
Lecture 4: Equations of motion and canonical quantization
Read Sakurai Chapter 1.6 and 1.7

In Lecture 1 and 2, we have discussed how to represent the state of a quantum mechanical
system based the superposition principle and statistical interpretation. Now we need to solve
the problem of the time evolution of quantum mechanical states.

1 Equation of motion: the Schrödinger equation

Time-evolution operator We start with the time evolution of a pure state. Suppose that at
time t0, the state is |Ψ(t0)〉. Let it evolve to time t, the state becomes |Ψ(t)〉. We define the
time evolution operator T (t, t0) which is determined by the system, say, the mass of particles
and interactions among them. But T (t, t0) does not depend on which state it applies. Before
we derive the concrete form of T (t, t0), we should be able to conclude that it satisfies the
following properties.

1. T (t, t0) should be a linear operator as required by the superposition principle, i.e.,

T (t, t0)(c1|Ψ1(t0)〉+ c2|Ψ2(t0)〉) = c1T (t, t0)|Ψ1(t0)〉+ c2T (t, t0)|Ψ2(t0)〉. (1)

2. T (t0, t0) = 1.

3. T (t2, t0) = T (t2, t1)T (t1, t0) = 1.

4. T (t0, t1)T (t1, t0) = T (t1, t0)T (t0, t1) = 1, or T−1(t0, t1) = T (t1, t0).

5. Once |Ψ(t0)〉 is normalized, i.e., 〈Ψ(t0)|Ψ(t0)〉= 1, then at time t, |Ψ(t)〉 should also be
normalized, i.e., 〈Ψ(t)|Ψ(t)〉= 1. Thus T should be a unitary operator T †(t1, t0)T (t1, t0)=
1. From 4. and 5, we have

T †(t, t0) = T (t0, t). (2)

6. For two independent systems A and B, the state vectors can be written as a tensor prod-
uct |φA(t)〉⊗|φB(t)〉, the total time evolution operator TAB(t1, t0) = TA(t1, t0)⊗TB(t1, t0).

Equations of motion We can write down equations of motion of state vectors based on the
infinitesimal generator of T . Let us take the first order time derivative of |Ψ(t)〉 as

∂Ψ(t)
∂t

= lim
t´→t

Ψ(t´)−Ψ(t)
t´− t

= lim
t´→t

T (t´, t)−1
t´− t

Ψ(t) =
∂T (t´, t)

∂t´ |t´=tΨ(t). (3)
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Next we prove that ∂T (t´,t)
∂t´ |t´=t is an anti-Hermitian operator. From T †(t´, t)T (t´, t) = 1, we

have

∂T †(t´, t)
∂t´ T (t´, t)+T †(t´, t)

∂T (t´, t)
∂t´ = 0. (4)

Set t´→ t, we have

∂T †(t´, t)
∂t´ |t´=t +

∂T (t´, t)
∂t´ |t´=t = 0. (5)

We set M̂(t)≡ i∂T (t´, t)/∂t´|t´=t , then M̂(t) is a Hermitian operator and

i
∂

∂t
|Ψ(t)〉= M̂(t)|Ψ(t)〉. (6)

M̂(t) should be a linear operator as required by superposition principle, and its Hermitic-
ity comes from the unitarity of time evolution operator. M̂(t) is also additive, i.e. for two
independent systems A and B, we should have M̂AB(t) = M̂A(t)+ M̂B(t).

Then what is M̂?

Why Hamiltonian? Consider an infinitesimal time interval ∆t, and expand |Ψ(t −∆t〉 =
|Ψ(t)〉+ i∆tM̂(t)|Ψ(t)〉, then

〈Ψ(t−∆t)|Ψ(t)〉−〈Ψ(t)|Ψ(t)〉 ∼ i∆t〈Ψ(t)|M̂(t)|Ψ(t)〉. (7)

Consider a time-translation invariant system, and take the limit ∆t→ 0, we have

lim
∆t→0

〈Ψ(t−∆t)|Ψ(t)〉−〈Ψ(t)|Ψ(t)〉
∆t

= 〈Ψ(t)|iM̂(t)|Ψ(t)〉. (8)

The left-hand-side is independent of t because time-translation symmetry, thus 〈Ψ(t)|iM̂(t)|Ψ(t)〉
should be a conserved quantity. Such a conserved quantity originates from the time transla-
tion symmetry, and it is also additive. In classic theory, it is nothing but Hamiltonian up to
a constant, and we denote this constant as h̄, i.e., h̄M̂ = Ĥ. Now we have the Schrödinger
equation

ih̄
∂

∂t
|Ψ(t)〉= Ĥ|Ψ(t)〉. (9)

2 Canonical quantization

Still, we need to determine the operator of Hamiltonian. Actually, every quantum theory
originates from a classic theory. The process from classic theory to quantum theory is called
quantization. A common method is the so-called canonical quantization with the following
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steps. The process of canonical quantization ensures that quantum mechanical equations of
motions have a classic correspondence.

