tifgj;’f 14 Equations of motion and canonical quantization
development on Read Sakurai Chapter 1.6 and 1.7
symmetries

In Lecture 1 and 2, we have discussed how to represent the state of a quantum mechanical
system based the superposition principle and statistical interpretation. Now we need to solve
the problem of the time evolution of quantum mechanical states.

1 Equation of motion: the Schrodinger equation

Time-evolution operator We start with the time evolution of a pure state. Suppose that at
time 7o, the state is |¥(zp)). Let it evolve to time 7, the state becomes |¥(¢)). We define the
time evolution operator T (z,f) which is determined by the system, say, the mass of particles
and interactions among them. But 7'(z,1y) does not depend on which state it applies. Before
we derive the concrete form of 7'(z,7y), we should be able to conclude that it satisfies the
following properties.

1. T(t,10) should be a linear operator as required by the superposition principle, i.e.,
T(t,10)(c1[¥1(10)) + c2[¥2(10))) = 1T (t,20)[W1(t0)) + 2T (t,20)[W2(00)). (D)

T(l‘o,l‘o) =1.
T (t2,t0) =T (t2,t1)T (t1,10) = 1.

T (to,t1)T (t1,t0) = T (t1,20)T (to,11) = 1, or T~ (t9,11) = T (t1,10).

el

5. Once |¥(tp)) is normalized, i.e., (¥(#9)|¥(#p)) = 1, then at time ¢, |¥(¢)) should also be
normalized, i.e., (¥(¢)|¥(¢)) = 1. Thus T should be a unitary operator T (t1,20)T (t1,19) =
1. From 4. and 5, we have

T (t,10) = T (to,1). )

6. For two independent systems A and B, the state vectors can be written as a tensor prod-
uct |04 (7)) ®|0p(2)), the total time evolution operator Typ(t1,t0) = Ta(t1,10) @ Tp(t1,10).

Equations of motion We can write down equations of motion of state vectors based on the
infinitesimal generator of 7. Let us take the first order time derivative of |\¥(¢)) as
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oT(t t)

Next we prove that |, is an anti-Hermitian operator. From T7(¢ )T (¢t ,t) = 1, we

ot
have
oTT(t,1),. - ¢ OT(1,1)
TT(t ) +T'(t 1) v =0. 4)
Sett — t, we have
oT (¢ ,¢ oT (¢ .t
%’t'_z‘k %h’—t =0. )

We set M(t) = idT (¢ ,¢)/ot |,_,, then M(t) is a Hermitian operator and
d .
i [¥(t)) =M@O)¥(1)). (6)

M(t) should be a linear operator as required by superposition principle, and its Hermitic-
ity comes from the unitarity of time evolution operator. M(t) is also additive, i.e. for two
independent systems A and B, we should have Mup(t) = M4 (t) + Mp(t).

Then what is M?

Why Hamiltonian? Consider an infinitesimal time interval Af, and expand |¥(r — At) =
[P (1)) +iAtM(t)|¥ (1)), then

(W(t— M) (1)) — (P(1) W (2)) ~ it (F(0)[ M (1) W (2))- (7)
Consider a time-translation invariant system, and take the limit Ar — 0, we have

(= AOPE() — (BOIPO) i
Jim N — (W) i¥1(1) 2 (0)). 8)

The left-hand-side is independent of 7 because time-translation symmetry, thus (¥(z)[iM (¢t)|¥(t))
should be a conserved quantity. Such a conserved quantity originates from the time transla-
tion symmetry, and it is also additive. In classic theory, it is nothing but Hamiltonian up to

a constant, and we denote this constant as 7, i.e., EM = H. Now we have the Schrodinger
equation

.0 N
i (1)) = A1 (). ©)

2 Canonical quantization

Still, we need to determine the operator of Hamiltonian. Actually, every quantum theory
originates from a classic theory. The process from classic theory to quantum theory is called
quantization. A common method is the so-called canonical quantization with the following



steps. The process of canonical quantization ensures that quantum mechanical equations of
motions have a classic correspondence.

