" 72¥(a -8) !-fnln!Zﬂa —!-/w/ﬁfa -3:(—!- )(M/2H)[a »al

. _
—ls(-22)(w/21!)[a*.al 27w Tﬁa 2/l Z¥a . melda = malha

Note e wa/2) o> = |{0> pecause a |0>= 0, Hence
2 +
-1p£lﬂi0> = -IAI /2 Aa j0>, where A = 2vEu/ZK

[We have used here t:he identity e‘.M'B = eAeBe_%[A’B] true for any palr of opera-

tors A and B that commute with [A,B], c.f. R. J. Glauber, Phys. Rev. 84, 399

(1951).]