1. (Classic mechanics) Determine the classic Hamiltonian and classic mechanical observ-
ables as functions of a set of fundamental observables. Usually, the fundamental ob-
servables are chosen as canonical coordinates and momenta.

2. (Canonical quantization condition) Determine the operators of the fundamental observ-
ables. The relation between operators of canonical coordinates and momenta are called
quantization condition.

3. (QM) Assume the relations between operators of observables and the fundamental op-
erators in quantum mechanics are the same as those in classical mechanics by the spirit
of the correspondence principle.

3 Operators of momenta of the Cartesian coordinates

We have derived before that the operator of coordinate in the coordinate representation is just
the coordinate itself. Now we need to derive the operator for momentum.

We start from the translation operator U(~R) under the spatial translation ~R. In classic
mechanics, the coordinate and momentum transform as

(~r,~p)−→ (~r+~R,~p). (10)

In quantum mechanics, for a state vector |Ψ〉, we denote that after such a translation,

|ΨR〉=U(~R)|Ψ〉. (11)

For two successive translations ~R1 and ~R2, their total effect is equivalent to a new translation
~R3 = ~R1 +~R2. At current stage, we only consider the case without magnetic field, such that
any two translations commute. We require that U satisfies

U(~R3) =U(~R1)U(~R2). (12)

In a later lecture of space-time symmetry, we can prove that U should be a unitary linear
operator. Now, we assume it is true. We require the following properties for U(~R):

1. U(0) = 1.

2. 〈ΨR|= 〈Ψ|U†(~R)

3. 〈ΨR|ΨR〉= 〈Ψ|Ψ〉, −→U†(~R)U(~R) = 1.

4. 〈ΨR|~̂r|ΨR〉= 〈Ψ|~̂r+~R|Ψ〉 −→U†(~δ)~̂rU(~δ) =~̂r+~R.
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5. 〈ΨR|~̂P|ΨR〉= 〈Ψ|~̂P|Ψ〉 −→U†(~R)~̂PU(~R) = ~̂P.

6. 〈ΨR|~̂SΨR〉= 〈Ψ|~̂S|Ψ〉 −→U†(~R)~̂SU(~R) = ~̂S.

7. For two subsystems |ψA〉 and |ψB〉, we have UAB(~R)[|ψA〉 ⊗ |ψB〉] = [UA(~R)|ψA〉]⊗
[UB(~R)|ψB〉].

8. We also fix the convention of the phase of U . For coordinate eigenstate |~r´〉, whose
wavefunction in the coordinate representation is δ(~r−~r´), U |~r´〉= |~r´ +~R〉.

Consider an infinitesimal translation with~δ∼ 0, and thus U(~δ) = 1+~δ · ∂U(~δ)

∂~δ
, we have

〈Ψ(t)|U(~δ)|Ψ(t)〉 ≈ 〈Ψ(t)|Ψ(t)〉+~δ · 〈Ψ(t)|∂U(~δ)

∂~δ
|Ψ(t)〉. (13)

If the space is translationally invariant, which means that if |Ψ(t)〉 represents a possible time-
dependent state of the system, so does |Ψ´(t)〉 = U(δ)|Ψ(t)〉. We also assume the time
translation symmetry of the system, then 〈Ψ(t)|Ψ´(t)〉 should be independent of t. Thus,

〈Ψ|∂U(~δ)

∂~δ
|Ψ〉 is a conserved quantity associated with space translation symmetry. Further-

more, for two subsystems with states |ψA〉 and |ψB〉, ∂U(~δ)
∂δ

is additive, i.e.,

〈ψAB|
∂UAB(~δ)

∂~δ
|ΨAB〉= 〈ψA|

∂UA(~δ)

∂~δ
|ΨA〉+ 〈ψB|

∂UB(~δ)

∂~δ
|ΨB〉. (14)

From above properties, ∂U(~δ)

∂~δ
should be proportional to the total momentum up to a constant

~̂P = iC
∂U(~δ)

∂~δ
|δ=0. (15)

P is a Hermitian operator. Later, we will prove that C is actually just h̄. Let us use it now.

