Condensed Matter theory (B)



Course Syllabus pdf file


Background material readings

  • Reading 1 : More is different. P. W. Anderson(1972). Science, 177(4047), 393-396.
  • Reading 2 : On the nature of research in condensed state physics. A. J. Leggett(1992). Foundations of Physics, 22, 221-233.
  • Reading 3 : Electronic Society. C. Wu(2022). 物理, 2022, 51(1): 53-58.
  • Reading 4 : Richard Feynman and the history of superconductivity. D. Goodstein, J. Goodstein(2000). Physics in Perspective, 2, 30-47.

  • Lecture notes

    Part I: Preparation

    1. Reviews
  • Lecture -1 : Single-particle physics
  • Lecture 0 : The 2nd quantization method
  • Part II: Many-body physics without field theory

    1. Elementary topics
  • Lecture 1 : Hartree-Fock approximation
  • Lecture 2 : Density functional theory
  • Lecture 3 : Hubbard model, Heisenberg model, spin wave

  • 2. Interacting fermions
  • Lecture 4 : Interacting electron gas– Lindhard response, plasmon, screening
  • Lecture 5 : Fermi liquid theory (I)– quasi-particles and Landau interaction parameters
  • Lecture 6 : Fermi liquid theory (II)– renormalization to physical properties
  • Lecture 7 : Fermi liquid theory (III)– the Boltzmann equation and zero sound
  • Lecture 8 : Electron phonon interaction in metals

  • 3. Superconductivity
  • Lecture 9 : Phenomenology of superconductivity
  • Lecture 10 : Bardeen-Cooper-Schrieffer theory to superconductivity
  • Lecture 11 : Thermodynamic properties, McMillan formula, linear response and coherence factor
  • Lecture 12 : Ginzburg-Landau formalism, dirty superconductor
  • Lecture 13 : (TBA) Josephson effect
  • Lecture 14 : Unconventional superconductivity
  • Part III: Field theory description of many-body physics

    1. Formalism development
  • Lecture 15 : Path integral for quantum mechanics
  • Lecture 16 : Operator formalism, response functions
  • Lecture 17 : Path integral for functional fields and fermions
  • Lecture 18 : Perturbation theory for fermions

  • 2. Fermi liquid and superconductivity
  • Lecture 19 : RPA, correlation energy
  • Lecture 20 : Quasiparticle life time, Fermi surface
  • Lecture 21 : Spin waves in itinerant ferromagnets
  • Lecture 22 : Vertex functions, Ward identities
  • Lecture 23 : Luttinger theorem

  • Final projects


    1. Plasmon
  • Project 1(a) : Pines' demon. Wikipedia.
  • Project 1(b) : Remarks on Bloch's method of sound waves applied to many-fermion problems. S. I. Tomonaga(1950). Progress of Theoretical Physics, 5(4), 544-569.

  • 2. New progress in Fermi liquid theory
  • Project 2(a) : Fermi liquid instabilities in the spin channel. C. Wu, K. Sun, E. Fradkin, et al(2007). Physical Review B, 75(11), 115103.
  • Project 2(b) : Dynamic generation of spin-orbit coupling. C. Wu, S. C. Zhang(2004). Physical review letters, 93(3), 036403.
  • Project 2(c) : Emerging research landscape of altermagnetism. L. Šmejkal, J. Sinova, T. Jungwirth(2022). Physical Review X, 12(4), 040501.
  • Project 2(d) : A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7. J. W. Harter, Z. Y. Zhao, J. Q. Yan, et al(2017). Science, 356(6335), 295-299.

  • 3. Spin-orbit coupling
  • Project 3(a) : Spin-orbit coupled Fermi liquid theory of ultracold magnetic dipolar fermions. Y. Li, C. Wu(2012). Physical Review B, 85(20), 205126.
  • Project 3(b) : The J-triplet Cooper pairing with magnetic dipolar interactions. Y. Li, C. Wu(2012). Scientific reports, 2(1), 392.

  • 4. Magnetic exchanges
  • Project 4(a) : Exchange in magnetic insulators. P. W. Anderson(2005). Career In Theoretical Physics, A (Vol. 35). World Scientific.
  • Project 4(b) : The Jahn-Teller effect and magnetism: transition metal compounds. K. I. Kugel, D. I. Khomskiĭ(1982). Soviet Physics Uspekhi, 25(4), 231.
  • Project 4(c) : Symmetry and the macroscopic dynamics of magnetic materials. A. F. Andreev, V. I. Marchenko(1980). Soviet Physics Uspekhi, 23(1), 21.
  • Project 4(d) : Multiflavor Mott insulators in quantum materials and ultracold atoms. G. V. Chen, C. Wu(2024). npj Quantum Materials, 9(1), 1.

  • 5. Density functional theory
  • Project 5(a) : Density functional theory for field theorists I. T. Banks(2015). arXiv preprint arXiv:1503.02925.
  • Project 5(b) : A bird's-eye view of density functional theory. K. Capelle(2006). Brazilian journal of physics, 36, 1318-1343.

  • 6. Schwinger boson method to Heisenberg model
  • Project 6(a) : Functional integral theories of low-dimensional quantum Heisenberg models. D. P. Arovas, A. Auerbach(1988). Physical Review B, 38(1), 316.
  • Project 6(b) : Schwinger-boson mean-field theory of the Heisenberg ferrimagnetic spin chain. C. Wu, B. Chen, X. Dai, et al(1999). Physical Review B, 60(2), 1057.

  • 7. Itinerant ferromagnetism
  • Project 7(a) : Sign-problem-free quantum monte carlo study on thermodynamic properties and magnetic phase transitions in orbital-active itinerant ferromagnets. S. Xu,Y. Li, C. Wu(2015). Physical Review X, 5(2), 021032.
  • Project 7(b) : Exact results for itinerant ferromagnetism in multiorbital systems on square and cubic lattices. Y. Li, E. H. Lieb, C. Wu(2014). Physical Review Letters, 112(21), 217201.

  • 8. Macroscopic Parity Nonconservation
  • Project 8(a) : Macroscopic Parity Nonconservation Due to Neutral Currents? Leggett, A. J. (1977). Physical Review Letters, 39(10), 587.











  • Back to home
    Last modified: July 2, 2022.