PHYS 212A: Homework 5

December 8, 2013

3.21

a

We define L; = €;;,2;p;. Writing 2 and p in terms of creation and annihilation operators gives,

. ih .
L; = eijkzh(a; + aj)(a;rc —ag) = Eijkg(a]’a}t — a}ak) = 6ijkzhaja,]; (1)

The other result can be derived similarly.

b

The states ketglm are defined as eigenstates of the L, and L? operators. Here since N = 2¢+ 1 =
ngy + ny + n, = 1, we have three possible kets |100) ,|010),|001). It is helpful to consider what
happens to each state under the angular momentum operators.

L. ]100) = ih(azal, — ayal) |100) = ih|010) (2)
L.|010) = —ih|100) (3)
L.]001) =0 (4)
Under L? any of the 3 states will have the same result, L?[001) = A2[1(1 + 1)]|001), this shows
010) 4, = [001),,. From inspection, we can determine that [01+1) . = %(HOO)n +41010),,)
c

Now we have 6 possible states to consider, and find that
1

1020) gt = 75

(1200) + [020) + [002)) (5)



d

Following the same procedure as above, we find

L. |200) = ik(|110)) (6)
L. ]020) = —ifi(]110)) (7)
L.|110) = f 2(020) — |200)) (8)
L. [101) = in(|011)) (9)
L,[011) = —m(|1o1>) (10)

(11)

By inspection, we can determine the unnormalized m = +1 states are |101) £ |011). Similarly, for
m = £2 states are (|200> |020)) £ ¢ |110)

3.22

a

For £ = 0 we have

gz, t) =1/(1—t)=1+t++ .= L,(0 (12)
Comparing powers of ¢, we can see L, (0) = 3"g§:,t) lt=0 = n! The other result follows similarly.
b
Doy (13)

Inserting the series expression gives

(t—l)ZL;(m)%—Z % t—'—tZL (14)

Rearranging indices to collect like powers of t, we find

nLy, 1 (x) — Ly () = nLpt1() (15)
C
og 1—-t—=x
— 1
ot~ (1-127 (16)
tn—l "

(1—2t+t2)ZLn(x)m = (1—zt—gc)ZLn(x)m (17)

Again grouping powers of t, we find the sought after expression.



d

This is most easily proved using the generator

—ta —te
eT—tt(l—x) eT-tt’y

v+ (L=l g =0 = T
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From L, = I, +iL , _ - -
y = Ly tIl, we have L = 1(L +L_) and L).T = 5L, and fron 3.5.39)

) * . nce <L > =

2mj%(L L = i =
J%¢( )l£m> 0 since <fm|fm'> Gm,. Similarly <L > = <2mfI. jam> =

2
Now <L> = <fm|%(L,L +LL +LL +L_L)|tws, ButLL[znp=c(1)
'+ 4 ,M) X

ey (w1l [f0> and L L |om> = ¢ (2,m)c_(L,m+1) | im> while “talL 1 lse -

<M|L'L'l£m> = 0 since states of different m values are orthogenal. Hence <L2>
3t<£m|L L_+LL |2m> = 4{c_(2.m)c 4 (8013 + ¢, (fmde_(2,2+1)) = %{czu’m) +x

¢ (R-,m)} - H{1(£+1)_m(m-l)+ﬂ (4+1)-m(mtl)} = {£(E+l)-m IR Silnilarly-<L2> =

<tml-%(LL - L1 -LL, +LL) tw= 3_:<£uI(L+L_+L_L+),£m> <al .

Semiclassical interpretation: We know that Izllm:' = lzl(z-l-l)lim R L2|£m>
_ 2.2 2 2
= ¥u” Jam>. Thus €% = 2(11-1)1!2 and <I. > = mzﬂz In the classical corres-

2 2 2

2 .
pondence 1. = L + Ly + I. expresses itself in terms of the corresponding expec-

2

tation values, and indeed <I. > + <I.2> + <I. > = W2 (2 (2+1)-n> ) + K2 (£(£+1)-n2)

+ n22 = gqee1y? = 2.