For simplicity, let us consider one-dimensional translation and drive its operator for finite
distance translation R. From Eq. 15, we have

U(R+δ) =U(R)U(δ)≈U(R)(1− i
h̄

pδ) (16)

and thus

∂

∂R
U(~R) =− ip

h̄
U(~R), (17)

and thus

U(R) = e−
i
h̄ pR. (18)
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For the 3-dimensional translation, we can generalize the above result as

U(~R) = exp{− i
h̄
~R ·~P}, (19)

where ~R is a 3-vector.

Now let us consider the coordinate eigenstate |~r〉. The effect of an infinitesimal translation
along the x-direction is

U(δêx)|~r〉= |~r+δêx〉 ≈ (1− i
h̄

P̂xδ)|~r〉. (20)

Then we have

P̂x|~r〉 = ıh̄~∇x|~r〉. (21)

Please note that ~∇ri here is not an operator, it is just a derivative with respect to eigenvalues
of~r1, i.e.,

∇x|~r〉= lim
δ→0

|~r+δêx〉− |~r〉
δ

. (22)

Then we have

〈~r|P̂x|Ψ〉= 〈Ψ|P̂x|~r〉=−ih̄∇x〈~r|Ψ〉. (23)

In terms of wavefunctions, we have

(P̂xΨ)(~r) =−ih̄∇xΨ(~r), (24)

or, more generally,

(P̂iΨ)(~r) =−ih̄∇iΨ(~r). (25)

We also have the expression for coordinates before

(xiΨ)(~r) = xiΨ(~r). (26)

So far, we have both expressions of~x and ~P in the coordinate representation.

4 Canonical quantization condition

For simplicity, let us consider a single particle, and we have

U†(~δ)r̂U(~δ) = r̂+~δ, U†(~δ)p̂U(~δ) = p̂, U = exp{− i
h̄
~δ ·~P}. (27)
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From U(δxex)r̂U(δxex) = r̂+δx, or,

U†(δxex)x̂U(δxex) = x̂+δx, (28)

U†(δxex)ŷU(δxex) = ŷ, (29)

U†(δxex)ẑU(δxex) = ẑ. (30)

Taking the limit of δx→ 0, we have

[x̂, p̂x] = ih̄, [x̂, p̂y] = 0, [x̂, p̂z] = 0. (31)

In general, we have

x̂†
i = x̂i, p̂†

i = p̂i, [x̂i, p̂ j] = ih̄δi j. (32)

This is the quantization condition in the Schödinger picture.

5 Momentum operators in many-particle systems

Now consider a many-particle system, their coordinate eigenstates |~r1,~r2, ....〉. The effect of
the translation operator is

U(~R)|~r1,~r2, ....〉 = |~r1 +~R,~r2 +~R, ....〉. (33)

and

U(~R) = e−
i
h̄
~R·~Ptot (34)

where ~Ptot is the total angular momentum defined as

~Ptot = ∑
i

~Pi. (35)

The we have

~Ptot |~r1,~r2, ....〉 = ıh̄∑
ri

~∇ri|~r1,~r2, ....〉. (36)

Again we have

〈~r1,~r2, ...|P̂tot |Ψ〉= 〈Ψ|P̂tot |~r1,~r2, ...〉=−ih̄∑
i

∇i〈~r1,~r2, ...|Ψ〉. (37)

From the additivity of momentum, the momentum for the j-th particle should be

〈~r1,~r2, ...|~p j|Ψ〉 = −ih̄~∇ j〈~r1,~r2, ...|Ψ〉, (38)

6



, or, in terms of wavefunctions, we have

(p̂ jΨ)(~r1,~r2, ..) =−ih̄~∇ jΨ(~r1,~r2, ..). (39)

6 Proof of C = h̄

Recall that in Eq. 15, we set the value of C = h̄. Now let us do actually prove it, and thus
the canonical quantization condition does not bring a new constant other than h̄. Consider a
classic Hamiltonian H(x, p), and we replace x and p with quantum mechanical operators x̂
and p̂ and then arrive at quantum mechanical Hamiltonian Ĥ(x̂, p̂). Consider that in the case
that Ĥ(x̂, p̂) can be expanded as series of x̂ and p̂,

Ĥ(x̂, p̂) =
+∞

∑
n=1

an p̂n +
+∞

∑
m=1

bmx̂m. (40)

We have

[x̂, Ĥ(x̂, p̂)] = iC
∂Ĥ(x̂, p̂)

∂p
, [p̂, Ĥ(x̂, p̂)] =−iC

∂Ĥ(x̂, p̂)
∂x

. (41)

Exercise Please prove Eq. 41.