1. (Classic mechanics) Determine the classic Hamiltonian and classic mechanical observ-
ables as functions of a set of fundamental observables. Usually, the fundamental ob-
servables are chosen as canonical coordinates and momenta.

2. (Canonical quantization condition) Determine the operators of the fundamental observ-
ables. The relation between operators of canonical coordinates and momenta are called
quantization condition.

3. (QM) Assume the relations between operators of observables and the fundamental op-
erators in quantum mechanics are the same as those in classical mechanics by the spirit
of the correspondence principle.

3 Operators of momenta of the Cartesian coordinates

We have derived before that the operator of coordinate in the coordinate representation is just
the coordinate itself. Now we need to derive the operator for momentum.

We start from the translation operator U (I_é) under the spatial translation R. In classic
mechanics, the coordinate and momentum transform as

(F,p) — (F+R, p). (10)
In quantum mechanics, for a state vector |¥), we denote that after such a translation,
) =U(R)|¥). (11)

For two successive translations ﬁl and 132, their total effect is equivalent to a new translation
R3 = R| + R,. At current stage, we only consider the case without magnetic field, such that
any two translations commute. We require that U satisfies

U(R3) =U(R))U(Ry). (12)

In a later lecture of space-time symmetry, we can prove that U should be a unitary linear
operator. Now, we assume it is true. We require the following properties for U (R):

1. U(0)=1.
2. (W = (PIUT(R)
3. (PRPRY = (¢|¥), — UT(R)U(R) = 1.

4. (PRIFWRY = (|4 R|P) — UT(8)7U(3) = F+R.



5. (WR|P|WR) = (@|P|w) — UT(R)PU(R) = P.

A
=

6. (PRISWR) = (WIS|W) — UT(R)SU(R) =

L

7. For two subsystems [y) and [y3), we have Uag(R)[|wa) @ |wB)] = [Ua(R)|wa)] @
[Us(R)|ws)]-

8. We also fix the convention of the phase of U. For coordinate eigenstate |7 ), whose
wavefunction in the coordinate representation is 8(¥—7 ), U|F ) = |[F +R).

(8‘)

Consider an infinitesimal translation with d ~ 0, and thus U (S) +3.2 , we have

U (d)
P}
(r

(B(1)|UB) (1)) ~ (1) (r)) +8- ((r)] (1)) (13)

v onl

If the space is translationally invariant, which means that if |W(¢)) represents a possible time-
dependent state of the system, so does |¥ (1)) = U(8)|¥(¢)). We also assume the time
translation symmetry of the system, then (¥(7)|¥ (¢)) should be independent of ¢. Thus,

(‘P| |‘P) is a conserved quantity associated with space translation symmetry. Further-
more, for two subsystems with states |y4) and |yp), a?) is additive, i.e.,
U (8) A (3) U3 (d)
(Was| Was) = (Wal—=—|¥a) + (Wa| —=—|¥s). (14)
EN o) d
From above properties, % should be proportional to the total momentum up to a constant
s JU(d
=iC S )’8:0- (15)
o1y

P is a Hermitian operator. Later, we will prove that C is actually just 7. Let us use it now.

For simplicity, let us consider one-dimensional translation and drive its operator for finite
distance translation R. From Eq. 15, we have

UR+8) =U(R)U(8) ~ U(R)(1 -+ pb) (16)
and thus
Jd =  ip =
EU(R) = —EU(R), (17)
and thus
U(R) = e iPR. (18)



For the 3-dimensional translation, we can generalize the above result as
U(R) = exp{—+R-P}, (19)

where R is a 3-vector.