=1 and j, = 1 to form j = 2,1,0 states. Ex-

We are to add angular momenta jl
t states

press all nine {j,m} eigenkets in terms of Ijljz,mlm2>. The simples
j=2,m0=2> = ]-H-ﬁ- and likewise [ j=2,m==2> =

are jluliml-:l; jzélsnz-tlp i.e. I
9- and (setting R =

[—>. Using the jadder operator method we have J_ = J;_ @ J

1 for couvenience) from (3.5.40) J_|i.m> = /G G-+ {3,.m-1>.
= /Z|oe> + V2]40>, i.e.

So 3_|j=2,==2>

= JB|3=2,m=1> = (3, © I, )]31=1,3,=1; m=1.my=1>



Ij=2,m=l) = (I - I T ——LT s
04 +0>). Now J_ li=2,m=1> = 6|i=2,m=0>
| -‘i(IO+> ) z y ‘ i) =0> = (J @J
+0>)] = |-+ + 2{00> + |+~>. Hence |3=2,m=0> = 1(] -
= 3 ...{.>.+2]00>+1+._>)

Also J_|j=2,m=0>= V6 |j=
- 6572, m=-1>= 25(/2}-05+2/7] 0->+2/3 2|-0>+/7]0-5)
= therafore

l3=2,m=-1> = %15( [=0>+|0~>),

For the j=1 states
» let us recognize that [11> = af0+> +b [+0>
with normaliza-

. 2 2
tion Ia' + [b[“ =1
. 54
ince <21]11> = ¢ by orthogonality, we have a+
a+b = 0. Choos~

ing our phase convention 1 e |11> = =i {l+0> _
. to be real, we can i
writ
l 2!5(2 [0+>)

ing next J =J I . Apply-

- 1- @ ,_ to the two sides respectively, w _
[~+>) and similarly |1 1 » we have |10> - .%%(l+—> -

¥ ~1> = E%(]O—> - I_O>)_
Finally we may write |j .
e [j=0,m=0> = a!+_> + BIO
0> + Y[—-I-:-, de .
termine o,
[3-F by

normalization la[ + IBI + lT = . t =
i 1 and orthogonalit o i > =2
y l.] l,m=0 aﬂd ] 3 m=}>
. . ] » 0>.

- Choosing @,8,y to be re
3 al we ha sl m=(l> =
ve {3 0,m70> = 3}%(]***" - 00> + |—s),

- 1), then using (3.5.41) we derive easily

s (j+1)—m(m+1)<jm [3,mH1>=v] G0 -m(m-1)<jm’ | j,m-1>]

(a) We have J = }"-‘(J
<Jml lJ IJE? = —_[
i=1 one finds the matrix form for

or mand @' % +1,0,-1 and J

<j=l:m' !Jy ij-':l ’m> as depicted in (3 : 5 : 5!‘) )

and therefore f

for j=1 only [J(J 1)]2 is mdggendent of 1 and J(j 1)

2wl (J /§) and (-I IH) = (J' /ﬁ) where m and n are
1'3 B!‘Il in power series

(b) Unlike the j=% case

nave (3 0y

and in fact we
apansj,on of the

exponential e

positive integers. o omtl
. . il 5 b B/H)
(LI B/ : BN Tk @D
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- ) 2= +B)2n(_12n _ - {"'B)MI LY |
i+ (Jy!}‘) nzl (2n)! i"’ym}nzo {(2m+1) .‘1)

= 1- @/ (coss) - 1(J /%)sing

(e¢) Insert the 3x3 matrix form for ..‘Iy from (a),

i.e. (3.5.54), into the exponen-

tial of part (b) above, we find

(3=1) csapnk [ S22 -stasv et

d (B) me y'" - sinB/vZ  cosg ~8inB8/v/2
1-cosp ;o 1icosg
= ainﬂh’!- ‘“793-—-

whick is (3.5.57).