Then from Schrödinger equation ih̄ ∂

∂t |Ψ(t)〉= Ĥ|Ψ(t)〉, we have

d
dt
〈Ψ(t)|x̂ j|Ψ(t)〉 =

i
ih̄
〈Ψ(t)|[x̂ j,H]|Ψ(t)〉= C

h̄
〈Ψ|∂Ĥ

∂p
|Ψ〉,

d
dt
〈Ψ(t)|p̂ j|Ψ(t)〉 =

i
ih̄
〈Ψ(t)|[p̂ j,H]|Ψ(t)〉=−C

h̄
〈Ψ|∂Ĥ

∂x
|Ψ〉. (42)

Compared to the classic Hamilton equations, we conclude that C = h̄. Thus Schrödinger
equation plus quantization condition give rise to a harmonic correspondence between quan-
tum and classic mechanics.

7 Momentum eigenstates and momentum representation

Consider a single particle momentum eigenstate p̂|~p〉 = ~p|~p〉. In the coordinate representa-
tion, we have

〈~r|p̂|~p〉= ~p〈~r|~p〉, (43)

or,

−ih̄∇ψ~p(~r) = ~pψ~p(~r), (44)
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and thus we have

ψ~p(~r) =
1

(2π)
3
2

e
i
h̄~p·~r. (45)

Eq. 45 is normalized according to∫
d3rψ

∗
~p(~r)ψ~p(~r) = δ(~k−~k´), (46)

where~k = ~p/h̄ is the wavevector. If we consider a finite volume, say, a cubic box with edge
length L, the values of ki are discrete, we use the box renormalization

ψ~k(~r) =
1

L
3
2

ei~k·~r,
∫

d3rψ
∗
~k
(~r)ψ~k(~r) = δ~k,~k´. (47)

Just like that all the eigenstates of x̂ form a complete basis of a single particle Hilbert
space, so do the eigenstates of p̂. Similar results apply to many-particle systems. Let us
denote |p1 p2....〉 as the eigenbases of a set of momenta operator p̂1, p̂2, .... They satisfy

p̂ j|p1 p2...〉 = p j|p1 p2...〉
〈p1 p2...|p´

1 p´
2...〉 = δ(p1− p´

1)δ(p2− p´
2)...∫

d p1d p2...|p1 p2..〉〈p1 p2..| = I. (48)

For simplicity, let us come back to the single particle cases, and ask what are the expres-
sions of wavefunctions, x̂, and p̂ in the momentum representation? The wavefunction of the
state vector |Ψ〉 in momentum representation is

Ψ(~p) = 〈~p|Ψ〉. (49)

And notice that x̂|x〉= x|x〉, and 〈p|p̂ = p〈p|, we have

〈p|x̂|Ψ〉 =
∫

dx〈p|x̂|x〉〈x|Ψ〉=
∫

dxx〈p|x〉〈x|Ψ〉=
∫

dxxe−i px
h̄ 〈x|Ψ〉,

= ih̄∇p

∫
dx〈p|x〉〈x|Ψ〉= ih̄∇pΨ(p), (50)

〈p|p̂|Ψ〉 = pΨ(p). (51)

The above equations mean that in the momentum representation

x̂ = ih̄∇p, p̂ = p. (52)
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8 Some subtle points

From Eq. 50, we have

〈p|x|Ψ〉= ih̄ lim
δp→0

〈p+δp|Ψ〉−〈p|Ψ〉
δp

, (53)

thus

〈p|x = ih̄∇p〈p|, (54)

or

x|p〉=−ih̄∇p|p〉. (55)

Compare the expression proved before

p|x〉= ih̄∇x|x〉. (56)
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Lecture 5: Orbital angular momentum, spin and rotation

1 Orbital angular momentum operator

According to the classic expression of orbital angular momentum ~L =~r×~p, we define the
quantum operator

