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1 Why Bethe Ansatz?

Figure 1: Elastic collision of two balls in one
dimension. The momenta k1 and k2 switch.

Bethe Ansatz (BA) is a powerful method
to solve a class of problems called inte-
grable models. It comes from very physi-
cal intuitions from classic collisions. Con-
sider two balls in one dimension with mo-
menta k1 and k2. For the elastic collision, both momentum and kinetic energy are
conserved. Hence, the balls just switch their momenta, i.e., not only k1 + k2 is con-
served, but also each of them is conserved. This property can be generalized to N
balls, in which each of the momenta k1, k2, ...., kN is conserved, and they just exchange
after each collision. Since there are N conserved quantities, such a system is integrable
classically. This important feature does not work in two-dimensions and above. Basing
on this observation, Bethe proposed the quantum mechanical wavefunction for quan-
tum particles in 1D – the Bethe Ansatz. Later on, it becomes an entire branch of
mathematical physics – integrable models. Why this direction is important?

1. Beautiful mathematical structure – integrable models, quantum groups

2. All the spectra, not just the low energy sector, beyond effective field theory

3. Comparable to experiment /Nature 554, 219 (2018)

4. Application to string theory

5. Calibration to numerical method, and field theory method

6. New excitations: spionons, psinons, magnons

2 Spin-1
2 Heisenberg model

Quantum Heisenberg model is a basic model to describe quantum magnetism. In
fact, they are consequences of the electric interaction when combined with Pauli’s
exclusion principle, rather than the magnetic dipolar interaction which is typically too
small in solids. In solid state classes, you should learn that they are called exchange
interaction for the ferromagnetic (FM) case, and superexchange interaction for the
anti-ferromagnetic (AFM) case.

Consider the spin-1/2 Heisenberg spin chain (one-dimension)

H =
J

2

N∑
x=1

{
S+
x S
−
x+1 + S−i S

+
x+1 + 2∆(SzxS

z
x+1 −

1

4
)
}
, (1)

where S±x = Sxx ± iSyx, and the subindex x is the site index. We use the periodical

boundary condition for spin ~Sx+N = ~Sx. Eq. 1 has an U(1) symmetry, i.e., the total
Sz =

∑
x S

z
x is conserved.
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We start with the reference state |Ψ0〉 = | ↑ ...... ↑〉 that every spin is polarized
as upward. Based on |Ψ0〉, we flip M spin ups to downs, and M is the number of
magnons, and then

Sz =
N

2
−M. (2)

Then we represent

|ΨM〉 =
∑

x1<x2<...<xM

ψ(x1, x2, ..., xN)S−x1S
−
x2
...S−xN |Ψ0〉, (3)

where ψ(x1, x2, ..., xN) can be viewed as wavefunctions in the coordinate representation.

Next we set up the Schrödinger equaiton: HΨ|〉 = EΨ|〉. We have

∑
x

S+
x S
−
x+1|Ψ〉 =

∑
x1<x2<...<xM

{ M∑
l=1

ψ(x1, .., xl−1, xl − 1, xl+1, ..., xM

}
|x1, ...xM〉

∑
x

S−x S
+
x+1|Ψ〉 =

∑
x1<x2<...<xM

{ M∑
l=1

ψ(x1, .., xl−1, xl + 1, xl+1, ..., xM

}
|x1, ...xM〉.(4)

In the above expressions, we have use the convention that if xl + 1 = xl+1, or, xl− 1 =
xl−1, then the corresponding term will not be counted. We also have

2∆
{∑

x

SzxS
z
x+1 −

1

4

}
|Ψ〉 = −∆

∑
x1<x2<...<xM

n(x1, x2, ..., xM)ψ(x1, ..., xM)|Ψ〉, (5)

where n(x1, ..., xM) is the number of domains between ↑ and ↓, i.e., ... ↑↓ ...., and
.... ↓↑ .... Then from H|Ψ〉 = E|Ψ〉, we arrive at the following equations

J

2

M∑
l=1

{
ψ(x1, ..., xl−1, xl + 1, xl+1, ..., xM) + ψ(x1, ..., xl−1, xl − 1, xl+1, ..., xM)

}
− J

2
∆n(x1, ..., xM)ψ(x1, ..., xM) = Eψ(x1, ..., xM), (6)

under the convention that if xl and xl+1, or, xl−1 and xl are neighbors, then the cor-
responding ψ(x1, ..., xl−1, xl + 1, xl+1, ..., xM) and ψ(x1, ..., xl−1, xl − 1, xl+1, ..., xM) do
not exist.

Exercise
Prove the above expressions Eqs. 4 and 5, 6.

Exercise
Now let us figure some simple states. The zero magnon state is simply the vacuum
state, or the reference state |Ψ0〉 = | ↑↑ .... ↑〉 As for the single magnon state, i.e.,
M = 1, there is no interaction.
1) Work out the dispersion of the single magnon state for the FM spin chain,

E(k) = |J |(∆− cos k), (7)
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with k = n2π
N

and n = 0, 1, ..., N − 1.