Now let us consider the coordinate eigenstate |7). The effect of an infinitesimal translation
along the x-direction is

i A

U (82y)[7) = [F+8ex) = (1 - - P F). (20)
Then we have
PP = 1V [P). 1)

Please note that V,, here is not an operator, it is just a derivative with respect to eigenvalues
of 71, i.e.,

|7+ 8éx) — |F)

V,|7) = lim 22
x|r> 8—0 22)
Then we have
(71P) = (P|P|F) = —inV . (7|'¥). (23)
In terms of wavefunctions, we have
(P®)(F) = —inV. P (7), (24)
or, more generally,
(PP)(F) = —ihV,¥ (7). (25)
We also have the expression for coordinates before
(x;¥)(F) = x;P (7). (26)
So far, we have both expressions of X and P in the coordinate representation.
4 Canonical quantization condition
For simplicity, let us consider a single particle, and we have
Ut @)U =748, UT@)pU®)=p, U= exp{—%g-ﬁ}. 27)



From U (e, )7U (dyex) = 7+ Oy, or,

UT (8e0)RU (8ce,) = £+, (28)
U (8xex)9U (8rex) = 5, (29)
UT(8,,)2U (8,e) = 2. (30)

Taking the limit of 8, — 0, we have

£, px] =ik, [£,py] =0, [£p]=0. (31)
In general, we have

=%, pl=pi, [%,pj] = ind;. (32)

This is the quantization condition in the Schodinger picture.

5 Momentum operators in many-particle systems

Now consider a many-particle system, their coordinate eigenstates ||, 75, ....). The effect of
the translation operator is

UR)F, ) = [F+RA+R,....). (33)
and
U(I_é) = e_ﬁl_é.i);m (34)

where I3m, is the total angular momentum defined as

For =} P (35)
,
The we have
Bolf1,fay) = 1YV, [F1. 72,000 (36)
Ti

Again we have

(F1,72, .| Brot | ) = (P|Bros |F1, 72, ...) = —ith,-(a,?z, L. (37)
;

From the additivity of momentum, the momentum for the j-th particle should be

(1,72, |B¥) = —ilV (71, T2, |P), (38)



, or, in terms of wavefunctions, we have

(pj¥) (71,72, ..) = —ihV j¥(71,T2,..). (39)

6 ProofofC=nh

Recall that in Eq. 15, we set the value of C = h. Now let us do actually prove it, and thus
the canonical quantization condition does not bring a new constant other than %. Consider a
classic Hamiltonian H (x, p), and we replace x and p with quantum mechanical operators £
and p and then arrive at quantum mechanical Hamiltonian A (£, p). Consider that in the case
that A (%, p) can be expanded as series of £ and p,

+oo +oo
5) =Y anp"+ Y bk (40)
n=1 m=1
We have
A Lr(a A\ _ aﬂ('xAuﬁ) A TFT(e A\ aﬁ](-ﬁﬁ)
[X7H(x7p)] - ZCT, [p,H(x,p)] = —iC ox (41)
Exercise Please prove Eq. 41.
Then from Schrédinger equation lh (1)) = H|¥(1)), we have
d i R
YOI ¥@) = (¥, H]¥(1)) = < | I‘P>
d i R
YOI ¥@) = {¥O)Ilp;, HII¥ (1)) = ——(‘PI |‘P> (42)

Compared to the classic Hamilton equations, we conclude that C = /i. Thus Schrédinger
equation plus quantization condition give rise to a harmonic correspondence between quan-
tum and classic mechanics.

7 Momentum eigenstates and momentum representation

Consider a single particle momentum eigenstate p|p) = p|p). In the coordinate representa-
tion, we have

(F|p|p) = p{¥|p), (43)

or,

—ihVy5(7) = pys(7), (44)



and thus we have

Ws(7) = e ehPT. (45)
Eq. 45 is normalized according to
[ @@ =&k -, (46)

where k = P/h is the wavevector. If we consider a finite volume, say, a cubic box with edge
length L, the values of k; are discrete, we use the box renormalization

= 1 k7 % (= —
wilF) = e [ v =z (47)