Lx = ŷ p̂z− ẑ p̂y,Ly = ẑ p̂x− x̂ p̂z,Lz = x̂ p̂y− ŷ p̂x. (1)

(From now on, we may omit the hat on the operators.) We can check that the three compo-
nents of operators of~L are Hermitian, and satisfy the commutation relation

[Li,L j] = iεi jkh̄Lk. (2)

The non-commutativity of Li(i = x,y,z) is absent in the classic physics, which is a quantum
effect. We can normalize Li by dividing l, roughly speaking the magnitude of orbital angular
momentum, we have

[
Li

l
,
L j

l
] =

1
l

iεi jk
Lk

l
. (3)

As we can see, that in the limit of l → ∞, the non-commutativity approaches zero and thus
the classic physics is recovered.

2 Rotation operator

Let us define the rotation operator. Consider a single particle state |Ψ〉, and after a rotation
operation g(n̂,θ) where n̂ is the rotation axis and θ is the rotation angle, we arrive at |Ψg〉. The
operation of g on three-vectors, such as~r, ~p, and ~S, is described by a 3×3 special orthogonal
matrix, i.e., SO(3), gαβ as

(g~r)α = gαβrβ; (g~p)α = gαβ pβ; (g~S)α = gαβSβ. (4)

For example, for n̂ = ẑ, we have

g(ẑ,θ) =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 . (5)

For infinitesimal rotation angle θ,

g(ẑ,θ)≈ 1+θ
∂

∂θ

g(ẑ,θ)|θ=0 = 1+θ

 0 −1 0
1 0 0
0 0 0

 . (6)
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Exercise 1: Please find the explicit matrices for g(x̂,θ) and g(ŷ,θ), and find their in-
finitesimal rotation generators ∂

∂θ
g(x̂,θ)|θ=0 and ∂

∂θ
g(ŷ,θ)|θ=0.

By the physical meaning of rotation, we should have

〈Ψg|Ψg〉= 〈Ψ|Ψ〉, 〈Ψg|~p|Ψg〉= 〈Ψ|g~p|Ψ〉, 〈Ψg|~S|Ψg〉= 〈Ψ|g~S|Ψ〉. (7)

We denote that |Ψg〉= D(g)|Ψ〉, and assume that D(g) is a linear unitary operator. We should
have

D(g(~n,0)) = 1,

D†(g)D(g) = D(g)D†(g) = 1,

D†(g)~rD(g) = g~r,

D†(g)~pD(g) = g~p

D†(g)~SD(g) = g~S. (8)

For two successive rotations g1 and g2, their net effect is another rotation g whose matrix
is defined as g = g1g2. Their corresponding rotation operators satisfy the similar relation of
product as

D(g1g2) = D(g1)D(g2). (9)

Using the group theory language, D(g)’s form a unitary representation for the SO(3) (3D
special orthogonal) rotation group.

Next we discuss the relation between the rotation operator and total angular momentum.
In the limit of small rotation angle θ→ 0,

D(g(n̂,δθ))|Ψ(t)〉= |Ψ(t)〉+δθ
∂D(n̂,θ)

∂θ
|θ=0|Ψ(t)〉+ ..., (10)

thus

〈Ψ(t)|D(g)|Ψ(t)〉−〈Ψ(t)|Ψ(t)〉= δθ〈Ψ(t)|∂D(n̂,θ)
∂θ

|θ=0|Ψ(t)〉+ ... (11)

If the space is isotropic around the axis n̂, and if |Ψ(t)〉 is a state vector, then D(g)|Ψ(t)〉 is
also a valid time-dependent state vector, thus the left-hand-side is independent of time. Then
〈Ψ(t)|∂D(n̂,θ)

∂θ
|θ=0|Ψ(t)〉 is a conserved quantity associated with rotation around the axis~n. It

is also easy to show that ∂D(n̂,θ)
∂θ
|θ=0 is an anti-Hermitian operator. It should be the angular

momentum projection to the axis~n up to a constant α as

∂D(n̂,θ)
∂θ

|θ=0 =−
i
α

n̂ · ~J. (12)

~J should be the total angular momentum ~J =~L+~S. Next we need to determine the constant
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α. From D†(g)~rD(g) = g~r, we have

iα[n̂ · ~J,ri] =
∂g(n̂,θ)

∂θ
|θ=0,i jr j (13)

By taking~n along the z-axis and ri = rx, we can obtain that α = h̄, and thus

D(g(n̂,θ)) = e−i θ

h̄ n̂·~J (14)

From the Eq. 8 relation D†(g)SiD(g) = gi jS j, and take the infinitesimal rotation, we arrive
the commutation relation between spin operators

[Si,S j] = iεi jkh̄Sk. (15)

Exercise 2

1. Prove that above statement that α = h̄.

2. Prove Eq. 15.

3. From D†(g)LiD(g) = gi jL j, please derive that [Li,L j] = iεi jkh̄Lk, which is consistent
with the direct calculation using the canonical quantization condition.