2) Now consider the case of SU(2) case, i.e., the isotropic Heisenberg model with
∆ = 1, show that magnon excitations are gapless. Figure out the good quantum
numbers of the total spin S and Sz for each of the N one-magnon state.

3 The BA wavefunction

For a classic collision problem, at each time, there is only one permutation of mo-
mentum among different balls. But for a quantum mechanical problem, we need to
superpose plane waves with all the possible permutations – this is the Bethe Ansatz
wavefunction defined as follows

ψ(x1, x2, ..., xM) =
∑
P

Ape
i
∑M

i=1 kPlxl , (8)

where P is a permutation (P1, P2, ...., PN); AP is the scattering amplitude of each
scattering state. The interaction effect is contained in the ratios of AP ′/AP represents
the many-body scattering amplitudes between configurations P ′ and P .

There are two problems to be solved:

1. What are the relations among AP ’s?

2. What are the requirement for the values of ki?

The first one is reduced to solve a 1D two-body scattering problem, and it turns out that
the many-body scattering amplitude can be factorized into a product of a sequence of
two-body scattering amplitudes. It is based on such a fact that a general permutation
can be expressed a product of two-body exchanges. And this is the essence of integrable
problem.

Remark: We can view magnons as hard-core bosons. If we work in the 1st quanti-
zation picture, the wavefunction should be written as

Φ(x1, x2, ..., xN) = θ(x1 < x2 < ... < xN)ψ(x1, x2, ..., xN)

+ ....

+ θ(xP1 < xP2 < ... < xPN)ψ(xP1, xP2, ..., xPN)

+ .... (9)

Such a wavefunction satisfies the permutation symmetry of a bosonic wavefunction. In
other words, ψ(x1, x2, ...xN) is the wavefunction only for a domain of x1 < x2 < ... <
xN). Nevertheless, once the wavefunction in this domain is known, it is completely
determined in all other domains.

Exercise
1. Prove that the eigen energy of the Bethe Ansatz wavefunction Eq. 8 is

E = J
M∑
j=1

(cos kj −∆). (10)
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2. The periodical boundary condition. If we want to apply Φ(x1, x2, ..., xN) =
Φ(x1 + L, x2, ..., xN) = Φ(x1, x2 − L, ..., xN), they give rise to

ψ(x1, x2, ..., xN) = ψ(x2, x3, ..., xN , x1 + L) = ψ(x2 − L, x1, ...., xN) (11)

4 Two magnon states – scattering

We write down the two-magnon wavefunction

ψ(x1, x2) = A(12)eik1x1+ik2x2 + A(21)eik2x1+ik1x2 , (12)

where x1 < x2. If x1 and x2 are not adjacent, then the above wavefunction satisfies

J

2

(
ψ(x1 + 1, x2) + ψ(x1 − 1, x2) + ψ(x1, x2 − 1) + ψ(x1, x2 + 1)

)
= Eψ(x1, x2) (13)

Now consider the case that they are adjacent, i.e., x1 + 1 = x2, then we have

J

2

(
ψ(x1 − 1, x2) + ψ(x1, x2 + 1)

)
− J∆ψ(x1, x2) = 0 (14)

Comparing with Eq. 13 and Eq. 14, we can take

J

2

(
ψ(x1 + 1, x2) + ψ(x1, x2 − 1)

)
− J∆ψ(x1, x2) = 0. (15)

Then if we want to use Eq. 13 to describe the wavefunction for all the cases, we can
set the boundary condition as

J

2

(
ψ(x2, x2) + ψ(x1, x1)

)
= J∆ψ(x1, x2), (16)

by setting x2 = x1 + 1.
In the following, we use the convention that

A′

A
=
A(21)

A(12)
= −eiΘ(k2,k1). (17)

Exercise
1) Plugging the BA wavefunction Eq. 12 into the boundary condition Eq 16, derive
that scattering amplitude

eiΘ(k1,k2) =
ei(k1+k2) − 2∆eik1 + 1

ei(k1+k2) − 2∆eik2 + 1
. (18)

2) For the isotropic case, i.e. ∆ = 1, we parameterize

eiki =
λi + i

2

λi − i
2

, (19)

then it means that λi = 1
2

cot ki
2

following the illustration in Fig. 2.
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Figure 2: Rapidity
3) Prove that at ∆ = 1

eiΘ(k1,k2) = −λ1 − λ2 + i

λ1 − λ2 − i
. (20)

5 The BA equation

We have derived that the periodical boundary conditions

ψ(x1, x2) = ψ(x2, x1 +N) = ψ(x2 −N, x1) = ψ(x1 +N, x2 +N). (21)

Exercise
Prove that the above periodical boundary conditions give rise to

eik1N =
A(12)

A(21)
= (−)e−iΘ(k2,k1) = (−)eiΘ(k1,k2),

eik2N =
A(21)

A(12)
= (−)e−iΘ(k1,k2) = (−)eiΘ(k2,k1). (22)

Then the above equations are called the Bethe ansatz equations. From the equations
above, we have

ei(k1+k2)N = 1. (23)