2

Just like that all the eigenstates of X form a complete basis of a single particle Hilbert
space, so do the eigenstates of p. Similar results apply to many-particle systems. Let us
denote |p; py....) as the eigenbases of a set of momenta operator pi, ps, .... They satisfy

pilpip2...) = pjlpip2...)
(p1p2---|p1p2--) = O(p1—p1)8(p2—py)---
/dpldpz---|plpz-->(Plpz--l = I (48)

For simplicity, let us come back to the single particle cases, and ask what are the expres-
sions of wavefunctions, X, and p in the momentum representation? The wavefunction of the
state vector |¥) in momentum representation is

¥(p) = (p|'¥). (49)

And notice that £|x) = x|x), and (p|p = p(p|, we have

(ple®) = [ dxipiei) (%) = [ dxx(ple) ) = [ doxe F (x]),
:img/wm@m%:mmy@% (50)
(plp|¥) = p¥(p). (51)
The above equations mean that in the momentum representation

£=ihV,, p=p. (52)



8 Some subtle points

From Eq. 50, we have

o {p+pl¥) = (p|'¥)
(PP} = ih Jim 5

thus
(plx = iRV, (pl,
or
x|p) = —ihVp|p).
Compare the expression proved before

p|x) = ifiVi|x).

Y

(53)

(54)

(55)

(56)



Lecture 5: Orbital angular momentum, spin and rotation

1 Orbital angular momentum operator

According to the classic expression of orbital angular momentum L =7 x P, we define the
quantum operator

Lx:yﬁz_fﬁwl*y :fﬁx_)eﬁmlfz:)eﬁy_)?ﬁx- (D)

(From now on, we may omit the hat on the operators.) We can check that the three compo-
nents of operators of L are Hermitian, and satisfy the commutation relation

[Ll', Lj] = ieiijsz. (2)

The non-commutativity of L;(i = x,y,z) is absent in the classic physics, which is a quantum
effect. We can normalize L; by dividing /, roughly speaking the magnitude of orbital angular
momentum, we have

[

As we can see, that in the limit of / — oo, the non-commutativity approaches zero and thus
the classic physics is recovered.

L L, 1. I
) 3
7 3)

] - 7i£ijk7.

2 Rotation operator

Let us define the rotation operator. Consider a single particle state |¥), and after a rotation
operation g(7i, 0) where 7 is the rotation axis and 6 is the rotation angle, we arrive at |¥$). The
operation of g on three-vectors, such as 7, j, and S, is described by a 3 x 3 special orthogonal
matrix, i.e., SO(3), 8op @S

(8o =8up’s:  (8P)a = 8apPp:  (85)a = gupSp- 4)
For example, for /i = Z, we have
cos® —sin® O
2(2,8) = sin® cos® 0O |. (5)
0 0 1

For infinitesimal rotation angle 6,

—_—

d
8(£,0) =~ 1+0--g(2,0)[o—0=1+6
0

5 (6)

o —o
co !
coo
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Exercise 1: Please find the explicit matrices for g(£,0) and g(¥,0), and find their in-
finitesimal rotation generators %g()ﬁ, 0)|o—0 and %g(ﬁ, 0)e—o0-

By the physical meaning of rotation, we should have
(WEW9) = (BIW), (W8I5198) = (lgplY), (W8IS|WS) = (P]gSIY). (7)

We denote that |$) = D(g)|¥), and assume that D(g) is a linear unitary operator. We should
have

D(g(i1,0)) = 1,

D'(g)D(g) = D(g)D'(g) =1,

D(g)7D(g) = g,

D'(g)pD(g) = gp

D(g)SD(g) = gS. ©)

For two successive rotations g; and g;, their net effect is another rotation g whose matrix
is defined as g = g1g>. Their corresponding rotation operators satisfy the similar relation of
product as

D(g182) = D(g1)D(g2) )

Using the group theory language, D(g)’s form a unitary representation for the SO(3) (3D
special orthogonal) rotation group.