4. From D†(g)piD(g) = gi j p j, please derive that [Li, p j] = iεi jkh̄p j.

3 Pauli matrices for spin-1
2 particles

For spin-1
2 , we can explicitly construct its operators due to its simplicity. The projection of

spin along any direction can only take values of ± h̄
2 , thus

S2
x = S2

y = S2
z =

1
4

h̄2, S2
x +S2

y +S2
z =

3
4

h̄2. (16)

Set ~S = h̄
2~σ, such that σ2

x = σ2
y = σ2

z = 1 which are all Hermitian matrices. The satisfy the
commutation relation

σxσy−σyσx = 2iσz, σyσz−σzσy = 2iσx, σzσx−σxσz = 2iσy. (17)

A convenient choice of representations of Pauli matrices is

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (18)
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Pauli matrices have a special properties that other spin matrices do not have, they anti-
commute with each other, i.e.,

σiσ j +σ jσi = 2δi j, (19)

and consequently

σiσ j = δi j + iεi jkσk. (20)

Pauli matrices are actually the lowest order Clifford algebra. They are also isomorphic to
quaternions (the Hamilton number) following the correspondce of

i↔−iσx j↔−iσy k↔−iσz. (21)

Exercise 3 1) Prove the anti-commutation relation σiσ j+σ jσi = 2δi j which is independent
of the concrete representation.

2) Prove that for the rotation operator from the spin part Ds(n,θ) = exp{− i
2θ~σ ·~n}, it

equals to cos θ

2 − i(~σ ·~n)sin θ

2 .

4 Hamiltonian operator for charged particles in the E-M
field and gauge invariance

The classic Lagrangian is

L(x, ẋ, t) =
1
2

m~̇r2 +
e
c
~̇r · ~̇A− eφ, (22)

the canonical momentum is

~P =
∂L
∂~̇q

= m~̇r+
e
c
~A. (23)

Thus

Hc(~r,~P) = ~P ·~̇r−L =
(~P− e

c
~A)2

2m
+ eφ. (24)

Quantum mechanically, we replace the canonical momentum ~P, rather than the mechani-
cal momentum, with the operator−ih̄ ∂

∂x . Again it is because of the correspondence principle:
In classical mechanics, it is the canonical momentum ~P satisfy the Poisson bracket, not the
mechanical momentum. Then for the quantum mechanical Hamiltonian, however, what en-
ters the Hamiltonian is the mechanical momentum which is an physical observable. The
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canonical momentum is not gauge invariant, and thus is not a physical observable.

H =
(−ih̄~∇− e

c
~A(~r))2

2m
+ eφ(~r). (25)

If we expand the above Hamiltonian, we have

H =
−h̄2

∇2

2m
− e

2mc
ih̄~∇ · (~A− e

2mc
~A · ih̄~∇+

e2

c2

~A2(~r)
2m

. (26)

The meaning of the second term in the above equation is that for any wavefunction ψ(~r), its
effect is − i

2m h̄~∇ · {~A(~r)ψ(~r)}. We often use Column like gauge such that ~∇ ·~A = 0, in this
case, Eq. 26 is reduced to

H =
−h̄2

∇2

2m
− ih̄e

mc
~A ·~∇+

e2~A2(~r)
2mc2 . (27)

In classic EM, we know that ~A(~r) has gauge redundancy, i.e., for

~A´(~r) = ~A(~r)+∇ f (~r, t), φ
´(~r) = φ(~r)− 1

c
∂

∂t
f (~r, t) (28)

where f (~r, t) is an arbitrary scale field, (~A´,φ´) and (~A,φ) represent the same physical electric
and magnetic fields. In classic EM, it is not a problem because the equation of motion can be
written by using ~E and ~B,

~F = m
d2~r
dt2 = e~E + e

~v
c
×~B. (29)

The introduction of ~A and φ is just a convenience not essential.