Then how to understand the above results? Let us view particles 1 and 2 as indis-
tinguishable bosons, and use the extended wavefunction Φ(x1, x2) which covers both
domains that x1 < x2 and x2 < x1, i.e.,

Φ(x1, x2) = θ(x1 < x2)
(
A(12)eik1x1+ik2x2 + A(21)eik2x1+ik1x2

)
+ θ(x2 < x1)

(
A(12)eik1x2+ik2x1 + A(21)eik2x2+ik1x1

)
. (24)

Figure 3: Understanding the periodical
boundary condition

Let us elaborate what happens when
we move particle 1 from x1 to x1 +N dur-
ing which particle 2 is fixed at x2, and
initially x1 < x2 as shown in Let us trace
the A(12) term in the domain θ(x1 < x2),
in which particle 1 carries momentum k1.

1. As moving particle 1 from x1 to x2−1, particle 1 acquires the phase eik1(x2−x1−1).

2. Particle 1 hops from x2 − 1 to x2 + 1, then the system enters the domain of
θ(x2 < x1). To trace the particle x1 which still has the momentum k1, we need
to look at the A(21) term in the domain of θ(x2 < x1). In this process, particle
1 gains the phase of A(21)/A(12)eik12.
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3. The last step, we move particle 1 to x1+N , and it gains the phase of eik1(x1+N−x2−1).

Combine the phases gained in the above three steps, we have

A(21)

A(12)
eik1N = 1. (25)

In other words, interaction shifts the ordinary periodical boundary condition by taking
into account the additional phase shift from the 2-body scattering. This changes the
quantization rule of k1 from the free case. Similarly, we can also trace the configuration
in the A(21)-term starting in the domain of θ(x1 < x2, which represents that particle
1 carries the momentum k2, and particle 2 carries the momentum k1. Repeating the
above analysis, we arrive at

A(12)

A(21)
eik2N = 1. (26)

Certainly, if we shift x1 → x1 + N and x2 → x2 + N while keeping their distance
unchanged, there are no additional scattering phase since they stay in the same domain.
We have

ei(k1+k2)N = 1. (27)

Exercise:
For the isotropic case of ∆ = 1, plug in the parameterization of the rapidity λi, Prove
that (λ1 + i

2

λ1 − i
2

)N
=

λ1 − λ2 + i

λ1 − λ2 − i
,(λ2 + i

2

λ2 − i
2

)N
=

λ2 − λ1 + i

λ2 − λ1 − i
. (28)

6 The existence of bound state

Bound states correspond to complex solutions of k, hence, as N →∞, we have
(

(λ1 +

i/2)/(λ1 − i/2)
)N
→ 0 or ∞, which means that λ1 − λ2 = ±i.

Then the total energy

E/J = cos k1 + cos k2 − 2 =
1

2
(eik1 + 1/eik1 + eik2 + 1/eik2 − 2)

=
1

2

(λ1 + i/2

λ1 − i/2
+
λ1 − i/2
λ1 + i/2

+
λ2 + i/2

λ2 − i/2
+
λ2 − i/2
λ2 + i/2

− 4
)

= J(
λ2

1 − 1/4

λ2
1 + 1/4

λ2
2 − 1/4

λ2
2 + 1/4

− 2)

= −J
2

( 1

λ2
1 + 1/4

+
1

λ2
2 + 1/4

)
. (29)
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The above derivation remains valid even ki is complex.

Set λ1,2 = x± i/2, we have the bound state energy

Eb = −J
2

1

x2 + 1
. (30)

In order E to be real, we need x to be either real, or, purely imaginary. If x is purely
imaginary, then λ1,2 are imaginary, and so do k1,2, which cannot be the case, hence x
is real. In this case, we have

eik1+ik2 =
x+ i

x− i
, (31)

hence, cos(k1 + k2) = (x2 − 1)/(x2 + 1). We have

Eb =
J

2

(
cos(k1 + k2)− 1

)
, (32)

For the real values of k1,2, it can be proved that

1− cos(k1 + k2)

2
≤ 1− cos k1 + 1− cos k2. (33)

Figure 4: Understanding the periodical
boundary condition

Hence, for the FM case, J < 0, we
have the

Eb = |J |(1− cos(k1 + k2)

Escattering = |J |(1− cos k1 + 1− cos k2) = 2|J |(1− cos
k1 + k2

2
cos

k1 − k2

2
).

The upper and lower boundaries of the scattering states of the FM case are

E±(k) = 2|J |(1± cos
k

2
), (34)

where k is the center of mass momentum. The bound state energy lies out of the
scattering state continuum as shown in Fig. 4. If for the AFM case, the bound state
is at a higher energy.

For many-body version of the bound state, string states, in the AFM system, please
refer to

1. W. Yang et al, arxiv 1702.01854,

2. Z. Wang et al, Nature 554, 219 (2018)

Homework:
Please perform numerical solutions for the BA equation to all the 2-magnon
states for a chain of AFM spin-1/2 Heisenberg model with ∆ = 1 and with
a finite length, say, N = 10. Find the momenta of magnons and the eigen
energies. Pay attention to the bound states.
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