Quantum Mechanics 2025 HW3

Due 09/30 in Class

September 23, 2025

Problem 1. A quantum particle in an infinitely deep potential well

Consider a quantum particle with the mass m moving in a quantum well with the potential of

$$V(x) = \begin{cases} +\infty, |x| \ge L/2, \\ 0, |x| < L/2. \end{cases}$$
 (1)

- 1) Solve the eigen-energies E_n^\pm and the associated normalized eigen-wavefunctions $\psi_n^\pm(x)$. \pm are the parity number; $E_1^+ < E_2^+ < E_3^+ < \dots$ and $E_1^- < E_2^- < E_3^- < \dots$
 - 2) Consider an initial state

$$\psi(t=0) = \frac{1}{\sqrt{2}} \left(\psi_1^+(x) + \psi_1^-(x) \right). \tag{2}$$

Please calculate its time-evolution $\psi(t)$.

3) Calculate $\sqrt{(\Delta x)^2}$ and $\sqrt{(\Delta p)^2}$ in each state. Check whether they satisfy $\sqrt{(\Delta x)^2}\sqrt{(\Delta p)^2} \ge \hbar/2.$

Problem 2. δ -function

- 1) Prove that $\lim_{a\to 0} = \frac{1}{\pi} \frac{a}{x^2 + a^2} = \lim_{a\to 0} \frac{1}{a\sqrt{\pi}} e^{-x^2/a^2} = \delta(x)$.
- 2) Prove that $\frac{1}{x \pm i\epsilon} = P(1/x) \mp i\pi \delta(x)$, where P means the principal value of integration and $\epsilon \to 0^+$.

 - 3) Please figure out what is $\delta(x^2-a^2)$. In general what is $\delta(f(x))$?
 4) Please calculate $\int_{-\infty}^{+\infty} \frac{d}{dx} \delta(x-a) \left(xf(x)\right) = ?$ Similarly, $\int_{-\infty}^{+\infty} \frac{d^2}{d^2x} \delta(x-a) \left(x^2f(x)\right) = ?$

Problem 3. Momentum representation

In class, we explained wave mechanics is in fact the coordinate representation of quantum mechanics by identifying $\psi(x) = \langle x | \psi \rangle$. We also proved in class that $\langle x | \hat{p} | \psi \rangle =$ $-i\hbar \lim_{\Delta x \to 0} \frac{\langle x + \Delta x | \psi \rangle - \langle x | \psi \rangle}{\Delta x} = -i\hbar \frac{d}{dx} \psi(x).$

- 1) Please derive that $\langle x|\hat{p}^2|\psi\rangle = -\hbar^2 \frac{d^2}{dx^2}\psi(x)$.
- 2) Prove that the Hamiltonian of an harmonic oscillator in the coordinate representation $\langle x|\hat{H}|\psi\rangle = (-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2x^2)\psi(x)$. 3) Define $\psi(p) = \langle p|\psi\rangle$. Then please derive that $\langle p|\hat{x}|\psi\rangle = i\hbar\frac{d}{dp}\psi(p)$.
- 4) Please derive the same Hamiltonian of the harmonic oscillator in the momentum representation $\langle p|H|\psi\rangle = ?$. Please represent the right-hand side as operators acting on $\psi(p)$.

Problem 4. Orbital angular momentum

The operators of orbital angular momentum L_i with i = x, y, z are defined as

$$L_i = \epsilon_{ijk} x_i p_k. \tag{3}$$

- 1) Prove that $[L_i, L_j] = i\epsilon\hbar L_k$. Define $L^2 = L_x^2 + L_y^2 + L_z^2$. Prove that $[L^2, L_i] = 0$.
- 2) Prove that $[L_i, x_j] = i\epsilon_{ijk}\hbar x_k$ and $[L_i, p_j] = i\epsilon_{ijk}\hbar p_k$. 3) Prove that $[L_i, r^2] = 0$ where $r^2 = x^2 + y^2 + z^2$ and $[L_i, p^2] = 0$.
- 4) Write down the expressions of L_i in coordinate representation, and also those in momentum representation.

Problem 5. Complete set of Mechanical variables

For a physical problem, we often find a maximal set of observables which commute each other. Then they share the common eigenstates. For a hydrogen atom,

$$H = -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{r}.\tag{4}$$

This set include Hamiltonian H itself, the angular momentum square L^2 , the z-component of angular momentum, i.e., (H, L^2, L_z) .

Prove that $[H, L_i] = 0$ for i = x, y, z, and $[H, L^2] = 0$. Later we will use (n, l, m) to denote eigenvalues of E_n , $l(l+1)\hbar^2$, $m\hbar$ for (H, L^2, L_z) , respectively.

Problem 6. Gaussian and uncertainty principle

the momentum representation again.

Consider the wavefunction that $\psi(x) = \langle x|\psi\rangle = Ae^{-\frac{x^2}{2l^2}}$. Please derive the normalization factor A according to $\int_{-\infty}^{+\infty} dx |\psi(x)|^2 = 1$.

- 1) Calculate $\sqrt{(\Delta x)^2}$ and $\sqrt{(\Delta p)^2}$. Please verify they satisfy the lower bond of the uncertainty principle.
- 2) We define $\hat{p}|p\rangle = p|p\rangle$, and set its normalization condition that $\int_{-\infty}^{+\infty} dx |\langle x|p\rangle|^2 =$ 1. Please find the expression of $\psi(p) = \langle p | \psi \rangle$. Then calculate $\sqrt{(\Delta p)^2}$ and $\sqrt{(\Delta x)^2}$ in