However, in quantum mechanics, the concept of force is ill-defined. We have to either
use Hamiltonian, or, Lagrangian, both of which can only be expressed by ~A and φ not by ~E
and ~B. The form of Hamiltonian by using ~A´ and φ´ is written as

H´ =
(−ih̄~∇− e

c
~A´(~r))2

2m
+ eφ

´(~r). (30)

A natural question is: Should H´ and H give rise to the same physics?

We can prove that for any solution to the equation

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t) (31)
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with H defined in Eq. 25, we define the a new wavefunction ψ´(~r, t)

ψ
´(~r, t) = e

ie
h̄c f (~r,t)

ψ(~r, t) (32)

such that it satisfies

ih̄
∂

∂t
ψ

´(r, t) = H´
ψ

´(r, t). (33)

Exercise 4 Prove the above statement in Eq. 32 and Eq. 33. Hint: you may need to first
verify that

(ih̄
∂

∂t
− eφ

´)ψ´ = e
ie
h̄c f (~r,t)(ih̄

∂

∂t
− eφ)ψ, (34)

and you can also find a similar expression with respect to the spatial gradient.
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Lecture 6: Pictures
Read Sakurai and Napolitano Chapter 2.1 and 2.2

Both operators and state vectors are unobservable, only the inner products are related to
observable quantities. Under the requirement of keeping the inner products invariant, we can
use different pictures to formulate the time-evolution in quantum mechanics. They are related
to similar transformations.

1 Schrödinger picture

The time evolution is expressed as the evolution of state vectors. The canonical coordinates,
momenta, spin do not change with time.

|ΨS(t)〉= T (t, t0)|Ψs(t0)〉. (1)

Assume that Fs is an operator for the observable F in the Schrödinger picture, we have its
expectation value

Fs = 〈Ψs(t)|Fs|Ψs(t)〉. (2)

If Hs does not depend on t, then T (t,0) = exp{− i
h̄Ht}. If Hs explicitly depend on t, the

expression of T is not so simple. According to ∂

∂t T (t,0) =− i
h̄Hs(t)T (t,0), we have

T (t,0) = 1+
−i
h̄

∫ t

0
dt1Hs(t1)T (t1,0), (3)

and by iteration,

T (t,0) = 1+
−i
h̄

∫ t

0
dt1Hs(t1)+(

−i
h̄
)2

∫ t

0
dt1

∫ t1

0
dt2Hs(t1)Hs(t2)

+ ...+(
−i
h̄
)n

∫ t

0
dt1...

∫ tn−1

0
dtnHs(t1)Hs(t2)...Hs(tn)+ ...

=
+∞

∑
n=0

1
n!
(
−i
h̄
)n

∫ t

0
dt1...

∫ t

0
dtnT Hs(t1)Hs(t2)...Hs(tn)

= T exp{−i
h̄

∫ t

0
H(t´)dt´}. (4)

T is the time-ordered operator. T is defined as

T H(t1)H(t2)...H(tn) = ∑
p

θ(tp1 > tp2 > ... > tpn)H(tp1)H(tp2)...H(tpn), (5)

where p is a permutation of 1,2, ...,n, and θ-function equals to 1 if the condition tp1 > tp2 >
... > tpn is satisfied and otherwise 0.
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2 Heisenberg picture

We can also fix state vector stationary with time, say, set the state vector in Heisenberg picture
as the that of the Schrödinger one at t = 0, and let operator to evolve with time:

|ΨH〉 = |Ψs(0)〉,
F̂H(t) = T t(t,0)F̂sT (t,0), (6)

such that

〈ΨH |FH |ΨH〉= 〈Ψs|Fs|Ψs〉. (7)

Actually, Fs can also explicitly depend on time as Fs(t).

Now let us derive the equation of motion of operators. From the Schrödinger equa-
tion in which that Hs may explicitly depend on time, ih̄ ∂

∂t |Ψ
s(t)〉 = Hs(t)|Ψs(t)〉, we have

ih̄ ∂

∂t T (t,0)|Ψs(0)〉= Hs(t)T (t,0)|Ψs(0)〉, thus we have

ih̄
∂

∂t
T (t,0) = Hs(t)T (t,0)

−ih̄
∂

∂t
T †(t,0) = T †(t,0)Hs(t). (8)