Next we discuss the relation between the rotation operator and total angular momentum.
In the limit of small rotation angle 6 — 0,

aD(#,0)

D(g(1,80))[¥(r)) = [¥(r)) + 50 —=¢

lo=o| (1)) + ..., (10)

thus

aD(#,0)

(F(1)[D(g)[¥(2)) — (F(1)[¥(2)) = 06(¥ (1) —75

lo=0|¥ (7)) + ... (11)
If the space is isotropic around the axis 7, and if |¥(¢)) is a state vector, then D(g)|¥(z)) is
also a valid time-dependent state vector, thus the left-hand-side is independent of time. Then

(W(1)] w lo=o|¥(z)) is a conserved quantity associated with rotation around the axis 7. It

0
is also easy to show that BD(-%’G) lo=o is an anti-Hermitian operator. It should be the angular

momentum projection to the axis 7 up to a constant o as

aD(R,0), Q. -
% |e:0——&n-J. (12)

J should be the total angular momentum J=L+S. Next we need to determine the constant
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o. From D (g)7D(g) = g7, we have

o do(7,0
iofi T, r] = %ye_wq (13)

By taking 7i along the z-axis and r; = ry, we can obtain that o = £, and thus

St

D(g(#,0)) = e 417 (14)

From the Eq. 8 relation D' (g)S:D(g) = gi;S;, and take the infinitesimal rotation, we arrive
the commutation relation between spin operators

[S,',Sj] = iSijkﬁSk. (15)

Exercise 2

1. Prove that above statement that o0 = A.
2. Prove Eq. 15.

3. From D'(g)L;D(g) = gi;L;, please derive that [L;,L;] = i€;jx/iLx, which is consistent
with the direct calculation using the canonical quantization condition.

4. From D'(g)p:D(g) = gijpj» please derive that [L;, p,] = ig; jkhp;.

3 Pauli matrices for spin-% particles

For spin—%, we can explicitly construct its operators due to its simplicity. The projection of
spin along any direction can only take values of j:%, thus

1 3
Si=8y =8 =, Si+S+8T =0 (16)

Set § = %6, such that G)zc = 65 = Gg = 1 which are all Hermitian matrices. The satisfy the
commutation relation

0.0y — 0,0y = 2iG;, 0,0; — 0,0y = 2i0;, G,0x —0,0; = 2i0,. (17)

A convenient choice of representations of Pauli matrices is

0 1 0 —i 1 0
Gx:(lO)’Gy:(i 0)7612(0—1) (18)
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Pauli matrices have a special properties that other spin matrices do not have, they anti-
commute with each other, i.e.,

Gi0j+6j6i:25ij, (19)
and consequently
Gi0j = 5,‘1' + iSijka. (20)

Pauli matrices are actually the lowest order Clifford algebra. They are also isomorphic to
quaternions (the Hamilton number) following the correspondce of

[ —i0x j<» —i0y k<> —iC;. (21)

Exercise 3 1) Prove the anti-commutation relation 6,6 + 6 ;6; = 29;; which is independent
of the concrete representation.

2) Prove that for the rotation operator from the spin part Ds(n,0) = exp{—%ﬂ?s -h}, it

equals to cos 5 — i(6 - 7i) sin 3.

4 Hamiltonian operator for charged particles in the E-M
field and gauge invariance
The classic Lagrangian is
. I o e, =
L(x,x,t) = Smr + Er-A — e, (22)

the canonical momentum is

- oL ) -
P=2 =i A (23)
0g c
Thus
s 8o (P—¢A)?
H.(F,P)=P-F—L= ¢ + ed. (24)
2m

Quantum mechanically, we replace the canonical momentum P, rather than the mechani-
cal momentum, with the operator —ih%. Again it is because of the correspondence principle:
In classical mechanics, it is the canonical momentum P satisfy the Poisson bracket, not the
mechanical momentum. Then for the quantum mechanical Hamiltonian, however, what en-
ters the Hamiltonian is the mechanical momentum which is an physical observable. The
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canonical momentum is not gauge invariant, and thus is not a physical observable.