Then we have d
dt FH(t)= ∂

∂t T t(t,0)Fs(t)T (t,0)+T t(t,0) ∂

∂t Fs(t)T (t,0)+T t(t,0)Fs(t) ∂

∂t T (t,0),
and then

d
dt

FH(t) =
1
ih̄
[FH(t),HH(t)]+T †(t,0)

∂Fs(t)
∂t

T (t,0), (9)

where HH(t) = T †(t,0)Hs(t)T (t,0). In particular, for the canonical coordinate and momen-
tum, we have

d
dt

qH
j (t) =

1
ih̄
[qH

j (t),H
H(t)],

d
dt

pH
j (t) =

1
ih̄
[pH

j (t),H
H(t)]. (10)

Example 1) Consider the Hamiltonian of an harmonic oscillator in the Schrödinger picture

HS =
pS,2

2m
+

1
2

mω
2xS,2. (11)
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Then the operators in the Heisenberg picture xH and pH can be solved in the following way.

d
dt

xH(t) =
1
ih̄
[xH(t),HH ] =

1
ih̄

eiHt [x,HS]e−iHt ,

d
dt

pH(t) =
1
ih̄
[pH(t),HH ] =

1
ih̄

eiHt [p,HS]e−iHt . (12)

Using the fact that

[xS,HS] =
1

2m
[x, pS,2] =

ih̄
m

pS (13)

and

[pS,Hs] =
1
2

mω
2[pS,x2] =−ih̄mω

2xS, (14)

we arrive at

d
dt

xH(t) =
pH(t)

m
,

d
dt

pH(t) =−mω
2xH(t), (15)

the solution will be

xH(t) = xS cosωt +
pS

mω
sinωt,

pH(t) = −mωxS sinωt + pS cosωt. (16)

Exercise 1 Please prove Eq. 16 for harmonic oscillators by directly using

xH(t) = e
i
h̄ HStxSe−

i
h̄ HSt , pH(t) = e

i
h̄ HSt pSe−

i
h̄ HSt . (17)

Hint: You may use the Baker-Hausdorff lemma in page 95 in Sakurai and Napolitano’s book.
This formula is proved in my notes in lecture 7.

3 Interaction picture

We decompose the Hamiltonian Hs of the Schrödinger picture into the free part H0 and the
perturbative part V as

Hs = H0 +V, (18)

which H0 is independent of time; V may depend on time. We define that the state vector
evolves with time as

|ΨI(t)〉= eiH0t/h̄|ΨS(t)〉= eiH0t/h̄T (t,0)|ΨS(0)〉, (19)
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and correspondingly the operator

F I(t) = eiH0t/h̄Fse−iH0t/h̄. (20)

In such a convention, we keep the inner product invariant

〈ΨI
A(t)|F I(t)|ΨI

B(t)〉= 〈ΨS
A(t)|FS(t)|ΨS

B(t)〉 (21)

Now let us derive equation of motion, we have

d
dt

F I(t) =
1
ih̄
[F I(t),H0]+ eiH0t/h̄ ∂Fs(t)

∂t
e−iH0t/h̄. (22)

For state vector, we have

∂

∂t
|ΨI(t)〉 =

i
h̄

H0eiH0t/h̄|Ψs(t)〉+ eiH0t/h̄ 1
ih̄

HS|ΨS(t)〉

= eiH0t/h̄ i
h̄
(H0−Hs)e−iH0t/h̄|ΨI(t)〉= 1

ih̄
V I(t)|ΨI(t)〉. (23)

From Eq. 23, we can derive the time-evolution operator U(t, t0) in the interaction picture as

|ΨI(t)〉 = U(t, t0)|ΨI(t0)〉,

U(t, t0) = T exp{− i
h̄

∫ t

t0
dt´V I(t´)}. (24)

Exercise 2

1. Prove Eq. 22 of d
dt F I(t).

2. Prove the above expression of U(t, t0).

Example Let us consider a perturbed Harmonic potential

H = H0 +V (x), (25)

where H0 = p2/2m+ 1
2mω2x2 and V (x) is a small perturbation. In the interaction picture, we

have

xI(t) = e
i
h̄ H0txe−

i
h̄ H0t = xcosωt +

p
mω

sinωt,

pI(t) = e
i
h̄ H0t pe−

i
h̄ H0t = −mωxsinωt + pcosωt, (26)

and thus

V I(t) =V (xI(t)). (27)
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The time-evolution operator for the state vectors are

U(t, t0) = T exp{− i
h̄

∫ t

t0
dtV (xI(t))}. (28)
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