_iEVY — €A(7))2
g VAN . 25)

2m

If we expand the above Hamiltonian, we have

—V?: e - . e - = AP
H= ——ihV-(A— —A-ihV+ — .
2m 2mcl ( mc v+ 2 2m

(26)

The meaning of the second term in the above equation is that for any wavefunction y(7), its
effect is —-7V - {A(7)y(7)}. We often use Column like gauge such that V- A = 0, in this

2m

case, Eq. 26 is reduced to

RV ihey . A% (7)

H= . 27
2m mc 2mc? @7
In classic EM, we know that K(?) has gauge redundancy, i.e., for
- - . . N
A () =A@ +Vf(71), ¢ () =0(F) - -5 f(7,1) (28)

—

where f(7,t) is an arbitrary scale field, (A", ¢") and (A, ¢) represent the same physical electric
and magnetic fields. In classic EM, it is not a problem because the equation of motion can be
written by using E and B,

X B. (29)
C

The introduction of A and ¢ is just a convenience not essential.

However, in quantum mechanics, the concept of force is ill-defined. We have to either
use Hamiltonian, or, Lagrangian, both of which can only be expressed by A and ¢ not by E
and B. The form of Hamiltonian by using A and ¢ is written as

(ihY — £A (7))

H = o +ed (). (30)

A natural question is: Should H and H give rise to the same physics?

We can prove that for any solution to the equation

() = () a1)
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with H defined in Eq. 25, we define the a new wavefunction y (7,¢)

W (7.0) = e/ Py () (32)
such that it satisfies

9 . .

zhg\u (rt) =H vy (nt). (33)

Exercise 4 Prove the above statement in Eq. 32 and Eq. 33. Hint: you may need to first
verify that

8 . . ie £(7 a
h— — — c (r,t) h— —
(lhat ed )1|I eh (lhat e¢)l|f, (34)

and you can also find a similar expression with respect to the spatial gradient.
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Lecture 6: Pictures
Read Sakurai and Napolitano Chapter 2.1 and 2.2

Both operators and state vectors are unobservable, only the inner products are related to
observable quantities. Under the requirement of keeping the inner products invariant, we can
use different pictures to formulate the time-evolution in quantum mechanics. They are related
to similar transformations.

1 Schrodinger picture

The time evolution is expressed as the evolution of state vectors. The canonical coordinates,
momenta, spin do not change with time.

[#°(1)) = T(1,10) ¥ (10)). (1)

Assume that F° is an operator for the observable F' in the Schrodinger picture, we have its
expectation value

FS = (W9 ()| F* |9 (1)) @)

If H* does not depend on ¢, then T'(¢,0) = exp{—%H t}. If H® explicitly depend on 7, the
expression of T is not so simple. According to %T(t, 0) = —+H*(t)T(¢,0), we have

—7 [t
T(t,O)zlJr#/ driH* (1) T (11,0), 3)
0
and by iteration,
—i rt _iz t 1
T(t,0) = 1—|——/dt1Hs(t1)—|—(—) /dn/ diyH (1)) H* (1)
h Jo o Jo 0

+ ...+(%i)n/otdll---/0tn_]dths(tl)H‘Y(tz)...Hs(ln)+...

=i, ! t ) . )
= X [ [T @) ). 1)
i

T is the time-ordered operator. 7 is defined as

TH(t))H(tp)...H(t,) = Ze(tpl >tp, > .. >t )H(ty )H(ty,)...H(tp,), ®)

where p is a permutation of 1,2,...,n, and 6-function equals to 1 if the condition 7,,, > 1,, >
... > 1p, 1s satisfied and otherwise 0.
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2 Heisenberg picture

We can also fix state vector stationary with time, say, set the state vector in Heisenberg picture
as the that of the Schrodinger one at # = 0, and let operator to evolve with time:

)y = [¥°(0)),
F(1) = T'(t,0)F°T(1,0), (6)
such that
(PP M) = (9 |9). (7

Actually, F* can also explicitly depend on time as F*(t).

Now let us derive the equation of motion of operators. From the Schrodinger equa-
tion in which that H* may explicitly depend on time, ih%]‘l’s(t)) = H*(t)|¥¥(¢)), we have
ihT(,0)[¥°(0)) = H*(t)T (1,0)|¥°(0)), thus we have

ih%T(t,O) = H(t)T(t,0)

—ih%T*(r,O) = T7(t,00H (r). (8)
Then we have 4 F/ (1) = 277(¢,0)F(t)T(¢,0)+T"(¢,0) S F*(£)T (,0) + T" (t,0)F*(£) T (¢,0),
and then

d 1 OF*(t)
EFH(z)_E[FH(;),HH(t)]+TT(t,0) == T(t,0), 9)

where H (t) = T7(¢,0)H*(¢)T (¢,0). In particular, for the canonical coordinate and momen-
tum, we have

d o 1

S = 0.5 0)
Col) = )5 0] (10)

Example 1) Consider the Hamiltonian of an harmonic oscillator in the Schrodinger picture

1
=2 4 s, (11)



Then the operators in the Heisenberg picture x/ and p’ can be solved in the following way.

d 1 1 .
_XH t — _XH t HH —— iHt HS —iHt
dt ( ) lh[ ( )7 ] lhe [x7 ]e I
d 1 1 . .
2P0 = [P (0, H") = =" [p Hole™ (12)
Using the fact that
1 ih
S 178 52 S
H>| = — = — 13
[ H 5= p (13)
and
1
pS,Hs — —m(02 pS,x2 — —ihmmzxs, (14)
2
we arrive at
d Hir) d
X0 = pT() 2P (6) = —mo*x (), (15)
the solution will be
P’
M) = xScos(J)H——wsin(J)t,
m
pl(t) = —mox’sinor+ pScosor. (16)

Exercise 1 Please prove Eq. 16 for harmonic oscillators by directly using
(1) = ety i pH (1) = i pS =i (17)

Hint: You may use the Baker-Hausdorff lemma in page 95 in Sakurai and Napolitano’s book.
This formula is proved in my notes in lecture 7.

3 Interaction picture

We decompose the Hamiltonian H® of the Schrodinger picture into the free part Hy and the
perturbative part V as

H*=Hy+V, (18)

which Hj is independent of time; V may depend on time. We define that the state vector
evolves with time as

(1)) = /S (1)) = I (1,0) 85 0), (19)
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and correspondingly the operator
F[(t) — eiH()l‘/FlFSe—iHot/fl. (20)
In such a convention, we keep the inner product invariant

(FAOIF (1) ¥5(1)) = (P40 F> (1) P(1) 1)

Now let us derive equation of motion, we have

d g1 ittor/nOF (1) irtoe/n
th (1) = ih[F (t),Ho] +e 5 e . (22)
For state vector, we have
0 [ ; S ; 1
SIPI(0) = Hoe /MW (1)) + /7S S )
. ; . 1
— MLy — H)e O 1) = VIO (). @3)

From Eq. 23, we can derive the time-evolution operator U (z,fy) in the interaction picture as
[¥(1)) = U(t,10)|¥ (10)),
i t -, ’
Ult,tg) = ‘Texp{—% dr V(). (24)
fo

Exercise 2

1. Prove Eq. 22 of %F’(t).

2. Prove the above expression of U (¢,1).

Example Let us consider a perturbed Harmonic potential
H=Hy+V(x), (25)

where Hy = p*/2m + %mmzx2 and V (x) is a small perturbation. In the interaction picture, we
have

(1) = erflol o= iHot = ycosar + 2 siner,
| | me
pl(1) = et pe= il —  _maxsinor + peosar, (26)
and thus
Vi) =V (). 27)



The time-evolution operator for the state vectors are

Ult,t0) = ‘Texp{—% v ). (28)
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